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An Estimation/Correction Algorithm for Detecting
Bone Edges in CT Images

W. Yao, P. Abolmaesumi, Member, IEEE, M. Greenspan, Member, IEEE, and R. E. Ellis*, Member, IEEE

Abstract—The normal direction of the bone contour in com-
puted tomography (CT) images provides important anatomical
information and can guide segmentation algorithms. Since various
bones in CT images have different sizes, and the intensity values
of bone pixels are generally nonuniform and noisy, estimation
of the normal direction using a single scale is not reliable. We
propose a multiscale approach to estimate the normal direction
of bone edges. The reliability of the estimation is calculated from
the estimated results and, after re-scaling, the reliability is used
to further correct the normal direction. The optimal scale at each
point is obtained while estimating the normal direction; this scale
is then used in a simple edge detector. Our experimental results
have shown that use of this estimated/corrected normal direction
improves the segmentation quality by decreasing the number of
unexpected edges and discontinuities (gaps) of real contours. The
corrected normal direction could also be used in postprocessing to
delete false edges. Our segmentation algorithm is automatic, and
its performance is evaluated on CT images of the human pelvis,
leg, and wrist.

Index Terms—Edge-tracing, image segmentation, Kalman
filtering, normal direction, postprocessing, reliability, seed.

1. INTRODUCTION

EGMENTATION of computed tomography (CT) images is
S an important step in image-guided surgery. In orthopedic
applications, the segmentation of bone from soft tissue is critical
in both the preoperative planning phase and the intraoperative
registration phase. Cortical bone, which is both physically and
radiologically dense, is easy to segment from the surrounding
soft tissues; however, cancellous bone is physically much less
dense and radiologically can appear to be similar to the sur-
rounding tissues. This is particularly true for images of elderly
patients, whose decreased bone density and increased calcifica-
tion of muscle and vascular tissues further complicates the seg-
mentation process.
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Several classes of methods have been proposed to segment
bones from CT images in the literature [1]-[6]. Global [7], [8]
or local [9] thresholding approaches assume the homogeneity
of the objects being segmented. While this assumption usually
holds for fat and often for muscle, it does not usually hold for
bone. Bones have different shapes and rich inner structures,
which cause the intensity of bone pixels to vary in a wide range
from the intensity of fat to the highest value of the image. Since
the intensity of bone overlaps with the intensity of muscle and
fat, it is difficult to segment bone from the image by using an
intensity threshold.

Active contour models, or snakes, were introduced by Kass et
al. [2] and have been shown to be very useful in medical image
processing [10], [11]. An active contour evolves under the con-
trol of so-called energy terms that describe relevant properties
of the contour, such as smoothness, continuity, and an external
“force” coming from the nonuniform intensity distribution of
the image. The performance of active contour models depends
critically on the initial contour [12], which can be provided man-
ually or automatically (e.g., by using information such as an
anatomical atlas [13]). Roughly speaking, if the initial contour
is close to the real contour of a bone, the active contour usually
converges to the real contour. However, such an initial contour
is hard to automatically obtain and, when the initial contour is
not good enough, the contour may not converge to the real one.!

Recently, level sets [ 14]-[16] have shown promise in segmen-
tation of medical images, such as CT slices of human brains.
Unlike snakes, which express the driven terms as energy and
seek the minimal energy state, level sets consider an implicit sur-
face driven by advection, propagation and some spatial modifier
terms, and take the stable zero level set as the contour of the seg-
mented object. In Section III-C, we evaluate a level set method
for segmenting bones.

Other methods that have been used in bone segmentation
include region growing [5], [17], region competition [18], wa-
tershed segmentation [19], and skeletally coupled deformable
models [20]. There are excellent recent reviews of these pow-
erful methods in the literature [12], [20].

Edge detection, or edge filtering, is another class of methods
that can be used to find bone contours in CT slices when the in-
tensity of pixels near the boundary changes more rapidly than
that in the nonboundary region. Edge filters often have one or
more adjustable parameters, and the multiscale property of im-
ages [1], [21] can make it difficult to obtain the optimal values of
these parameters. Edge filters often produce nonclosed contours
or closed contours with many false edges; Fig. 1, for example,
shows that the Canny edge filter [22] does not perform well even

'We provide examples of good and bad convergence in Section III-B.
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Fig. 1. Edge maps obtained by the Canny detector from the CT image
shown in Fig. 10(a) when the variance of the Gaussian is 1.2, the low-end
hysteresis threshold is 20%, and the high-end hysteresis threshold is,
respectively, 70% in (a), and 75% in (b). The source code is from
http://figment.csee.usf.edu/sarkar/resume/default.htm.

though the bone contour is physically closed and can be math-
ematically modeled as closed [23]. Furthermore, in bone seg-
mentation only the edges of the bone tissue are desired so the
edges of other tissues such as fat and muscle should not appear
in the resulting edge map. Additional techniques are, therefore,
needed to form a closed contour and to suppress or delete unde-
sired edges.

An edge-tracing or contour-tracing algorithm can be used to
form a closed contour [24]. Let us say that the true location of
the edge point ¢ 4 1 is x;41. Starting from the :th detected edge
point (or seed) at x; € R?, the next edge point at X; 11 = f(x;)
can be expressed as

Xip1 = Xip1 + €41 (D

where f(x;) is a function to predict x;11 from x; and €;4; is
the error of the predictor as applied to the given image. When
€;+1 1s estimated, the edge-tracing process continues to obtain
the next point until the previously predicted point is revisited or
certain conditions are no longer satisfied.

Correcting the prediction, or equivalently finding €;41, in-
volves the use of edge detectors such as the first derivative of
the Gaussian, Canny’s detector [22], edge detectors based on
zero-crossings [25] or optimal linear filters [26]. These detectors
are designed for one-dimensional (1-D) noisy step-edge signals.
When they are used to detect edges in two-dimensional (2-D)
images, optimally the 1-D signal should consist of the inten-
sity of pixels on the normal line of the predicted point since the
intensity changes the most rapidly along the normal direction.
Thus, a critical step is to accurately determine the normal direc-
tion at the predicted point.

II. OUR ESTIMATION/CORRECTION ALGORITHM
A. Description

Our algorithm, based on edge tracing, is depicted as a block
diagram in Fig. 2. Suppose we have initial seeds obtained from
some method such as thresholding or manual selection. The
seeds do not need to fall directly on the edge of the bone (but
should be near the edge). Starting from an initial seed, to find
an edge point near the seed or to correct the location of the seed
we calculate the normal direction at the seed and constructa 1-D
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Fig. 2. Block diagram of our segmentation algorithm.

signal that consists of the intensity of the pixels along the normal
direction centered at the seed. We then use an edge filter to find
the edge point in the 1-D signal. The deviation of the edge point
in the 1-D signal from the center is used to obtain the location of
the edge point in the 2-D image. From the edge point, we predict
the next edge point along the edge. The predicted point is taken
as a seed and the process is repeated until no new edge point
can be predicted. We then go to the next initial seed, and the en-
tire process is repeated until all of the initial seeds are used up.
Finally, the edge map is postprocessed to produce a better edge
map of the bone.

Ideally, bone contours are closed. However, due to noise, the
contour resulting from the above described process may not
be closed and some new information or assumption is needed
to enclose the contour. One common approach is Canny’s
hysteresis thresholding [22], which uses two separate threshold
values. Those pixels with an edge strength greater than the
larger threshold value are deemed to be edge pixels, while those
with an edge strength less than the lower threshold value are
not on an edge. Those pixels with intermediate edge strength,
between the smaller and larger thresholds, are determined to
also be at edge only if they are the neighbor of an edge pixel.
In our algorithm, instead of hysteresis thresholding, we use
the smoothed 1-D signal along the tangent direction of the
edge so that the neighbors’ edge strength could influence the
edge strength of the predicted point. The difference in these
two methods is that the latter uses more than one neighbor’s
information, whereas the former uses the information of the
nearest neighbor only. The cost of the latter is that the tangent
direction or the normal direction needs to be estimated more
accurately than in Canny’s method.

There are some obvious advantages to using the normal di-
rection in image processing. First, the normal direction near an
edge is more stable than the intensity of pixels near the edge;
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we have observed that the direction at one pixel can stay un-
changed with different scales of observation (see Section II-B
for details). Assuming that edges are smooth, the difference be-
tween the normal directions at two neighboring pixels along an
edge cannot be large. Second, the normal direction encodes ge-
ometrical information of the edge, which is very useful in image
processing. For example, in the popular snakes method of seg-
mentation, there is an energy term for the smoothness of the
edge [2]. As we will show below, these properties of the normal
direction can be utilized to solve some challenging problems in
image processing.

Due to the noise and multiple scales of the image, accurate
edge-normal direction is not easy to obtain, which is one of the
reasons why edge tracing is not robust in producing true edges.
In this paper, we investigate this issue and design our segmenta-
tion algorithm based on a consideration of the normal direction.
In Section II-B, we use the first derivative of the Gaussian as
the normal direction estimator to show the sensitivity of the es-
timated normal direction on the variance o, the parameter of the
estimator, and on the coordinate system. We show how to cor-
rect the estimated direction under the assumption of the smooth-
ness of the edge in Section II-C. We discuss the reliability of
the estimated normal direction in Section II-D, and show how
reliability can be rescaled to make our algorithm robust and
how an optimal value of o can be determined. In Section II-E
we briefly discuss the construction of a 1-D signal where the
neighboring 1-D signals are adopted to smooth the current 1-D
signal. Section II-F discusses the search of initial seeds so that
our segmentation algorithm can be completely automatic. Be-
cause not all initial seeds determined in Section II-F are near
the edge of bone, some false edges are unavoidable; a solution
to this problem is presented in Section II-G, where we delete
the false edges between bones by classifying the neighboring
detected edge points into three groups according to their normal
directions.

B. Normal-Direction Estimation

Our normal-direction estimation is based on the observation
that the intensity of pixels near an edge changes more rapidly
along the normal direction than along the tangent direction.
Noise and quantization of an underlying smooth signal, which
are unavoidable in CT images, can blur or otherwise obscure
the edge. Therefore, a good edge normal direction estimator
should decrease the effect of noise. Approximating the noise in
images as additive Gaussian noise [27], G,,, the first derivative
of the 2-D symmetrical Gaussian is widely used to obtain the
normal direction, and to suppress the noise at the same time

¢, =2% _n.va ?)
on
2
G(x) = exp (——H;jL ) 3)

where x € R?2, o is an estimate of the variance of the noise. The
normal direction n at xg can then be estimated as

_ V(G(x —x¢) xT)
n(0) = T (G x = xo) = D] @

(a)

(b)

Fig. 3. (a) The error of the estimated normal directions at point p can be as
large as 180° depending on the value of ¢ and the intensity of objects A and B.
(b) A CT slice of human wrist in which the marked regions show the situation
discussed in (a).

where * denotes convolution, and I is the image. It is important
to note that two assumptions underly the use of (4) to estimate
the normal direction.

First, it is assumed that the value of ¢ can be determined by
some method. When the image consists of step edges and ad-
ditive Gaussian noise, o is the variance of the noise and can
be estimated by the autocorrelation function of the image [22].
Modeling a real image in this way, however, is a poor approx-
imation because the autocorrelation function is notoriously in-
accurate. Instead, one often has to experiment with many values
of o to find the best value for a specific image. In image-guided
surgery, our CT scans typically have hundreds of slices so we
require that the optimal value of ¢ for each slice must be deter-
mined automatically.

Unfortunately, the normal direction estimated by (4) can be
sensitive to the choice of o, especially when xg is between two
nearby bones. For example, in Fig. 3(a) we calculate the normal
direction at point p. It is expected that the direction should be
along the solid line because p is closer to bone A. However,
if the intensity of bone A is less than the intensity of bone B,
and the value of ¢ is not small enough, the estimated normal
direction could be along the dashed line as shown in Fig. 3(a).
These cases often happen in our medical images, such as those
of the human wrist which has 7 small carpal bones. As shown
in Fig. 3(b), in some CT slices there is only one-pixel or two-
pixel space between the bones; furthermore, some bones are
radiologically dense whereas others (with more cancellous bone
and less cortical bone) are imaged with lower intensity values. In
this case, the estimated normal direction is highly sensitive to o
in the marked region. Note that the circled regions are bone ends,
where a three-dimensional (3-D) extension of our 2-D algorithm
would likely have improved performance.

The second assumption in estimating the normal direction
is that the result from (4) will not change under a coordinate
system rotation. As stated above, the normal direction estima-
tion is based on the fact that the intensity value information
changes most rapidly along the normal direction but before eval-
uating (4), one does not know the normal direction so one must
calculate the normal direction in the original coordinate system.
One can then check the result in a new coordinate system whose
axes are parallel and vertical to the estimated normal direction,
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Fig. 4. The estimated normal directions under various o and with or without
coordinate system rotation. “+4” denotes the normal directions estimated in
the original coordinate system, and “*”” denotes those in the coordinate system
rotated 45°.

respectively. Repeatedly performing (4) in the updated coordi-
nate system, one may expect that the estimated normal direc-
tions are distributed around some value with small discrepancy.
Howeyver, our earlier work showed that the estimated normal di-
rections can be very different when the coordinate system ro-
tates even slightly [28] and that normal directions may oscillate
periodically or quasiperiodically with large magnitudes. One
reason for the estimation difference is the quantization of the
pixel size but, even if we use the original coordinate system
and a 45° rotated coordinate system so that there is no effect
from quantization, we found that the estimated normal direc-
tions could vary greatly. Fig. 4 shows one example. The angle
6; between the normal direction at a point and the horizontal
coordinate () is estimated in two coordinate systems with var-
ious 0. The point is one pixel away from the edge of a bone.
From the figure, it can be seen that the estimated normal direc-
tions are very different in the two coordinate systems for some
values of ¢. This is because the convolution region of the image
is different under different coordinate systems and the intensity
changes nonlinearly.

Estimating the normal direction in noisy quantized images,
therefore, remains a challenge. Some researchers estimate the
edge strength in rotated coordinate systems [29]. The result,
which in our case is the average normal direction case, may be
better than a single estimate but is costly to compute because the
effect of quantization must be ameliorated. To avoid large errors
in the estimation of the normal direction of an edge, we propose
the use of geometrical information to improve the results.

C. Normal-Direction Correction

Because of the difficulty to accurately estimate the normal
direction, we consider a predictor-corrector scheme to improve
the estimation. Compared to the intensity of pixels near an edge,
the geometrical structure of the edge of bone may turn out to be
more predictable than intuition first suggests. We will assume
that the edge of bone is smooth and continuous so that, if we
have some detected edge points, we can predict not only X;
in (1) but the normal direction at X;; as well.

Assume that the edge of bone is smooth and C continuous.
It then follows that the normal direction n C C'! because the
normal direction is the first derivative of the edge. Different re-
quirements on image smoothness have been proposed; for ex-
ample, Torre and Poggio [30] required the image to be C*° and
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Dobkin et al. [24] required the image to be C''. We require that
the image be C? because we need the existence of the second
derivative of the normal direction along the edge. Let §; denote
the angle spanned by the normal direction at pixel ¢ in the hori-
zontal coordinate, and let Af; denote the angle spanned by the
normal directions at two neighboring edge pixels ¢ — 1 and %.
The difference between Af;_; and A6; should be small. When
the contour of the bone is a circle, ideally the difference

A%0; = NG, — ANb;_1 = 0. 3)

In practice, this will seldom be true because the contour is
seldom a circle; also, the normal directions may not be esti-
mated accurately. Instead, we assume that A%f; is randomly
distributed around zero, so

A%, = ¢ (6)

where ¢ is a random variable. The expected value (£) = 0, but
the variance may in practice be large.

Estimation error can cause a large variance of £. To correct
the estimation, or equivalently to decrease the variance, we mul-
tiply both sides of (6) by a factor ¢; € [0, 1]. Denote by f; the
corrected normal direction at pixel ¢

AQéi = in26i~ (7)

For the left side of (7), similar to (5) we have A26; = Af; —
Af;_1. For the right side of (7), we further assume that the
normal direction at pixel ¢« — 1 has been corrected when we es-
timate 6;, then instead of (5) we have A26;, = Af; — Af,;_;.
Combining these results into (7), we have

Ab; — Abi_y = qi(AG; — Ab;_y). €]
And from (8), we have
Aél = quHz + (1 — (Ii)Agi—l- )

We then rewrite (9) in the normal directions explicitly by using

A =0; —6;_1 (10)
and
Af; = 0; — 01 (11)
we obtain
0; = qif; + (1 — ¢;)(fi—1 + AG;_1) (12)

where 6; is the normal direction at pixel 7 estimated by (4), and
0;_1+A0;_ is another normal direction at pixel ¢ but estimated
according to the edge smoothness assumption. The value of ¢;
can now be seen as the weight to balance these two estimates,
or the reliability of the estimate based on (4). If we think 0; is
completely reliable, we take ¢; = 1; if 6, is completely unreli-
able, we take ¢; = 0, and we use 6;,_1 + Af;_; as the normal
direction at pixel . In general, ¢; € [0, 1].

Equation (12) is equivalent to a 1-D Kalman filter [31] for
modeling constant acceleration processes. The normal direction
in our case is the state in the Kalman filter. The Kalman filter has
been applied in many predictor-corrector problems [32], [33]
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where neither the measurement nor the estimation is error-free.
To determine parameter ¢; in Kalman filter, one needs to know
the variances of the measurement and estimate errors prior to the
correction. In our edge detection problem, however, these vari-
ances are hard to estimate because before the detection we do
not know whether or not there is an edge and the variances could
change hugely. In the next section, we introduce our scheme to
estimate ¢;.

To see why we can use (12) to correct the estimated normal
direction, consider (9) when g; is constant (in practice, g; usually
changes for each pixel). If ¢; is a constant, ¢; = g, from (9), we
have after some trivial deduction

AG;=q) (1—q)P A0 j+(1—q)" T AGi_, 1. (13)
7=0

When n — oo and ¢ € (0,1), the last term (1 —
q)”+1A9i_n_1 — 0. Equation (13) can then be written
as

Ag_z =q Z fjAQi,j

(14)
=0
where f; = (1 — ¢)7. Or, in continuous case
0; :q/f(:v)AH —z)dx
0

—qf * Af (15)
where f(z) = (1 — ¢)* = exp(—az), « = —In(1 — q),
z € [0,00). Thus f(z) or f; can be taken as a filter, which is

not a Gaussian distribution.

A condition for filter f(z) or f; to work properly is that the
distribution of Af must be similar to the filter. To test this in a
single image, we first manually segmented bone from a CT slice
of a human wrist and estimate the normal directions at the edge
points by the method described in the next section. We then cal-
culated the difference of the normal directions at neighboring
edge points to obtain Af. Fig. 5(a) displays the distribution
of Af displayed as a solid line. For comparison purposes, the
distributions of normalized f(x) = (¢/2)exp(—c|z|) and the
Gaussian g(z) = \/1/2m02 exp(—x2/20?) are plotted with a
dashed line and the symbol ‘+’, respectively. It can be seen that
the distribution of A6 is much closer to f(z) than g(z), so filter
f is likely to work properly to correct the normal direction in
this image. Fig. 5(b) depicts the distribution of A# corrected by
using an optimal value of g; at each edge point. It can be seen
from the figure that there are more values of Af nearby 0 and
the variance of A# is less than that of A#; in the next section,
we will discuss how to determine the optimal value of ¢;.

When ¢; = g, the filter f(z) is the same as the Shen-Castan
filter for mono-step edges [26] except that z € [0, 00) because
we only use the normal directions of detected edge points. So
far our algorithm may be looked at as the generalized version of
the Kalman filter and Shen-Castan filter. In practice, however,
@; 1s not constant so we propose a scheme to estimate g;.
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D. Estimation of Reliability and Variance

Ideally, for a given edge in an image, the normal direction
at one edge point should not change with different scales of
observation. The estimated result from (4), however, changes
with the scales represented by the variance o. The reliability of
the estimated normal direction can be calculated by observing
this change.

Suppose pixel ¢ is near an edge and the noise is small in
its neighborhood when examined at a chosen scale. When we
calculate the normal direction using (4) with different o in a
chosen interval [0 i, Omax], if the result varies in a small range
Abio > 0 then we may say that the estimated result is reliable
and set ¢; = 1. Generally, we may define the reliability as

oi — gi

4 = (16)

Omax — Omin

where cru < Omax and al > Omin are the upper and lower
bounds of the value of o where the discrepancy of the estimated
normal directions at pixel ¢ is less than or equal to Afy,). Beyond
these bounds, the discrepancy is greater than Afy,). In other
words, we search for the § which has the longest survival time in
the series, and its value is allowed to oscillate with the tolerance
AB:.1. For example, consider the series of 6;(o) plotted in Fig. 6.
We search the maximal region of o, [0}, o], so that for each 6;
in this region the absolute value of the difference between 6; and
(6-") is not greater than Afy,), where (6°") is the average of
0;(c) when o changes from o} to 0.

We take the value of (#*") as the normal direction at pixel
1. Our experiments show that such an automatically adjusted
multiscale estimate is better than a single-scale estimate (as de-
scribed in Section III). The value of o, can be chosen to be
small (e.g., 0.1) so that the estimate responds to bones that are
very close each other. The value of o, can be large (e.g., 2.0)
to find edges of largely cancellous bones. In practice we rec-
ommend that the value of A6y, be chosen carefully because it



1002

controls the sensitivity of the estimate. From our experiments
we have determined that Af,; = 10° works well as a control
parameter to obtain a better estimated normal direction.

The value of ¢; determined by the above approach rely
heavily on the values of o, 0max and A6, For example,
if Afo) is too large, of — oy and 0!, — Opay, namely,
q; — 1 because even a large discrepancy of the estimated
normal directions may be less than Afy,;. On the contrary, if
Ab;q is too small, g; — 0.

Therefore, an important step to obtain a reasonable reliability
measure is to rescale ¢;. That is, we need a re-scale factor ~
so that yg; is not so sensitive to the values of oy, Omax and
Aby.1. To do this, we first estimate the normal direction and ¢;
for each pixel of the slice (To save computation, we calculate
the normal direction only at those possible edge points of bone.
See Section II-F). We obtain a distribution of {g;} which de-
pends on oppin, Omax and Aby,). To re-scale {g¢;}, we assume
that the normal directions at 80% of the pixels are estimated by
the approach described above with at least 90% reliability. The
re-scale factor -y can then be obtained. This assumption is ex-
pected because we will use the normal direction to do the seg-
mentation. Finally we use ~q as the reliability. Equation (12)
becomes

0; = vqi; + (1 —vq:i)(0iz1 + AB;_1). (17

During the normal-direction correction stage using (17) the
value of v is a constant. Thus, to obtain 9;, we only need the
information from pixel ¢ (f; and ¢;) and pixel 7 — 1 (#;_1 and
Af;_1), although from (17) we are using information of all de-
tected pixels along the edge. This is a distinct advantage of our
approach.

Next, we can use the determined o and o', to estimate the
optimal o at point ¢ that will be used in the edge detector. The
value of o should lie within [o},0"]. Because we are using
a gradient-maximum edge detector, we choose the o with the
strongest edge strength ||VG(o) * I|| as the optimal o at point
7, that is

{o|max {||[VG (o) *I||}, o € [o},00.] } - (18)

E. 1-D Signal Construction and Edge Detection

Once we have estimated and corrected the normal direction,
and have obtained the optimal o at pixel ¢, we can then con-
struct a 1-D signal s; composed by the intensity of pixels along
the normal direction and centered at pixel . To decrease the
perturbations caused by noise and quantization effects we use a
smoothed 1-D signal along the tangent direction of the edge. As
stated above, we assume that the normal direction is estimated
well so that the intensity of s; changes most rapidly at the edge
point. If the normal direction is not estimated well, the response
of s; to an edge filter is weaker, and the detected edge point is
not as reliable. Therefore, similar to the estimated normal direc-
tion, the reconstructed s; may not be completely reliable. Be-
cause s; is determined from the normal direction, the reliability
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of s; is the same as the reliability of the normal direction so the
smoothed 1-D signal can be represented as
8i=qisi + (1 — 7qi)8i-1. 19)
Similar to our normal-direction correction, in smoothing the 1-D
signal we only need the information from pixel ¢ and 7 — 1.

Generally, the reliability is low at noisy edge points. The
strong nearby edge points can then have a bigger effect on
the noisy edge points. By using the smoothed 1-D signal, the
noise is depressed and the weak edge strength is enforced.
The smoothed 1-D signal, thus, plays a role similar to Canny’s
hysteresis and is very useful in preventing or decreasing the
possibility of streaking, which is a common problem in edge
detection [22] that produces discontinuity in contours. One
important goal of our edge-tracing algorithm is to minimize
contour discontinuity.

In our experiments, we use finite 1-D VG, the first derivative
of the Gaussian, as the edge detector. Besides its simplicity, it
has been used as an approximation of the Canny edge detector
[22], and much other work has demonstrated its advantages [29],
[34]-[36]. In our case, by using the corrected normal direction,
optimized o, and smoothed 1-D signal, VG performs very well
indeed. V@ is a gradient maximum edge detector, and the pixel
with the maximal edge strength in the smoothed 1-D signal is
taken as an edge point.

Up to now in our presentation we have assumed that we have
had a seed pixel ¢ near the edge of a bone in a CT image. The
initial seed ¢ can be determined manually but, in order to per-
form the segmentation without manual intervention, we need a
way to find initial seeds in each slice automatically.

FE. Selecting Seed Points

How to find good seed points that are near bone edges is
a complicated issue, especially when bones are close to each
other and the edges are blurred. Because the focus of this paper
is on the normal direction, we did not go into the seed-search
issue in detail. One simple way of finding seeds is to utilize the
Hounsfield values of pixels, for which the value is defined to be
0 for water and either — 1000 or — 1023 for air. Muscle and bone
are the principal tissues with Hounsfield values greater than that
of water in CT slices. To find seeds near the edge of bone we
first “windowed” the intensity, namely, we set those pixels with
values less than zero to be zero, and set those pixels with values
greater than some value c¢ (say, 2000) to be c if in practice the
intensity of bone is rarely greater than c. Now the edge strength
of muscle and nonbone objects such as fat and air, and the edge
strength of bone and such possible implanted materials as metals
are much weakened, while the edge strength of muscle and bone
keeps unchanged. Next, we calculated edge strength, A, for each
pixel with intensity value within the “window.” It was expected
that the edge strength of muscle and bone was dominant but in
practice it was found that the weakened edge strength of muscle
and fat or air could still be very strong. To further filter out those
nonbone edge seeds, we used the weighted edge strength

hexp (—7(1 ;Og)) ) (20)
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Fig. 7. Detected initial seeds (white points) by (20) in a CT slice of a human
pelvis.

where I is the intensity of pixel within the “window,” (I) and
o1 are, respectively, the expected value and variance of I. This
equation favors pixels with intensity values close to the expected
value, and filters pixels corresponding to tissues other than bone
(e.g., muscle/fat edges or edges due to metallic implants).

Finally, we sorted these seeds according to their weighted
edge strength from the largest to the smallest and used only
those seeds with large weighted edge strengths. An example is
shown in Fig. 7, where a CT slice of a human pelvis has the
seed points superimposed in white. Most pixels at the edges of
bones in the image were usable as seeds, but there were also
many seeds interior to the bones and a few seeds between the
bones. The seeds within the bones generate edges that were re-
moved in a subsequent contour-analysis process. However, the
seeds between the bones produced edges that connected distinct
bones, which were deleted by postprocessing.

G. Deletion of Edges Between Bones

In order to aid in segmentation, which is the identification
of distinct bones or bone fragments in a given CT slice, we
postprocess the edge map to eliminate edges that join contours
of distinct bones, which we call inter-osseal edges. These are
troublesome to automatically delete because they often occur
in regions where edge strength is weak. Simple thresholding
and hysteresis techniques do not appear to be promising for
deleting inter-osseal edges.

Our algorithm often detects inter-osseal false edges when two
bones are either nearby and or have an indistinct region sepa-
rating them (often only a few pixels wide). An example is shown
in Fig. 8(a). We refer to a point at which two or more edges meet
as a knot, and we classify a knot and its neighboring detected
edge points into three groups I, II, and III based on their normal
directions. Because the normal direction of edges in nearby but
distinct bones must be very different (almost anti-parallel), we
put pixels with similar normal directions to that of a knot into
Group I; this grouping can be generous so, for example, we re-
quire that the difference of the normal direction of a Group I
edge and the knot be less than 45°. Those edges with normal di-
rections very different from that of the knot, for example, greater
than 135°, are classified into Group II. All other edges are clas-
sified into Group III.
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Fig. 8. False edge deletion by using normal direction. (a) Before the false edge
connecting bones is deleted. (b) After the false edge is deleted.

Fig. 9. (a) One blurred CT slice of a human wrist. (b) The edge map of the
slice obtained by our algorithm.

For each edge in group I, we search for the nearest neighbor
in group II. A line passing through these two pixels can be con-
structed. If a third edge belongs to Group III and is on the line
between the first two edges, we classify it as an inter-osseal
edge point and it is deleted. Fig. 8(b) shows the result after the
inter-osseal edges have been deleted.

When a given CT slice is too noisy or ill-structured, some
false edges may still exist, as is illustrated in Fig. 9. In such cases
our edge-tracing approach based on normal direction cannot
segment all the contours of bone correctly, and manual pro-
cessing of the edge map is required.

III. EXPERIMENTAL RESULTS

We have conducted extensive experiments of our algorithm
for segmenting human wrist, leg, and pelvis CT slices from
patients who volunteered in a study approved by the Research
Ethics Board of Queen’s University and Kingston General
Hospital. The data sets were acquired using a commercial CT
scanner (General Electric, Milwaukee, WI) with 12-bit pixels,
512 x 512 per slice. The typical thickness and spacing of slices
were 2 mm for leg and pelvis scans, and 1 mm for wrist scans.
Pixel sizes, in millimeters, were typically: in leg scans, 0.52 x
0.52; in pelvis scans, 0.66 x 0.66; and in wrist scans, 0.23 x
0.23. These patients were scheduled for orthopedic surgery
and exhibited a wide range of bone pathology and morpho-
metric variation, which increased the difficulty of automatic
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Fig. 10. Comparison of the segmentation by global thresholding and our
algorithm. (a) The original CT slice. (b) The segmentation using a global
threshold of 360. (c) The same as (b), using a global threshold of 250. (d) The
edge map computed with our algorithm.

segmentation. Specific challenges were that, in the wrist, the
carpal bones are very close to each other; in the knee, the femur
and tibia overlap in some horizontal CT slices because of the
diarthroidal joint; and in the pelvis, the various bones are of
highly variable density both physically and radiologically. Al-
though these anatomical regions are very different, in our tests
we used the fixed parameter values of oy = 0.1, opax = 1.2,
Afby,; = 10° to test the robustness of our algorithm. On a
Sun station (UltraSPARC-III, 750-MHz processor, | GB RAM
memory) our algorithm took 2 to 3 s per slice to complete the
edge-finding process, including postprocessing. We compared
the performance of our algorithm with some other segmentation
methods on a representative set of images.

A. A Comparison with Global-Thresholding Segmentation

Global thresholding is perhaps the most commonly used
method in the automated CT segmentation of bone because
the intensity values of bone, especially for hard bone, are
statistically higher than the intensity of the other tissues so
there is an intensity threshold such that the intensities of most
pixels of bone are greater than the threshold value. However,
since bone is in fact a highly inhomogeneous tissue, it is seldom
possible to find a threshold value that is less than values of all
bone and greater than values of all other tissues. Fig. 10(b)
shows the segmentation result on the image in Fig. 10(a) when
the threshold was set to 360 Hounsfield units. There are many
discontinuities of the contours of the bones, and the cancellous
bone at the bottom left is missing. To close the contours, the
threshold should be lower, but a lower threshold causes false
connections, as is evident in Fig. 10(c) when the threshold was
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reduced to 250 Hounsfield units. There are still some unclosed
contours, but false connections have appeared. In contrast,
the segmentation result from our algorithm is displayed in
Fig. 10(d). All the contours of the bones in the slice were
detected and closed, and there were no false connections.

B. Comparison with Snake-Based Segmentation

The snakes method is a very popular approach in medical
image segmentation. The algorithm was originally proposed by
Kass et al. [2], and many authors have contributed variations to
improve the performance [10], [37], [38]. In this section, we use
the greedy algorithm for snakes [10] to check its performance.

The snakes method requires an initial estimate of the con-
tour. To fully automate the method, the initial contour should be
provided with little or no human intervention. One possible ap-
proach is to use the segmented result of the neighboring slice as
the initial contour in the current slice; another approach is to use
an anatomical atlas to provide an initial contour. A well-known
characteristic of snakes is that their performance is sensitive to
contour initialization, and the initial contour provided by the
above approaches may not be sufficiently accurate to drive the
snakes algorithm to a correct result. In the following experiment,
we manually selected some initial points that were close to the
edge of the object of interest, and then linearly connected these
points to form a closed initial contour. This initial contour was
a close but not exact approximation of the object contour. The
parameters, i.e., the weights of the energy terms, were adjusted
to improve the segmented results.

We again used the slice in Fig. 10(a) to examine the per-
formance of the snakes method. This slice is both challenging
and of particular interest because it has both cancellous bone
and bones that are very close, which often occurs in CT slices.
Fig. 11(a) and (b) shows the initial and final contours of the
bone. It can be seen that the final contour diverges from the
bone even though the initial points, especially those between
the two bones, were chosen to be very close to the true edge of
the bone. In Fig. 11(c) and (d), when the initial contour was not
close to the concave edge of the bone, the algorithm failed to
detect the concave bone edge. Finally, when the algorithm was
used to segment cancellous bone, the total energy did not reach
the minimum but increased as shown in Fig. 11(f). In this case,
the final contour shown in Fig. 11(e) was not reliable.

We found that, even for a good initialization, it was difficult
for snakes to find the true edge of a bone that was concave, can-
cellous, or that was very close to another bone. By comparing
Fig. 11(b), (d), (e) with Fig. 10(d), it can be seen that our algo-
rithm was more successful at detecting the bone contours in this
image, which is a representative of our human CT slices.

Recently, multiple active contour models have extended
snakes into 3-D so that more information can be used to help
control the sensitivity of the snakes on the initial contour and,
therefore, improve the performance [39]. Our current scheme
based on normal direction can also be extended to 3-D, for
which we expect that the performance will be improved because
the accuracy of estimated normal directions can be improved
using the additional information.
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Fig. 11. Examples to demonstrate the performance of snakes on a wrist CT
slice. (a), (c) The initial contours and (b), (d) the corresponding final contours.
(e) The final contour and (f) the total energy versus iteration time.

C. A Comparison With Level Set-Based Segmentation

A level set method solves a partial differential equation, typ-
ically

W A@) g — BP@) T |+ 12 @)k 7 0] @)

dt

where A, P are the advection and propagation terms, respec-
tively, and Z is the spatial modifier for the mean curvature «.
The scalar «, (3, v weight the relative influence of each of the
terms on the movement of the interface.

We used level set procedures in ITK [40] to segment
bones since ITK has become a standard software for med-
ical image processing and it has implemented many level set
algorithms. Except CannySegmentationLevelSetlmageFilter
and LaplacianSegmentationLevelSetImageFilter which need
initial models, we tested all the other level set procedures and
found that the procedure GeodesicActiveContourlmageFilter
performed best in segmenting bones. This procedure needs the
user give seven parameter values including «, 3, the variance
o, and the position of seeds (used by FastMarchinglmageFilter
to generate an initial contour for GeodesicActiveContourlm-
ageFilter). We focused on the performance under various o

Fig. 12. Examples to demonstrate the performance of Geodesic active contour
level sets on a wrist CT slice. The superimposed white curves stand for the stable
zero level set when o is (a) 1.6, (b) 2.0, (c) 2.4, and (d) 2.5. It can be seen that
when o < 2.4, the zero level set can not reach the edge of the bone, and when
o = 2.5, the zero level set goes to another bone.

values. We tested the procedure on the wrist bone in Fig. 10(a)
using many parameter sets for each o and chose the best, which
is displayed in Fig. 12. The performance of the procedure is
sensitive to o, and does not appear to be suitable for segmenting
bones. However, we note that the procedure was not particularly
designed for segmenting bones. To improve the performance
of level sets in segmenting bones, bone properties should be
considered in the level set description (21).

D. Segmentation With and Without Normal-Direction
Correction

One of the important steps in our algorithm is the correction
of the estimated normal direction. For hard bone, the reliability
of the estimated normal direction is close to 1; in such cases our
correction scheme will have little effect on the segmentation re-
sults. For cancellous bone and extremely close bones, however,
the correction is very useful. Fig. 13 displays such a comparison
on three consecutive CT slices of human pelvis. Fig. 13(a), (d),
(g) shows the original slices. There are roughly three bones in
each slice: the left and right ilia, and the sacrum. The ilia are
hard, weight-bearing bones but in this image some of their re-
gions appear to be blurred.2 The edge of the sacrum is weak,
and some parts of the bone are particularly difficult to see. The
Hounsfield values of the pixels at these parts are almost the same
as that of muscle. Further, the sacrum is close to the ilia, and
their boundaries are blurred. Roughly speaking, among them,
slice (a) is the clearest and slice (g) is the most blurred.

Fig. 13(b), (e), (h) shows the segmentation results on these
slices, respectively, without the normal-direction correction
step, namely, by setting the reliability equal to 1. It can be seen

2This blurring is likely from volume averaging during CT acquisition.
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Fig. 13. Comparison of segmentation with and without normal-direction correction. (a), (d), (g) Three contiguous original CT slices of a human pelvis.
(b), (e), (h) The edge maps, respectively, of the images without correcting the normal direction. (c), (f), (i) The edge maps with the normal direction corrected.

that edge map (b) was segmented well, except for an inter-os-
seal edge between the sacrum and the right ilium. In edge map
(e), four inter-osseal edges appeared between the sacrum and
ilia, and one contour of the right ilium was discontinuous; this
break caused the entire detected but not closed contour to be lost
after the postprocessing which floods the closed contours only.
In edge map (h), again there were three inter-osseal edges be-
tween the sacrum and ilia, and the contour of the sacrum was
interrupted at two places.

If the normal direction was corrected, the segmentation re-
sults were much improved as shown in Fig. 13(c), (f), (i), which
were segmented from slices (a), (d), and (g), respectively. Edge
maps (c) and (f) were segmented well, except for some short
inter-osseal connections. For edge map (i), there was one inter-
osseal edge between the sacrum and the left ilium, and one dis-
continuity in the contour of the sacrum. Edge map (i) is more
accurate than edge map (h).

Our algorithm has been tested on more than 1000 CT slices
of the human wrist, leg (including knee) and pelvis with the
same set of parameters. Unfortunately, there is no commonly
accepted set of CT slices for benchmarking the performance,
nor are there yet any agreed-upon rules by which to compare
various algorithms. In our case, the two drawbacks in the edge
map are inter-osseal edges and contour discontinuities. Inter-

Fig. 14. Example to show inter-osseal edges and contour discontinuities.

osseal edges are those edges that need to be removed prior to
final flooding, which is the process of setting the intensity of
a closed region to a uniform value. For example, in Fig. 14, a
section of Fig. 13(h) is shown to contain three inter-osseal edges
between the sacrum and ilia, highlighted by circles 1, 3, and 4,
and there are two discontinuities in circles 1 and 2. False edge
1 between the sacrum and the left ilium is not part of a closed
contour, and it would disappear after flooding. In contrast, false
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PERFORMANCE OF OUR ALGORITHM IN PELVIS, LEG, AND WRIST CT SLICES

TABLE 1

WITH (WITHOUT) NORMAL-DIRECTION CORRECTION

CT Slices n n; ng Performance(%)
Pelvis 219 10(18) 33(85)  96.6(91.4)
Leg 230 10(47) 58(83)  94.5(90.7)
Wrist 46 5(5)  8(9) 95.5(95.0)
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edges 3 and 4 between the sacrum and the right ilium do form a
closed contour with the right side of the sacrum and the left side
of the right ilium, so one of these false edges must be broken so
that the contour is not closed. There are also some unexpected
edges in the sacrum. These do not have to be specifically ac-
commodated because they will disappear by flooding after the
outer contour of the sacrum is closed. Thus, for Fig. 14, only
one false edge needed to be broken.

In a clinical scenario, the main purpose of an automated seg-
mentation algorithm is to reduce the time of manual interven-
tion by a skilled professional, although certainly other aspects
such as accuracy and efficiency should also be considered [41].
To show the performance of our algorithm from this viewpoint,
based on our experience, we assume that on average a skilled
operator needs 10 s to manually segment a slice, 1 s to break a
false edge and 2 s to repair a discontinuity, which are typically
small (< 6 pixels). Then the performance of our algorithm may
be estimated as

(ni —|— 2nd)

Performance = 1 —
(10n)

(22)

where n; is the number of inter-osseal edges and n4 is the
number of contour discontinuities in the total number (n) of
edge maps (the number of slices). We have used (22) to come
up with a quantitative measure to evaluate the performance of
our algorithm.

Table I shows the performance of our algorithm with and
without the normal-direction correction scheme. When the
normal direction correction scheme was used, in 219 edge
maps of the pelvis CT scan there were 10 inter-osseal edges
that needed to be broken before flooding, and 33 discontinu-
ities, so the performance is 96.6%. For the full-leg CT scan
which had 230 slices in total, there were 10 inter-osseal edges
and 58 discontinuities, for a performance of 94.5%. In this
particular patient’s leg, there was also a metal implant that
appeared in 85 of the 230 slices. Metal typically causes serious
reconstruction artifacts of the images [42], which are clearly
visible in Fig. 15(a) and (c). When the metal artifacts dominated
the image, the performance of our algorithm degraded [see
Fig. 15(b)]. Interestingly, when the bone was also hard, our
algorithm produced satisfactory results as shown in Fig. 15(d).
If we consider only the 145 slices without metal artifacts, then
there were 6 inter-osseal edges and 15 discontinuities, so the
performance rating was 97.5%. For those slices with iron,
the performance was 89.9%.? Finally, for the total of 46 wrist

3We believe that it would be difficult for a skilled person to manually segment
the slices with metal artifacts in just 10 s per slice.

(b)

(d)

Fig. 15. Segmentation of CT slices with iron by our algorithm. (a), (c) The
original CT slices of a human leg. (b), (d) The edge maps of slices (a) and (c),
respectively.
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Fig. 16. Estimated normal direction of the edge of a bone by the single- scale
approach (a) with ¢ = 1.2, and by the multiscale approach (b) with i, =
0.1, omax = 1.2.

slices, there were 5 inter-osseal edges and 8 discontinuities, so
the performance was 95.5%.

Without normal-direction correction, the performance of our
algorithm on the pelvis and leg degraded by about 5%. For those
slices with metal artifacts, there were a total of 19 inter-osseal
edges and 61 contour discontinuities, so the performance was
83.4%. For the wrist, the performance was almost the same as
that with the correction scheme. This was because, except for
some very blurred slices which could not be segmented well
by either procedure, the edge strength of bones in the wrist CT
slices allowed the reliability measure to be set to 1.

E. Segmentation With Single-Scale and Multiscale

In Section II, we argued that the normal direction estimated
by the single-scale approach is not reliable and that our multi-
scale approach described in Section II-D produces a more re-
liable normal direction. One result is shown in Fig. 16 which
depicts the estimated normal directions at each pixel along the
contour of one bone [shown in Fig. 10(a)]. Fig. 16(a) shows that
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TABLE 1I
PERFORMANCE OF OUR ALGORITHM WITH THE SINGLE-SCALE APPROACH
AND WITH DIFFERENT o

o n; ng Performance(%)
0.5 15 42 78.5
0.6 11 20 88.9
0.7 12 23 87.4
0.8 14 25 86.1
0.9 12 18 89.6
1.0 10 11 93.0
1.1 6 13 93.0
1.2 10 15 91.4
1.3 10 18 90.0
14 13 22 87.6
1.5 15 25 85.9
1.6 14 20 88.3
1.7 20 25 84.8
1.8 18 27 84.4
1.9 22 37 79.1
2.0 73 100 40.7

the normal direction estimated by the single-scale approach is
completely wrong at many pixels: the normal direction should
be outward, but at many pixels the direction was either inward
or close to the tangent direction of the edge. The normal direc-
tions estimated by our multiscale approach, however, were all
outward as shown in Fig. 16(b).

Estimation errors of the normal direction causes a lower per-
formance of our algorithm. Table II lists the performance of our
algorithm on 46 CT slices of the wrist when the single-scale ap-
proach is employed. A single value of o € [0.5,2.0] was used
to smooth the image, to estimate the normal direction and to de-
tect the edge. It was observed that the performance significantly
changed with the value of o, and that the best performance was
93.0% for 0 = 1.0 and o = 1.1. The performance for our mul-
tiscale approach was 95.5%, so the multiscale approach was
better than the single-scale approach in our algorithm. In the
tested slices, the bones in the wrist slices had the highest edge
strength. The performance of the single-scale approach in the
pelvis and leg CT slices was even worse than its performance
on the wrist CT slices.

F. Comparison With Manual Segmentation

Accuracy of a segmentation is often evaluated by comparing
the segmentation results with segmentations by experts [12],
[41], which are used as the standard. Accuracy may be calcu-
lated as

Ngiff
Dstd

Accurancy = 1 — (23)
where n4; 5 is the number of pixels missed or over segmented
by our algorithm. In other words, if pixel p(z, y) is in a bone in
the standard image, but is falsely detected not to lie in a bone
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(c)

(d)

Fig. 17. Comparison of segmentations where (a) the original image, (b) the
manually segmented image, (c) the segmented image by our algorithm, and
(d) the difference of the segmentations.

by our algorithm, then we add one (1) to ng;s; similarly, if a
nonbone pixel is falsely segmented as lying in a bone by our
algorithm, then we also add one (1) to ng;r¢. For ngg, there
are two considerations: when n4:4 is the number of pixels of
the standard object, we are comparing the accuracy of area seg-
mentation, and when n44 is the number of edge pixels of the
standard object, (23) is for the accuracy of edge segmentation.

We examined 9 CT slices of a human pelvis, which are diffi-
cult to segment even in manual way. Three of them are shown in
Fig. 13(a), (d), and (g); the others were adjacent CT slices. An
expert segmented the slices manually, and the result was taken
as the standard. The slices were then automatically segmented
using our algorithm, and the same expert manually corrected
the inter-osseal connections and contour discontinuities. One
example is shown in Fig. 17. It can be seen from Fig. 17(d) that
the difference of these two segmentation results was mainly in
the blurred region of the sacrum. For these 9 slices, the mean ac-
curacy calculated with (23) was 98.9%, 95.1% for, respectively,
the area and edge segmentation comparisons, and the standard
deviations are 0.391% and 0.502%, respectively. Based on this
comparison and the consideration that these 9 slices are among
the most difficult for segmentation, we expect that our algorithm
be as accurate in segmenting similar cases.

IV. CONCLUSION

Accurately estimated normal direction of an edge is of gen-
eral utility in image processing. Estimation using a single scale
(the value of ¢ in the first derivative of the Gaussian) may cause
large errors, especially when the estimated edge is between two
bones close to each other. We have proposed an approach to es-
timate the normal direction in multiple scales. The scales are au-
tomatically determined by assuming that the normal direction of
an edge does not change significantly with scale. However, even
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such an estimated normal direction is not completely reliable be-
cause of image quality. To segment cancellous bones, where the
edge strength is weak and image quality is low, we have further
corrected the estimated normal direction by assuming that con-
tours of bone are smooth and continuous. We have shown that
our correction scheme can be expressed as a 1-D Kalman filter.
In addition, the Shen-Castan optimal linear filter for mono-step
edges can be taken as a special case of this Kalman filter, and the
filter in our correction scheme approximates the distribution of
the estimated normal directions along the contour (which is why
our correction scheme works well). In calculating the weight in
the scheme, unlike in the Kalman filter which uses the measure-
ment and prediction variances, we have measured the reliability
of the estimated normal direction and have determined the reli-
ability during estimation of the normal direction. Furthermore,
we have obtained an optimal scale o for each edge point during
this normal-direction estimation. The value of o was used in
the first derivative of a Gaussian filter, which was the edge de-
tector in our algorithm. Because the normal direction was cor-
rected and the value of ¢ was optimized, our algorithm is robust.
We can use a global set of parameters to segment different CT
slices, even those with significant artifacts that arise from metal
implants in patients.

We also used the corrected normal direction in a postpro-
cessing step to delete false connections between nearby bones.
False edges are very difficult to distinguish from real edges be-
cause they often appear in the blurred region of the image. The
normal direction, which encodes geometrical information of the
edge, can be used to classify the neighboring edge points into
three groups. Most of these false inter-osseal edges were re-
moved by our technique.

In order to automatically segment bone, we developed an ap-
proach to find initial seeds in two steps. First, pixels of bone
and muscle were found based on their Hounsfield values greater
than that of water. Second, the edge strength of these pixels were
calculated, and the initial seeds were then determined from the
modified edge-strength histogram. By this preprocessing, the
contours of nonbone tissues seldom appear in the edge map,
which in turn increases the speed of the segmentation.

Our algorithm has been tested on CT slices of a pelvis, a leg
(including the knee joint), and wrist. We compared our algorithm
to other standard methods, measuring performance based on
the number of inter-osseal edges and contour discontinuities.
Our experiments showed that the correction of the normal
direction improved the segmentation of cancellous bone. The
experimental results also showed that our algorithm was fast
(< 3 s per slice), and the accuracy is very high when compared
to manual segmentation by a human expert. In the near future,
we will employ this algorithm in our image-guided surgical
suite and evaluate its performance on patients.

In this work, we focused on 2-D CT images to show the
advantage of accurately computing the normal direction of an
edge. We plan to extend our algorithm into 3-D, where infor-
mation in neighboring slices can be utilized to improve the ac-
curacy of the normal-direction estimation. Although multi-scale
analysis of CT images will not change in 3-D, some quantities
in our scheme such as the re-scale factor y of the reliability may
become more stable from slice to slice when we use 3-D infor-
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mation to estimate the normal direction of bone edges. Thus, it
is expected that the 3-D extension will shorten the segmentation
time and improve the performance.
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