

2º Exame de Engenharia Biológica Integrada

(23 de Julho de 2001)

I. Uma fábrica de produção de antibióticos está a desenvolver estudos conducentes à produção e comercialização de um novo antibiótico, com um mercado potencial de 120 ton/ano e com a vantagem de poder reactivar uma linha de fabrico, já existente e temporariamente desactivada. Esta linha de produção possui 4 fermentadores com capacidade de 100m³ de volume total. A estratégia optimizada de produção do novo antibiótico baseia-se numa adição contínua de fonte de carbono e indutor, realizada à escala semi-industrial (1.0m³) com descargas parciais de acordo com a tabela seguinte.

Descarga	Tempo de descarga (horas)	Volume de descarga (litros)	Concentração de antibiótico (g/l)
1	70	50	6.5
2	94	50	10.5
3	132	100	13.0
4	160	100	15.5
5	186	150	18.6
6	200	150	20.8
Final	220	1000	22.6

Durante a implementação da estratégia de produção verificou-se a contaminação de 5 fermentações num total de 100 experiências consecutivas. Admitindo que:

- A transposição e "scale-up" do processo de biosíntese e purificação do antibiótico para a escala industrial nos moldes optimizados à escala semi-industrial é possível.
- A linha de produção e purificação do antibiótico é totalmente compatível com a linha de fabrico já existente.
- Rendimento global do processo 50%.
- Dias úteis de fabrico 335 e funcionamento contínuo da fábrica (24 sobre 24 horas).
- $Preço_{87} = 138 * Q^{0.8}$, com preços em contos e capacidade em m³ do fermentador industrial.
- Indice de preços de acordo com tabela seguinte:

	Indice de preços	
Ano	Indice A	Indice B
	(base1986=100)	(base1989=100)
1987	127.3	
1988	155.4	
1989	193	100
1990	225	116.6
1991	269.9	139.8
1992	330.3	171.1
1993		219.8
1994		277.8
1995		290.3

e considerando uma taxa de progressão previsível dos índice de preços para fermentadores de 5% até ao presente (2001).

Justifique todos os cálculos intermédios para responder às seguintes questões.

- Calcule o número de fermentadores mais adequado para atingir o nível de produção de antibiótico pretendido?
- Qual o capital a investir em novos fermentadores em 2001?
- Quanto é que a fábrica economizava neste processo se o valor dos fermentadores fosse cerca de 15% em relação ao Investimento Base de uma nova linha de fabrico a custos de 2001?
- **II.** Está previsto que determinado projecto comece a laborar no início do ano 2003. Os estudos preliminares, as licenças e o projecto propriamente dito custaram 150 mil contos, em 2000.
- O investimento corpóreo será realizado em 2001 e 2002, respectivamente de 600 e 800 mil contos

Nos ensaios de arranque, no final de 2002, gastar-se-ão 80 mil contos em matérias primas, energia eléctrica e vapor.

Deverá realizar-se uma grande reparação em 2008, no valor de 150 mil contos, prevendo-se que o valor residual da instalação seja de 350 mil contos.

As receitas e despesas (sem contar com a amortização) estimadas deste projecto são as seguintes:

De 2003 a 2007	receitas	1000 mil contos / ano
	despesas	680 mil contos / ano
Em 2008	receitas	750 mil contos / ano
	despesas	480 mil contos / ano
De 2009 a 2012	receitas	1000 mil contos / ano
	despesas	680 mil contos / ano

a) Calcular o lucro líquido anual, admitindo que a taxa de impostos é de 30%.

III. 3.1) Usando dados do quadro abaixo, aplique dois métodos diferentes de comparação internacional e estime um valor máximo e mínimo para o consumo de iogurte em Portugal no ano 2005. (4,5V)

		PIB (a preços	Cons umo (milhões kg)	População (milhões)
		comparáveis)	(mmocs kg)	(mmocs)
	1972	41.71	3.88	9.7
	1978	45.54	15.84	9.9
P	1984	53	30	10
	1990	63.36	57.42	9.9
	1994	74.25	70.29	9.9
	1970	228.48	80.64	33.6
	1975	279.66	120.36	35.4
${f E}$	1980	305.04	212.04	37.2
	1985	348.53	310.23	38.3
	1990	415.16	415.16	38.8
	1970	403.69	311.71	51.1
	1975	447.1	405.02	52.6
\mathbf{F}	1980	526.26	429.6	53.7
	1985	595.08	776.91	55.1
	1990	698.12	945.84	56.3
	1995	829.4	1102	58

^{3.2)} Com os dados disponíveis, que outro(s) método(s) usaria para estimar o consumo em Portugal em 2005? (0,5 V).

b) Calcular o VLA em 2002 para uma taxa de actualização de 10 %.

c) Determinar o pay-out-time e a TIR do projecto.