
Fortran Language Reference Manual,
Volume 2

Document Number 007–3693–005

St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower image courtesy of Xavier Berenguer, Animatica.

Copyright © 1993–1999 Silicon Graphics, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any
form unless permitted by contract or by written permission of Silicon Graphics, Inc.

The CF90 compiler includes United States software patents 5,247,696, 5,257,372, and 5,361,354.

LIMITED AND RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR
52.227-14 and/or in similar or successor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished rights
reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre
Pkwy., Mountain View, CA 94043-1351.

Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice,
SSD, SUPERCLUSTER, UNICOS, X-MP EA, and UNICOS/mk are federally registered trademarks and Because no workstation is
an island, CCI, CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP,
CRAY C90, CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS,
Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY SV1, CRAY T90, CRAY T3D, CRAY T3E, CrayTutor, CRAY X-MP,
CRAY XMS, CRAY-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, and UNICOS MAX are trademarks of
Cray Research, Inc., a wholly owned subsidiary of Silicon Graphics, Inc.

IRIS, IRIX, and Silicon Graphics are registered trademarks and the Silicon Graphics logo is a trademark of Silicon Graphics, Inc.

MIPS is a registered trademark and MIPSpro is a trademark of MIPS Technologies, Inc. PostScript is a trademark of Adobe
Systems, Inc. SPARC is a trademark of SPARC International, Inc. Sun Microsystem is a trademark of Sun Microsystems, Inc.
TotalView is a trademark of Bolt Baranek and Newman, Inc. UNIX is a registered trademark in the United States and other
countries, licensed exclusively to X/Open Limited.

Adapted with permission of McGraw-Hill, Inc. from the FORTRAN 90 HANDBOOK, Copyright © 1992 by Walter S. Brainerd,
Jeanne C. Adams, Jeanne T. Martin, Brian T. Smith, and Jerrold L. Wagener. All rights reserved. Cray Research, Inc. is solely
responsible for the content of this work.

The UNICOS operating system is derived from UNIX® System V. The UNICOS operating system is also based in part on the
Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

New Features

Fortran Language Reference Manual, Volume 2 007–3693–005

This manual describes the Fortran 95 language as implemented by the CF90 compiler, release 3.2, and the
MIPSpro 7 Fortran 90 compiler, revision 7.3. These compilers supported parts of the Fortran 95 standard in
previous releases. The major changes to this manual reflect that the CF90 and the MIPSpro 7 Fortran 90
compilers now support the entire Fortran 95 standard.

This revision contains the following new features to support the Fortran 95 standard:

• The FORALL statement and construct.

• Pointer initialization.

• Default initialization in a derived type.

• A distinction between positive zero and negative real zero (-0.0) by the SIGN(3I) intrinsic function and
input/output.

• The ELSEWHERE statement can accept a conditional expression as an argument.

• MODULE PROCEDURE statements can be intermixed with interface bodies. The END INTERFACE
statement can repeat the generic identifier.

• User functions can be called from specification expressions.

• The NULL and CPU_TIME intrinsic procedures.

• The CEILING and FLOOR intrinsic procedures now accept [KIND=]kind arguments.

This revision also contains the following feature as an extension to the Fortran 95 standard:

• The FORM=SYSTEM specifier on the OPEN statement

The Fortran 95 standard has declared some Fortran 90 features to be obsolescent or has deleted them. The
CF90 and MIPSpro 7 Fortran 90 compilers, however, have not removed their functionality from the system.
Obsolescent features are described in the Fortran Language Reference Manual, Volume 1 and in the Fortran
Language Reference Manual, Volume 2; both manuals note when a particular feature is catagorized as
obsolescent. All features deleted from the current Fortran standard are described in the Fortran Language
Reference Manual, Volume 3. When the compilers detect a deleted feature, they process the feature and issue
a NON-ANSI message. The deleted features that generate NON-ANSI messages are as follows:

• Real and double precision DO variables

• Branching to an END IF from outside its IF construct

• PAUSE statement

• ASSIGN, assigned GO TO statements, and assigned format specifiers

• H edit descriptor

This revision describes the following feature, which is implemented on IRIX platforms only:

• The VOLATILE statement and attribute

This revision also includes miscellaneous corrections to the previous revision.

Record of Revision

Version Description

2.0 November 1995
Original printing. This document supports the CF90 compiler release 2.0 running on
Cray PVP systems, CRAY T3E systems, and SPARC systems. The implementation of
features on CRAY T3E systems is deferred. This manual contains information that
was previously contained in the CF90 Fortran Language Reference Manual, revision 1.0,
publication SR–3902, and in the Application Programmer’s Library Reference Manual.

3.0 May 1997
This printing supports the Cray Research CF90 3.0 release running on UNICOS and
UNICOS/mk operating systems, and the MIPSpro 7 Fortran 90 compiler 7.2 release
running on the IRIX operating system. The implementation of features on IRIX
operating system platforms is deferred. This manual contains information that was
previously contained in the CF90 Fortran Language Reference Manual, Volume 1,
revision 2.0, publication SR–3902.

3.0.1 August 1997
This online revision supports the Cray Research CF90 3.0.1 release, running on
UNICOS and UNICOS/mk operating systems, and the MIPSpro 7 Fortran 90
compiler 7.2 release, running on the IRIX operating system. Includes minor updates
and corrections to revision 3.0.

3.0.2 March 1998
This online revision supports the Cray Research CF90 3.0.2 release, running on
UNICOS and UNICOS/mk operating systems, and the MIPSpro 7 Fortran 90
compiler 7.2.1 release, running on the IRIX operating system. Includes minor
updates and corrections to revision 3.0.1.

3.1 August 1998
This online revision supports the Cray Research CF90 3.1 release, running on
UNICOS and UNICOS/mk operating systems, and the MIPSpro 7 Fortran 90
compiler 7.2.1 release, running on the IRIX operating system. Includes minor
updates and corrections to revision 3.0.2.

3.2 January 1999
This revision (007–3693–004) supports the CF90 3.2 release, running on the UNICOS
and UNICOS/mk operating systems, and the MIPSpro 7 Fortran 90 7.3 release,
running on the IRIX operating system. It includes major updates to revision 3.1.

007–3693–005 i

Fortran Language Reference Manual, Volume 2

005 April 1999
This revision supports the CF90 3.2 release, running on the UNICOS and
UNICOS/mk operating systems, and the MIPSpro 7 Fortran 90 7.3 release, running
on the IRIX operating system. It includes minor updates to revision 3.2.

ii 007–3693–005

Contents

Page

About This Manual xvii

Related CF90 and MIPSpro 7 Fortran 90 Compiler Publications xvii

CF90 and MIPSpro 7 Fortran 90 Compiler Messages xviii

CF90 and MIPSpro 7 Fortran 90 Compiler Man Pages xviii

Related Fortran Publications . xix

Related Publications . xix

Obtaining Publications . xx

Conventions . xxi

BNF Conventions . xxiii

Reader Comments . xxiv

Input and Output (I/O) Processing [1] 1

Records, Files, Access Methods, and Units 2

Records . 2

Kinds of Files . 4

External Files . 5

Internal Files . 6

File Existence . 6

File Position . 7

File Access Methods . 9

Sequential Access . 9

Direct Access . 10

Units . 10

Unit Existence . 11

Establishing a Connection to a Unit 12

Data Transfer Statements . 12

007–3693–005 iii

Fortran Language Reference Manual, Volume 2

Page

I/O Control Specifiers . 13

UNIT= Control Specifier . 14

FMT= Control Specifier . 15

NML= Control Specifier . 16

ADVANCE= Control Specifier 16

END= Control Specifier . 17

EOR= Control Specifier . 17

ERR= Control Specifier . 18

IOSTAT= Control Specifier . 19

REC= Control Specifier . 20

SIZE= Control Specifier . 20

I/O Item List . 21

Explicitly Formatted Advancing Sequential Access Data Transfer 24

Unformatted Sequential Access 26

Nonadvancing Formatted Sequential Data Transfer 28

Direct Access Data Transfer . 30

Formatted Direct Access Data Transfer 31

Unformatted Direct Access Data Transfer 33

List-directed Data Transfer . 34

Namelist Data Transfer . 36

Form of a Namelist Group Declaration 36

Forms of Namelist I/O Statements 37

Data Transfer on Internal Files 38

Printing Formatted Records . 41

BUFFER IN and BUFFER OUT Statements (EXTENSION) 41

Execution Model for Data Transfer Statements 45

Data Transfer . 46

File Position Prior to Data Transfer 46

File Position after Data Transfer 47

iv 007–3693–005

Contents

Page

Error and Other Conditions in I/O Statements 47

OPEN Statement . 50

Connecting a File to a Unit . 50

Creating a File on a Preconnected Unit 50

Changing the Connection Properties 51

Form of the OPEN Statement . 51

Connection Specifiers . 52

UNIT= Specifier . 53

ACCESS= Specifier . 53

ACTION= Specifier . 54

BLANK= Specifier . 54

DELIM= Specifier . 55

ERR= Specifier . 55

FILE= Specifier . 56

FORM= Specifier . 57

IOSTAT= Specifier . 57

PAD= Specifier . 57

POSITION= Specifier . 58

RECL= Specifier . 59

STATUS= Specifier . 59

CLOSE Statement . 60

UNIT= Specifier . 61

ERR= Specifier . 61

IOSTAT= Specifier . 62

STATUS= Specifier . 62

Inquiring About Files . 62

INQUIRE Statement . 63

Specifiers for Inquiry by Unit or File Name 65

007–3693–005 v

Fortran Language Reference Manual, Volume 2

Page

UNIT= Specifier . 65

ACCESS= Specifier . 65

ACTION= Specifier . 65

BLANK= Specifier . 66

DELIM= Specifier . 66

DIRECT= Specifier . 67

ERR= Specifier . 67

EXIST= Specifier . 68

FILE= Specifier . 68

FORM= Specifier . 68

FORMATTED= Specifier . 69

IOSTAT= Specifier . 69

NAME= Specifier . 70

NAMED= Specifier . 70

NEXTREC= Specifier . 70

NUMBER= Specifier . 71

OPENED= Specifier . 71

PAD= Specifier . 71

POSITION= Specifier . 71

READ= Specifier . 72

READWRITE= Specifier . 72

RECL= Specifier . 73

SEQUENTIAL= Specifier . 73

UNFORMATTED= Specifier . 74

WRITE= Specifier . 74

Table of Values Assigned by the INQUIRE Statement 75

File Positioning Statements . 77

vi 007–3693–005

Contents

Page

BACKSPACE Statement . 77

REWIND Statement . 78

ENDFILE Statement . 79

Specifiers for File Position Statements 80

UNIT= Specifier . 80

IOSTAT= Specifier . 80

ERR= Specifier . 81

Restrictions on I/O Specifiers, List Items, and Statements 81

Input and Output (I/O) Editing [2] 83

Explicit Formatting . 87

FORMAT Statement . 87

Character Expression Format Specifications 88

Format Specifications . 89

Data Edit Descriptor Form . 90

Control Edit Descriptor Form . 92

Character String Edit Descriptor Form 93

Formatted Data Transfer . 94

Parentheses Usage . 95

Correspondence between a Data-edit Descriptor and a List Item 96

File Positioning by Format Control 99

Numeric Editing . 99

Integer Editing . 101

Real Editing . 104

F Editing . 106

E and D Editing . 107

Engineering Edit Descriptor EN 109

Scientific Edit Descriptor ES 111

Complex Editing . 112

007–3693–005 vii

Fortran Language Reference Manual, Volume 2

Page

Generalized Editing of Real Data 113

Logical Editing . 115

Character Editing . 116

Character Editing . 117

Q Editing . 118

Control Edit Descriptors . 119

Position Editing . 119

Slash Editing . 121

Colon Editing . 122

Sign Editing . 123

Scale Factors . 123

Blanks in Numeric Fields . 124

Character String Edit Descriptors 125

List-directed Formatting . 126

List-directed Input . 128

Requirements for Nondelimited Character Strings As Values 129

Null Values . 130

List-directed Output . 130

Namelist Formatting . 133

Namelist Input . 134

Names in Name-value Pairs 135

Values in Name-value Pairs 136

Blanks . 138

Namelist Comments . 138

Use of Namelist Input . 139

Namelist Output . 140

Use of Namelist Output . 140

DELIM= Specifier for Character Constants 142

viii 007–3693–005

Contents

Page

Namelist Distinctions . 143

Program Units [3] 145

Overview . 145

Main Program . 146

Main Program Organization . 147

Specification Part . 148

Execution Part . 150

Internal Subprogram Part . 151

Internal Procedures . 151

External Subprograms . 153

Modules . 155

Module Organization . 155

Specification Part . 156

Module Subprogram Part . 158

Using Modules . 159

Accessing All Public Entities in a Module 160

Accessing Only Part of the Public Entities 161

Entities Accessible from a Module 162

Name Conflicts When Using Modules 163

Use Association . 164

Typical Applications of Modules 165

Global Data . 166

Common Blocks in a Module 166

Global User-defined Types . 167

Operator Extensions . 167

Data Abstraction . 168

Procedure Libraries . 169

Independent Compilation . 170

007–3693–005 ix

Fortran Language Reference Manual, Volume 2

Page

Block Data Program Units . 171

Using Procedures [4] 173

Procedure Terms and Concepts . 173

Procedure Terms . 173

Subroutines . 173

Functions . 173

Function Results . 174

External Procedures . 174

Intrinsic Procedures . 174

Internal Procedures . 175

Module Procedures . 175

Statement Functions . 175

Procedure Entry . 175

Procedure Reference . 176

Actual Arguments . 176

Dummy Arguments . 176

Alternate Return . 176

Dummy Procedures . 177

Non-Fortran Procedures . 177

Argument Association . 177

Recursion . 177

Host and Use Association . 178

Implicit and Explicit Interfaces 178

Subroutines . 179

Subroutine Definition . 179

Subroutine Reference . 182

Functions . 185

Function Definition . 185

RESULT Option . 188

x 007–3693–005

Contents

Page

Function Reference . 188

Statement Functions . 191

Procedure-related Statements . 193

RETURN Statement . 193

CONTAINS Statement . 194

ENTRY Statement . 194

EXTERNAL Statement . 197

INTRINSIC Statement . 198

Pure Procedures . 199

Rules for Pure Procedures . 199

Using Variables in Pure Procedures 200

Elemental Procedures . 201

Elemental Functions . 202

Elemental Subroutines . 203

Argument Association . 203

Type, Kind, and Rank Matching 204

Sequence Association . 207

Array Element Sequence Association 207

Passing Array Sections . 210

Miscellaneous Argument Association Rules 211

Structure Sequence Association 212

Pointer Association . 212

Argument Keywords . 216

Optional Arguments . 217

Argument Intent . 219

Resolving References to Generic Procedures 220

Elemental References to Intrinsic Procedures 221

Alternate Returns . 222

Dummy Procedures . 223

Procedure Interfaces . 224

007–3693–005 xi

Fortran Language Reference Manual, Volume 2

Page

Explicit Interfaces . 225

Interface Blocks . 228

General Form of Procedure Interface Blocks 228

Explicit Interfaces for External Procedures 232

Generic Procedures . 232

Defined Operators . 234

Defined Assignment . 237

Intrinsic Procedures [5] 241

Intrinsic Procedure Terms and Concepts 241

Inquiry Functions . 242

Elemental Functions . 243

Transformational Functions . 245

Subroutines . 246

Intrinsic Procedures to Support IEEE Floating-point Arithmetic (EXTENSION) 247

Using Named Constants . 249

Renaming Intrinsic Procedures 251

Miscellaneous Procedures (EXTENSION) 252

Argument Keywords . 257

Representation Models . 258

Intrinsic Procedure Summary . 259

Man Pages . 274

Scope, Association, and Definition [6] 275

Scope . 276

Scope of Names . 278

Names As Global Entities . 278

Names As Local Entities . 278

Names As Statement and Construct Entities 280

Scope of Labels . 281

xii 007–3693–005

Contents

Page

Scope of Input/output (I/O) Units 281

Scope of Operators . 281

Scope of Assignment . 281

Unambiguous Procedure References 281

Resolving Procedure References 282

Association . 284

Name Association . 287

Argument Association . 287

Use Association . 288

Host Association . 288

Pointer Association . 294

Storage Association . 295

Storage Units and Storage Sequence 296

Fortran Data and Storage Units 296

Partial Association . 297

Examples . 297

Sequence Association . 298

Definition Status . 299

Definition Status of Subobjects 299

Events That Affect Definition Status of Variables 299

Events That Cause Variables to Become Defined 300

Events That Cause Variables to Become Undefined 302

Glossary 305

Index 315

Figures
Figure 1. A formatted record with four character values 3

Figure 2. An unformatted record with two integer values 3

007–3693–005 xiii

Fortran Language Reference Manual, Volume 2

Page

Figure 3. Internal and external files 5

Figure 4. A file positioned between records 7

Figure 5. A file positioned with a current record 8

Figure 6. Values for specifier variables in an INQUIRE statement 76

Figure 7. Four program units . 146

Figure 8. Public and private entities in a module 160

Figure 9. Use of public and private module entities 163

Figure 10. Actual and dummy argument lists 204

Figure 11. The plug and socket analogy for actual and dummy arguments 205

Figure 12. Example of array element sequence association 208

Figure 13. Array element sequence association for default characters 209

Figure 14. Association of objects with POINTER and TARGET attributes 213

Figure 15. Scoping units . 277

Figure 16. Associations between two nonmodule scoping units 286

Figure 17. Associations between a module scoping unit and a nonmodule scoping unit . . 287

Figure 18. Host association . 289

Figure 19. Is there one TOTAL in the host or two local TOTALs? 290

Figure 20. How the mapping of implicit typing progresses from host to contained procedure 293

Figure 21. Example 1 . 298

Figure 22. Example 2 . 298

Tables
Table 1. CF90 and MIPSpro 7 Fortran 90 unit numbers 11

Table 2. Message number identifiers 20

Table 3. Interpretation of the first character for printing control 41

Table 4. Values for keyword specifier variables in an OPEN statement 52

Table 5. Summary of control edit descriptors 84

Table 6. Summary of data edit descriptors 84

xiv 007–3693–005

Contents

Page

Table 7. Default compatibility between data types and data edit descriptors 85

Table 8. RELAXED compatibility between data types and data edit descriptors 86

Table 9. STRICT77 compatibility between data types and data edit descriptors 86

Table 10. STRICT90 and STRICT95 compatibility between data types and data edit
descriptors . 86

Table 11. Default field widths for integer formats 103

Table 12. Default fractional and exponent digits 105

Table 13. Forms for the exponent exp in E and D editing 108

Table 14. Forms for the exponent exp in EN editing 110

Table 15. Forms for the exponent exp in ES editing 112

Table 16. The form of the output using a G edit descriptor for a number of magnitude N . 114

Table 17. CF90 and MIPSpro 7 Fortran 90 intrinsic procedures 260

007–3693–005 xv

About This Manual

This manual describes the Fortran language as implemented by the CF90
compiler, revision 3.2, and by the MIPSpro 7 Fortran 90 compiler, revision 7.3.
The CF90 and MIPSpro 7 Fortran 90 compilers implement the Fortran standard.

The CF90 and MIPSpro 7 Fortran 90 compilers run on UNICOS, UNICOS/mk,
and IRIX operating systems. Specific hardware and operating system support
information is as follows:

• The CF90 compiler runs under UNICOS 10.0, or later, on CRAY SV1,
CRAY C90, CRAY J90, and CRAY T90 systems.

• The CF90 compiler runs under UNICOS/mk 2.0.3, or later, on CRAY T3E
systems.

• The MIPSpro 7 Fortran 90 compiler runs under IRIX 6.2, or later, on Cray
and Silicon Graphics systems.

The CF90 and MIPSpro 7 Fortran 90 compilers were developed to support the
Fortran standard adopted by the American National Standards Institute (ANSI)
and the International Standards Organization (ISO). This standard, commonly
referred to in this manual as the Fortran standard, is ISO/IEC 1539–1:1997.
Because the Fortran standard is, generally, a superset of previous standards, the
CF90 and MIPSpro 7 Fortran 90 compilers will compile code written to previous
standards.

Note: The Fortran 95 standard is a revision to the Fortran 90 standard. The
standards organizations continue to interpret the Fortran standard for Silicon
Graphics and for other vendors. To maintain conformance to the Fortran
standard, Silicon Graphics may need to change the behavior of certain CF90
and MIPSpro 7 Fortran 90 compiler features in future releases based upon the
outcomes of interpretations to the standard.

Related CF90 and MIPSpro 7 Fortran 90 Compiler Publications

This manual is one of a set of manuals that describes the CF90 and the MIPSpro
7 Fortran 90 compilers. The complete set of CF90 and MIPSpro 7 Fortran 90
compiler manuals is as follows:

• Intrinsic Procedures Reference Manual.

007–3693–005 xvii

Fortran Language Reference Manual, Volume 2

• Fortran Language Reference Manual, Volume 1. Chapters 1 through 8
correspond to sections 1 through 8 of the Fortran standard.

• Fortran Language Reference Manual, Volume 2. Chapters 1 through 6 of this
manual correspond to sections 9 through 14 of the Fortran standard.

• Fortran Language Reference Manual, Volume 3. This manual contains CF90 and
MIPSpro 7 Fortran 90 compiler information that supplements the Fortran
standard. The standard is the complete, official description of the language.
This manual also contains the complete Fortran syntax in Backus-Naur form
(BNF).

The following publications contain information specific to the CF90 compiler:

• CF90 Ready Reference

• CF90 Commands and Directives Reference Manual

• CF90 Co-array Programming Manual

The following publication contains information specific to the MIPSpro 7
Fortran 90 compiler:

• MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

CF90 and MIPSpro 7 Fortran 90 Compiler Messages

You can obtain CF90 and MIPSpro 7 Fortran 90 compiler message explanations
by using the online explain(1) command.

CF90 and MIPSpro 7 Fortran 90 Compiler Man Pages

In addition to printed and online prose documentation, several online man
pages describe aspects of the CF90 and MIPSpro 7 Fortran 90 compilers. Man
pages exist for the library routines, the intrinsic procedures, and several
programming environment tools.

You can print copies of online man pages by using the pipe symbol with the
man(1), col(1), and lpr(1) commands. In the following example, these
commands are used to print a copy of the explain(1) man page:

% man explain | col -b | lpr

Each man page includes a general description of one or more commands,
routines, system calls, or other topics, and provides details of their usage

xviii 007–3693–005

About This Manual

(command syntax, routine parameters, system call arguments, and so on). If
more than one topic appears on a page, the entry in the printed manual is
alphabetized under its primary name; online, secondary entry names are linked
to these primary names. For example, egrep is a secondary entry on the page
with a primary entry name of grep. To access egrep online, you can type man
grep or man egrep. Both commands display the grep man page to your
terminal.

Related Fortran Publications

The following commercially available reference books are among those that you
can consult for more information on the history of Fortran and the Fortran
language itself:

• Adams, J. C., W. S. Brainerd, J. T. Martin, B. T. Smith, and J. L. Wagener.
Fortran 95 Handbook : Complete ISO/ANSI Reference. MIT Press, 1997. ISBN
0262510960.

• Chapman, S. Fortran 90/95 for Scientists and Engineers. McGraw Hill Text,
1998. ISBN 0070119384.

• Chapman, S. Introduction to Fortran 90/95. McGraw Hill Text, 1998. ISBN
0070119694.

• Counihan, M. Fortran 95 : Including Fortran 90, Details of High Performance
Fortran (HPF), and the Fortran Module for Variable-Length Character Strings.
UCL Press, 1997. ISBN 1857283678.

• Gehrke, W. Fortran 95 Language Guide. Springer Verlag, 1996. ISBN
3540760628.

• International Standards Organization. ISO/IEC 1539–1:1997, Information
technology — Programming languages — Fortran. 1997.

• Metcalf, M. and J. Reid. Fortran 90/95 Explained. Oxford University Press,
1996. ISBN 0198518889.

Related Publications

Certain other publications from Silicon Graphics may also interest you.

On UNICOS and UNICOS/mk systems, the following documents contain
information that may be useful when using the CF90 compiler:

007–3693–005 xix

Fortran Language Reference Manual, Volume 2

• Segment Loader (SEGLDR) and ld Reference Manual

• UNICOS User Commands Reference Manual

• UNICOS Performance Utilities Reference Manual

• Scientific Library Reference Manual

• Introducing the Program Browser

• Application Programmer’s Library Reference Manual

• Guide to Parallel Vector Applications

• Introducing the Cray TotalView Debugger

• Introducing the MPP Apprentice Tool

• Application Programmer’s I/O Guide

• Optimizing Code on Cray PVP Systems

• Compiler Information File (CIF) Reference Manual

On IRIX systems, the following documents contain information that may be
useful when using the MIPSpro 7 Fortran 90 compiler:

• MIPSpro Compiling and Performance Tuning Guide

• MIPSpro Fortran 77 Programmer’s Guide

• MIPSpro 64-Bit Porting and Transition Guide

• MIPSpro Assembly Language Programmer’s Guide

Obtaining Publications

The User Publications Catalog describes the availability and content of all Cray
hardware and software documents that are available to customers. Customers
who subscribe to the Cray Inform (CRInform) program can access this
information on the CRInform system.

To order a document, call +1 651 683 5907. Silicon Graphics employees may
send electronic mail to orderdsk@sgi.com (UNIX system users).

Customers who subscribe to the CRInform program can order software release
packages electronically by using the Order Cray Software option.

xx 007–3693–005

About This Manual

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

DEL or DELETED The DEL or DELETED notation indicates that the
feature being described has been deleted from the
Fortran standard. The CF90 and MIPSpro 7
Fortran 90 compilers support these features, but
the compilers issue a message when a deleted
feature is encountered.

EXT or EXTENSION The EXT or EXTENSION notation indicates that
the feature being described is an extension to the
Fortran standard. The CF90 and MIPSpro 7
Fortran 90 compilers issue a message when
extensions are encountered.

OBS or OBSOLESCENT The OBS or OBSOLESCENT notation indicates
that the feature being described is considered to
be obsolete in the Fortran standard. The CF90
and MIPSpro 7 Fortran 90 compilers support
these features, but the compilers issue a message
when an obsolescent feature is encountered.

007–3693–005 xxi

Fortran Language Reference Manual, Volume 2

xyz_list When _list is part of a syntax description, it
means that several items may be specified. For
example, xyz_list can be expanded to mean
xyz [, xyz]

scalar_ When scalar_ is the first item in a syntax
description, it indicates that the item is a scalar,
not an array, value.

_name When _name is part of a syntax definition, it
indicates that the item is a name with no
qualification. For example, the item must not
have a subscript list, so ARRAY is a name, but
ARRAY(I) is not.

(Rnnnn) Indicates that the Fortran 90 standard has rules
regarding the characteristic of the language being
discussed. All rules are numbered, and the
numbered list appears in the Fortran Language
Reference Manual, Volume 3. The numbering of the
rules in the Fortran Language Reference Manual,
Volume 3 matches the numbering of the rules in
the standard. The forms of the rules in the Fortran
Language Reference Manual, Volume 3 and the BNF
syntax class terms that are used may differ from
the rules and terms used in the standard.

POINTER The term POINTER refers to the Fortran POINTER
attribute.

Cray pointer The term Cray pointer refers to the Cray pointer
data type extension.

Fortran
Fortran standard

These terms refer to the current Fortran standard,
which is the Fortran 95 standard. For situations
when it might otherwise be confusing, a specific

xxii 007–3693–005

About This Manual

standard is mentioned along with its numeric
identifier (FORTRAN 77, Fortran 90, Fortran 95).

BNF Conventions

This section describes some of the commonly used Backus-Naur Form (BNF)
conventions.

Terms such as goto_stmt are called variable entries, nonterminal symbols, or simply,
nonterminals. The metalanguage term goto_stmt, for example, represents the
GO TO statement, as follows:

goto_stmt is GOTO label

The syntax rule defines goto_stmt to be GO TO label, which describes the format
of the GO TO statement. The description of the GO TO statement is incomplete
until the definition of label is given. label is also a nonterminal symbol. A
further search for label will result in a specification of label and thereby provide
the complete statement definition. A terminal part of a syntax rule is one that
does not need further definition. For example, GO TO is a terminal keyword
and is a required part of the statement form. The complete BNF list appears in
the Fortran Language Reference Manual, Volume 3.

The following abbreviations are commonly used in naming nonterminal
keywords:

Abbreviation Term

arg argument

attr attribute

char character

decl declaration

def definition

desc descriptor

expr expression

int integer

op operator

007–3693–005 xxiii

Fortran Language Reference Manual, Volume 2

spec specifier or specification

stmt statement

The term is separates the syntax class name from its definition. The term or
indicates an alternative definition for the syntactic class being defined. The
following example shows that add_op, the add operator, may be either a plus
sign (+) or a minus sign (-):

add_op is +

or -

Indentation indicates syntax continuation. If a rule does not fit on one line, the
second line is indented. This is shown in the following example:

dimension_stmt is DIMENSION [::] array_name (array_spec)
[, array_name (array_spec)] ...

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. Be sure to include the title and part number of
the document with your comments.

You can contact us in any of the following ways:

• Send electronic mail to the following address:

techpubs@sgi.com

• Send a facsimile to the attention of “Technical Publications” at fax number
+1 650 932 0801.

• Use the Suggestion Box form on the Technical Publications Library World
Wide Web page:

http://techpubs.sgi.com/library/

• Call the Technical Publications Group, through the Technical Assistance
Center, using one of the following numbers:

xxiv 007–3693–005

About This Manual

For Silicon Graphics IRIX based operating systems: 1 800 800 4SGI

For UNICOS or UNICOS/mk based operating systems or CRAY Origin2000
systems: 1 800 950 2729 (toll free from the United States and Canada) or
+1 651 683 5600

• Send mail to the following address:

Technical Publications
Silicon Graphics, Inc.
1600 Amphitheatre Pkwy.
Mountain View, California 94043–1351

We value your comments and will respond to them promptly.

007–3693–005 xxv

Input and Output (I/O) Processing [1]

Many programs need data to begin a calculation. After the calculation is
completed, often the results need to be printed, displayed graphically, or saved
for later use. During execution of a program, sometimes there is a large amount
of data produced by one part of the program that needs to be saved for use by
another part of the program, and the amount of data is too large to store in
variables, such as arrays. Also, the editing capabilities of the data transfer
statements for internal files can be used for processing character strings. Each
of these tasks is accomplished using Fortran I/O statements described in this
chapter.

The I/O statements are as follows:

READ

PRINT

WRITE

OPEN

CLOSE

INQUIRE

BACKSPACE

ENDFILE

REWIND

The READ statement is a data transfer input statement and provides a means for
transferring data from an external media to internal storage or from an internal
file to internal storage through a process called reading. The WRITE and PRINT
statements are both data transfer output statements and provide a means for
transferring data from internal storage to an external media or from internal
storage to an internal file. This process is called writing. The OPEN and CLOSE
statements are both file connection statements. The INQUIRE statement is a file
inquiry statement. The BACKSPACE, ENDFILE, and REWIND statements are file
positioning statements.

The first part of this chapter discusses terms and concepts you need to gain a
thorough understanding of all of the I/O facilities. These include internal and
external files, formatted and unformatted records, sequential and direct access
methods for files, advancing and nonadvancing I/O for the sequential

007–3693–005 1

Fortran Language Reference Manual, Volume 2

formatted access method, file and record positions, units, and file connection
properties. Following the concepts are descriptions of the READ, WRITE, and
PRINT data transfer statements and the effect of these statements when they are
executed. A model for the execution of data transfer statements and a
description of the possible error and other conditions created during the
execution of data transfer statements are provided next. Following the model
are the descriptions of the OPEN, CLOSE, and INQUIRE statements that
establish, respectively, the connection properties between units and files; that
disconnect units and files; and that permit inquiry about the state of the
connection between a unit and file. Lastly, file position statements are specified,
which include the BACKSPACE and REWIND statements, followed by the
description of the ENDFILE statement that creates end-of-file records.

The chapter concludes with a summary of the terms, concepts, and statements
used for input and output processing and some examples.

1.1 Records, Files, Access Methods, and Units

Collections of data are stored in files. The data in a file is organized into
records. Fortran treats a record, for example, as a line on a computer terminal, a
line on a listing, or a logical record on a magnetic tape or disk file. However,
the general properties of files and records do not depend on how the properties
are acquired or how the files and records are stored. This section discusses the
properties of records and files, and the various kinds of data transfer.

A file is a sequence of records. The following section describes the properties of
records.

UNICOS physical files and records are described in the UNICOS File Formats
and Special Files Reference Manual. If you are using the MIPSpro 7 Fortran 90
compiler, you can assume that standard UNIX file formats are used.

1.1.1 Records

There are two kinds of records: data and end-of-file. A data record is a sequence
of values.

The values in a data record can be represented in one of two ways: formatted
or unformatted. Formatted data consists of characters that are viewable on some
medium. For example, a record could contain the following four character
values:

2 007–3693–005

Input and Output (I/O) Processing [1]

6

,

1

1

These are intended to represent the two numbers 6 and 11. In this case, the
record might be represented schematically as shown in Figure 1.

6 , 1 1

a10645

Figure 1. A formatted record with four character values

Unformatted data consists of values represented just as they are stored in
computer memory. For example, if integers are stored using a binary
representation, an unformatted record, consisting of two integer values, 6 and
11, might look like Figure 2.

000000110 000001011

a10646

Figure 2. An unformatted record with two integer values

The values in a data record are either all formatted or all unformatted. A
formatted record is one that contains only formatted data. It can be created by a
person typing at a terminal or by a Fortran program that converts values stored
internally into character strings that form readable representations of those
values. When a program reads formatted data, the characters must be
converted to the computer’s internal representation of values. Even character
values can be converted from one character representation in the record to

007–3693–005 3

Fortran Language Reference Manual, Volume 2

another internal representation. The length of a formatted record is the number
of characters in it; the length can be zero.

An unformatted record is one that contains only unformatted data. Unformatted
records usually are created by running a Fortran program, but they can be
created by other means. Unformatted data often requires less space on an
external device. Also, it is usually faster to read and write because no
conversion is required. However, it is not as suitable for reading by people and
usually it is not suitable for transferring data from one computer to another
because the internal representation of values is machine-dependent. The length
of an unformatted data record depends on the number of values in it, but is
measured in bytes; it can be zero. The length of an unformatted record that will
be produced by a particular output list can be determined with the INQUIRE
statement.

In general, a formatted record is read and written by a formatted data transfer
I/O statement, and an unformatted record is read and written by an
unformatted data transfer I/O statement.

Another kind of record is the end-of-file record; it has no value and has no length.

On UNICOS and UNICOS/mk systems, certain file structures allow more than
one end-of-file record in a file. The COS blocking format is the default file
structure for all UNICOS Fortran sequential unformatted files (except tape files).
It can have multiple end-of-file records. For general information on records
supported on UNICOS and UNICOS/mk systems, see the Application
Programmer’s I/O Guide.

For UNICOS structures other than COS blocked, and for structures on IRIX
systems, an end-of-file record is always the last record of a file. It is used to
mark the end of a file. To write it explicitly for files connected for sequential
access, use the ENDFILE statement; to write it implicitly, use a file positioning
statement (REWIND or BACKSPACE statement), close the file (CLOSE statement),
open the file (OPEN statement), or use normal termination of a program.

ANSI/ISO: The Fortran standard does not allow for multiple end-of-file
records in a file.

1.1.2 Kinds of Files

A file can be named. The length of the file name and path name depend on the
platform, as follows:

4 007–3693–005

Input and Output (I/O) Processing [1]

• UNICOS and UNICOS/mk systems allow 256 characters for a file name.
This file name can include a directory name and 1023 characters for the full
path name.

• IRIX systems allow 256 characters for a file name. The full path name is
limited to 1023 characters.

A distinction is made between files that are located on an external device like a
disk, and files in memory accessible to the program. These two kinds of files
are as follows:

• External files

• Internal files

The use of these files is illustrated schematically in Figure 3.

Computer
memory

Data value

Reading Writing

Character string

Reading

Writing

Internal file

External file

a10647

Figure 3. Internal and external files

1.1.2.1 External Files

External files are located on external devices such as tapes, disks, or computer
terminals. For each external file, there is a set of allowed access methods, a set
of allowed forms, a set of allowed actions, and a set of allowed record lengths.
These characteristics are determined by a combination of requests by the user of

007–3693–005 5

Fortran Language Reference Manual, Volume 2

the file and by actions of the operating system. Each characteristic is discussed
later in this section.

An external file connected to a unit has the position property. The file is
positioned at the current record. In some cases, the file is positioned within the
current record.

1.1.2.2 Internal Files

The contents of internal files are stored as values of variables of type character.
You can create the character values by using all the usual means of assigning
character values, or you can create them with an output statement that specifies
the variable as an internal file. Data transfer to and from internal files is
described in Section 1.2.9, page 38. Such data transfer to and from an internal
file must use formatted sequential access I/O statements, including list-directed
data transfer, but not namelist data transfer.

File connection, file positioning, and file inquiry must not be used with internal
files. If the variable representing the internal file is a scalar, the file has just one
record; if the variable is an array, the file has one record for each element of the
array. The order of the records is the order of the elements in the array. The
length of each record is the length of one array element.

1.1.2.3 File Existence

Certain files are made known to the system for any executing program, and
these files are said to exist at the time the program begins executing. A file
might not exist because it is not anywhere on the disks accessible to a system or
because the user of the program is not authorized to access the file.

In addition to files that are made available to programs for input, output, and
other special purposes, programs can create files needed during and after
program execution. When the program creates a file, it is said to exist, even if
no data has been written into it. A file can cease to exist after it has been
deleted. Any of the I/O statements can refer to files that exist for the program
at that point during execution. Some of the I/O statements (INQUIRE, OPEN,
CLOSE, WRITE, PRINT, REWIND, and ENDFILE) can refer to files that do not
exist. A WRITE or PRINT statement can create a file that does not exist and put
data into that file, unless an error condition occurs.

An internal file always exists.

6 007–3693–005

Input and Output (I/O) Processing [1]

1.1.3 File Position

Each file being processed by a program has a position. During the course of
program execution, records are read or written, causing the file position to
change. Also, there are other Fortran statements that cause the file position to
change; an example is the BACKSPACE statement. The action produced by the
I/O statements is described in terms of the file position, so it is important that
file position be discussed in detail.

The initial point is the point just before the first record. The terminal point is the
point just after the last record. If the file is empty, the initial point and the
terminal point are the same. A file position can become indeterminate, in
particular, when an error condition occurs. When the file position becomes
indeterminate, the programmer cannot rely on the file being in any particular
position.

A file can be positioned between records. In the example pictured in Figure 4,
the file is positioned between records 2 and 3. In this case, record 2 is the
preceding record and record 3 is the next record. Of course, if a file is positioned
at its initial point, there is no preceding record, and there is no next record if it
is positioned at its terminal point.

a10648

Figure 4. A file positioned between records

There may be a current record during execution of an I/O statement or after
completion of a nonadvancing I/O statement as shown in Figure 5 where
record 2 is the current record. If the file is positioned within a current record,
the preceding record is the record immediately previous to the current record,
unless the current record is also the initial record, in which case there is no

007–3693–005 7

Fortran Language Reference Manual, Volume 2

preceding record. Similarly, the next record is the record immediately following
the current record, unless the current record is also the final record, in which
case there is no next record.

a10649

Current record

Figure 5. A file positioned with a current record

When there is a current record, the file is positioned at the initial point of the
record, between values in the record, or at the terminal point of the record.

An internal file is always positioned at the beginning of a record just prior to
data transfer.

Advancing I/O is record oriented; completion of such an operation always
positions a file at the end of a record or between records, unless an error
condition occurs. In contrast, nonadvancing I/O is character oriented; after
reading and writing, the file can be positioned between characters within the
current record.

While reading a file, the position of a nonadvancing file depends on whether
success, data transfer, error, end-of-file, or end-of-record conditions occur while
reading the file. The file position is indeterminate following an error condition
when reading a file.

While writing a file, the position of a nonadvancing file depends on whether
success, data transfer, or error conditions occur while writing the file. The file
position is indeterminate following an error condition when writing a file.

When a nonadvancing input operation is performed, the file can be positioned
after the last character of the file and before the logical or physical end-of-record.

8 007–3693–005

Input and Output (I/O) Processing [1]

A subsequent nonadvancing input operation causes an end-of-record condition
to occur, regardless of whether this record is the last record of the file. If
another read operation is executed after the end-of-record condition occurs and
the record is the last record of the file, an end-of-file condition occurs.

1.1.4 File Access Methods

There are two access file methods:

• Sequential access

• Direct access

Some files can be accessed by both methods; other files can be restricted to one
access method or the other. For example, a magnetic tape can be accessed only
sequentially. While each file is connected, it has a set of permissible access
methods, which usually means that it can be accessed either sequentially or
directly. However, a file cannot be connected for both direct and sequential
access simultaneously; that is, if a file is connected for direct access, it must be
disconnected with a CLOSE statement and reconnected with an OPEN statement
specifying sequential access before it can be referenced in a sequential access
data transfer statement, and vice versa.

The actual file access method used to read or write the file is not strictly a
property of the file itself, but is indicated when the file is connected to a unit or
when the file is created, if the file is preconnected. The same file can be
accessed sequentially by a program, then disconnected, and then later accessed
directly by the same program, if both types of access are permitted for the file.

1.1.4.1 Sequential Access

Sequential access to the records in the file begins with the first record of the file
and proceeds sequentially to the second record, and then to the next record,
record-by-record. The records are accessed serially as they appear in the file. It
is not possible to begin at some particular record within the file without reading
down to that record in sequential order.

When a file is being accessed sequentially, the records are read and written
sequentially. For example, if the records are written in any arbitrary order using
direct access (see Section 1.1.4.2) and then read using sequential access, the
records are read beginning with record number 1 of the file, regardless of when
it was written.

007–3693–005 9

Fortran Language Reference Manual, Volume 2

An important property of sequential files is that the last record written to the
file is always the last record in the file. For example, consider a file with ten
records. An application can open the file and read all ten records. If the
application subsequently rewinds the file and writes one record, then there is
only one record in the file at that time. Each record written to a file truncates
any and all records that may have been after it.

1.1.4.2 Direct Access

When a file is accessed directly, the records are selected by record number.
Using this identification, the records can be read or written in any order.
Therefore, it is possible to write record number 47 first, then number 13.
Reading or writing such records is accomplished by direct access data transfer
I/O statements. Either record can be written without first accessing the other.

By default, a formatted file can be created to support sequential or direct access,
using the ACCESS specifier on the OPEN statement. A formatted file can support
both kinds of access if it is closed and reopened with a different specification
and if all records are of equal length. If a file supports both methods of access,
the first record accessed sequentially is the record numbered 1 for direct access;
the second sequential record is record 2 for direct access, and so on.

While a file is connected for one kind of access (sequential or direct), only I/O
statements using that kind of access can be used with the file.

1.1.5 Units

I/O statements refer to a particular file by providing an I/O unit. An I/O unit is
either an external unit or an internal unit. An external unit is either a
nonnegative integer or an asterisk (*). When an external file is a nonnegative
integer, it is called an external file unit. Table 1, page 11, lists the unit numbers
supported by the CF90 and MIPSpro 7 Fortran 90 compilers.

A unit number identifies one and only one external unit in all program units in
a Fortran program at a time.

File positioning, file connection, and inquiry statements must use an external
unit.

If you are running the CF90 compiler on a UNICOS or UNICOS/mk system, an
external_unit_name can be used to designate an external file unit in a data
transfer or file positioning statement; if you use an external name, it must be
from 1 to 7 characters in length and be enclosed in apostrophes or quotation
marks.

10 007–3693–005

Input and Output (I/O) Processing [1]

ANSI/ISO: The Fortran standard does not describe the use of external names
to designate a unit.

An internal unit must be a default character variable. The name of an internal
file also is called a unit.

1.1.5.1 Unit Existence

The collection of unit numbers that can be used in a program for external files
consists of all non-negative integers. These unit numbers are said to exist. I/O
statements must refer to units that exist, except for those that close a file or
inquire about a unit.

The assignments for unit numbers 100, 101, and 102 cannot be changed, and
these numbers cannot appear in an OPEN statement. A CLOSE statement on
these units has no effect.

Numbers 0, 5, and 6 are not equivalent to the asterisk, and they can be
reassigned.

The following table shows the unit numbers available:

Table 1. CF90 and MIPSpro 7 Fortran 90 unit numbers

Unit number Availability

0 Preconnected to the stderr file but available for user
reassignment

1–4 Available for user specification

5 Preconnected to the stdin file but available for user
reassignment

6 Preconnected to stdout but available for user reassignment

7–99 Available for user specification

100 Dedicated for use as the stdin file

101 Dedicated for use as the stdout file

102 Dedicated for system as the stderr file

103-HUGE(3I) Available for user specification

007–3693–005 11

Fortran Language Reference Manual, Volume 2

1.1.5.2 Establishing a Connection to a Unit

In order to transfer data to or from an external file, the file must be connected
to a unit. An internal file is always connected to the unit that is the name of the
character variable. There are two ways to establish a connection between a unit
and an external file:

• Execution of an OPEN statement in the executing program

• Preconnection by the operating system

Only one file can be connected to a unit at any given time and vice versa. If the
unit is disconnected after its first use on a file, it can be reconnected later to
another file or to the same file. A file that is not connected to a unit must not be
used in any statement, except the OPEN, CLOSE, or INQUIRE statements.

Some units can be preconnected to files for each Fortran program by the
operating system without any action necessary by the program. For example,
units 0, 5, and 6 are preconnected to files stderr, stdin, and stdout,
respectively. All other available units are, in essence, preconnected to the
corresponding fort.n file. For example, unit 9 is preconnected to fort.9 and
unit 10 is preconnected to fort.10. You also can use the assign(1) command
to preconnect units. In either of these cases, the user program does not require
an OPEN statement to connect a file for sequential access; it is preconnected.

Once a file has been disconnected, the only way to reference it is by its name,
using an OPEN or INQUIRE statement. There is no means of referencing an
unnamed file once it is disconnected.

1.2 Data Transfer Statements

When a unit is connected, either by preconnection or execution of an OPEN
statement, data can be transferred by reading and writing to the file associated
with the unit. The transfer can occur to or from internal or external files.

The data transfer statements are the READ, WRITE, and PRINT statements. This
section presents the general form of the data transfer statements first, followed
by the forms that specify the major uses of data transfer statements.

The READ, WRITE, and PRINT statements are defined as follows:

12 007–3693–005

Input and Output (I/O) Processing [1]

read_stmt is READ(io_control_spec_list) [input_item_list]

or READ format [, input_item_list]

write_stmt is WRITE (io_control_spec_list) [output_item_list]

EXT or WRITE format [, output_item_list]

print_stmt is PRINT format [, output_item_list]

ANSI/ISO: The Fortran standard does not specify the WRITE
format [, output_item_list] form of the WRITE statement.

The io_control_spec_list, the input_item_list, the output_item_list, and the format
variables are described in subsequent sections. The format item is called a
format specifier.

1.2.1 I/O Control Specifiers

The I/O control specifiers are defined as follows:

io_control_spec is [UNIT =] io_unit

or [FMT =] format

or [NML =] namelist_group_name

or REC = scalar_int_expr

or IOSTAT = scalar_default_int_variable

or ERR = label

or END = label

or ADVANCE = scalar_char_expr

or SIZE = scalar_default_int_variable

or EOR = label

The UNIT= specifier, with or without the keyword UNIT, is called a unit specifier.

The FMT= specifier, with or without the keyword FMT, is called a format specifier.

The NML= specifier, with or without the keyword NML, is called a namelist
specifier.

007–3693–005 13

Fortran Language Reference Manual, Volume 2

The data transfer statement is called a formatted I/O statement if a format or
namelist group name specifier is present; it is called an unformatted I/O statement
if neither is present. If a namelist group name specifier is present, it is called a
namelist I/O statement. It is called a direct access I/O statement if a REC= specifier
is present; otherwise, it is called a sequential access I/O statement.

The I/O control specification list must contain a unit specifier and can contain
any of the other I/O control specifiers (but none can appear more than once).
An FMT= and an NML= specifier cannot both appear in the same list.

This section describes the form and effect of the control information specifiers
that are used in the data transfer statements. The NML=, ADVANCE=, END=,
EOR=, REC=, and SIZE= specifiers are each unique to one of the forms of the
data transfer statements, whereas the other specifiers are used in more than one
form. In particular, NML= is used in the namelist data transfer statement; the
ADVANCE=, EOR=, and SIZE= specifiers are used in input data transfer
statements to specify nonadvancing formatted sequential data transfer; and the
REC= specifier is used for direct access data transfer.

1.2.1.1 UNIT= Control Specifier

The format of the UNIT= control specifier is as follows:

[UNIT =] io_unit

An io_unit is defined as follows:

io_unit is external_file_unit

or *

or internal_file_unit

EXT or unit_name

external_file_unit is scalar_int_expr

internal_file_unit is char_variable

ANSI/ISO: The Fortran standard does not specify the use of a unit_name.

14 007–3693–005

Input and Output (I/O) Processing [1]

If you specify a scalar_int_expr for io_unit, it must be nonnegative and in the
range of 0 through HUGE(3I). Units 100 through 103 are reserved. For more
information on units, see Table 1, page 11.

Specifying an asterisk (*) for io_unit indicates a default external unit. It is the
same unit number that would be defined if a READ or PRINT statement
appeared without the unit number. The io_unit specified by an asterisk can be
used only for formatted sequential access. The external unit used for a READ
statement without a unit specifier or a READ statement with an asterisk unit
specifier need not be the same as that used for a PRINT statement or WRITE
statement with an asterisk unit specifier.

If you are using the CF90 compiler on a UNICOS or UNICOS/mk system,
specifying an external_unit_name indicates a file name. The name can consist of
1 to 7 left-justified, blank-filled, or zero-filled ASCII characters. The use of
uppercase and lowercase is significant for file names.

A unit specifier is required. A unit number identifies one and only one external
unit in all program units in a Fortran program.

If the UNIT keyword is omitted, the I/O unit must be first. In this case, the
keyword FMT or NML can be omitted from the format or namelist specifier. If
the format or namelist specifier appears in the list, it must be the second
specifier in the list.

1.2.1.2 FMT= Control Specifier

The format of the FMT= control specifier is as follows:

[FMT =] format

The format is defined as follows:

format is char_expr

or label

or *

Specifying a char_expr, which provides the format specification in the form of a
character string, indicates formatted I/O. The character expression must be a
valid format specification. If the expression is an array, it is treated as if all

007–3693–005 15

Fortran Language Reference Manual, Volume 2

elements of the array were concatenated together in array element order and
must be a valid format specification.

Specifying a label, which provides the statement label of a FORMAT statement
containing the format specification, indicates formatted I/O. The label must be
the label of a FORMAT statement in the same scoping unit as the data transfer
statement.

Specifying a scalar_default_int_variable, which provides an integer variable that
has been assigned the label of a FORMAT statement, indicates formatted I/O.
The label value must have been assigned to the integer variable using an
ASSIGN statement and must be the label of a FORMAT statement in the same
scoping unit as the data transfer statement. For information on the FORMAT
statement, see Section 2.1.1, page 87.

Specifying an asterisk (*) indicates list-directed formatting.

The keyword FMT= can be omitted if the format specifier is the second specifier
in the control information list and if the UNIT keyword was also omitted;
otherwise, it is required.

If a format specifier is present, a namelist specifier (NML=) must not be present.

1.2.1.3 NML= Control Specifier

The format of the NML= control specifier is as follows:

[NML =] namelist_group_name

For namelist_group_name, specify the name of a namelist group declared in a
NAMELIST statement. The namelist group name identifies the list of data objects
to be transferred by the READ or WRITE statement with the NML= specifier.

If a namelist specifier is present, a format specifier must not be present.

1.2.1.4 ADVANCE= Control Specifier

The format of the ADVANCE= control specifier is as follows:

ADVANCE = scalar_char_expr

16 007–3693–005

Input and Output (I/O) Processing [1]

For scalar_char_expr, specify YES or NO. NO indicates nonadvancing formatted
sequential data transfer. YES indicates advancing formatted sequential data
transfer.

Trailing blanks in the character expression are ignored. The value of the
specifier is without regard to case (upper or lower); that is, the value no is the
same as NO.

If an ADVANCE= specifier appears in the control information list, the data
transfer must be a formatted sequential data transfer statement connected to an
external unit. List-directed and namelist I/O are not allowed.

If the EOR= or SIZE= specifier appears in the control information list, an
ADVANCE= specifier must also appear with the value NO.

1.2.1.5 END= Control Specifier

The format of the END= control specifier is as follows:

END = label

If an end-of-file condition occurs and no error condition occurs during the
execution of the READ statement, the program branches to the label in the END=
specifier. The label must be the label of a branch target statement in the same
scoping unit as the READ statement.

The END= specifier can appear only in a sequential access READ statement; note
that the END= specifier must not appear in a WRITE statement.

If the file is an external file, it is positioned after the end-of-file record.

If an IOSTAT= specifier is present and end-of-file condition occurs, but no error
condition occurs, the IOSTAT variable specified becomes defined with a
negative value.

1.2.1.6 EOR= Control Specifier

The format of the EOR= control specifier is as follows:

EOR = label

The program branches to the labeled statement specified by the EOR= specifier
if an end of record is encountered for a nonadvancing READ statement. The

007–3693–005 17

Fortran Language Reference Manual, Volume 2

label must be the label of a branch target statement in the same scoping unit as
the READ statement.

The EOR= specifier can appear only in a READ statement with an ADVANCE=
specifier with a value of NO, that is, a nonadvancing READ statement.

If an end-of-record condition occurs and no error condition occurs during the
execution of the READ statement:

• The file is positioned after the current record.

• The variable given in the IOSTAT= specifier, if present, becomes defined
with a negative value.

• If the connection has been made with the PAD= specifier of YES, the record
is padded with blanks to satisfy both the input item list and the
corresponding data edit descriptor if the input item and/or data edit
descriptor requires more characters than are provided in the record.

• The variable given in the SIZE= specifier, if present, becomes defined with
an integer value equal to the number of characters read from the input
record; however, blank padding characters inserted because the PAD=
specifier is YES are not counted.

• Execution of the READ statement terminates, and the program branches to
the label in the EOR= specifier.

1.2.1.7 ERR= Control Specifier

The format of the ERR= control specifier is as follows:

ERR = label

If an error condition occurs, the position of the file becomes indeterminate.

The program branches to the label in the ERR= specifier if an error occurs in a
data transfer statement. The label must be the label of a branch target statement
in the same scoping unit as the data transfer statement.

If an IOSTAT= specifier is also present and an error condition occurs, the
IOSTAT variable specified becomes defined with a positive value.

If the data transfer statement is a READ statement, contains a SIZE= specifier,
and an error condition occurs, then the variable specified by the SIZE=
specifier becomes defined with an integer value equal to the number of

18 007–3693–005

Input and Output (I/O) Processing [1]

characters read from the input record; however, blank padding characters
inserted because the PAD= specifier is YES are not counted.

1.2.1.8 IOSTAT= Control Specifier

The format of the IOSTAT= control specifier is as follows:

IOSTAT = scalar_default_int_variable

An integer value is returned in scalar_default_int_variable. The meaning of the
return value is as follows:

• If scalar_default_int_variable > 0, an error condition occurred.

• If scalar_default_int_variable = 0, no error, end-of-file, or end-of-record
condition occurred.

• If scalar_default_int_variable < 0, an end-of-file or end-of-record condition
occurred. The end-of-file negative value is not the same as the negative
value indicating the end-of-record condition.

The IOSTAT= specifier applies to the execution of the data transfer statement
itself.

The variable specified in the IOSTAT= specifier must not be the same as or
associated with any entity in the I/O item list or in the namelist group or with
the variable specified in the SIZE= specifier, if present.

If the variable specified in the IOSTAT= specifier is an array element, its
subscript values must not be affected by the data transfer, by any implied-DO
item or processing, or with the definition or evaluation of any other specifier in
the control specifier list.

You can obtain an online explanation of an error identified by the IOSTAT
variable value. To do this, join the returned value with its group name, shown
in the following list, and use the resulting string as an argument to the
explain(1) command. For example:

explain lib-5000

007–3693–005 19

Fortran Language Reference Manual, Volume 2

Table 2. Message number identifiers

Message number Group name Source of message

1 through 899 sys Operating system (UNICOS and UNICOS/mk
systems)1

1000 through 1999 lib Fortran library (UNICOS and UNICOS/mk
systems)1

4000 through 4999 lib Fortran library (IRIX systems)

5000 through 5999 lib Flexible File I/O (FFIO) library

90000 through 90500 None Tape system (UNICOS and UNICOS/mk
systems)1

1 On IRIX systems, see intro(2) for explanations of messages numbered less than 4000 and greater than
89999.

1.2.1.9 REC= Control Specifier

The format of the REC= control specifier is as follows:

REC = scalar_int_expr

The scalar_int_expr specifies an integer value that indicates the record number to
be read or written.

The REC= specifier can appear only in a data transfer statement with a unit that
is connected for direct access.

If the REC= specifier is present in a control information list, an END= or format
specifier with an asterisk (for list-directed data transfer) must not be specified in
the same control information list.

1.2.1.10 SIZE= Control Specifier

The format of the SIZE= control specifier is as follows:

SIZE = scalar_default_int_variable

20 007–3693–005

Input and Output (I/O) Processing [1]

The I/O system returns a nonnegative integer value in scalar_default_int_variable
that indicates the number of characters read.

The SIZE= specifier applies to the execution of the READ statement itself and
can appear only in a READ statement with an ADVANCE= specifier with the
value NO.

Blanks inserted as padding characters when the PAD= specifier is YES for the
connection are not counted.

The variable specified in the SIZE= specifier must not be the same as or
associated with any entity in the I/O item list or in the namelist group or with
the variable specified in the IOSTAT= specifier, if present.

If the variable specified in the SIZE= specifier is an array element, its subscript
values must not be affected by the data transfer, by any implied-DO item or
processing, or with the definition or evaluation of any other specifier in the
control specifier list.

1.2.2 I/O Item List

The I/O item list consists basically of a list of variables in a READ statement and
a list of expressions in a WRITE or PRINT statement. In addition, in any of
these statements, the I/O item list can contain an I/O implied-DO list,
containing a list of variables or expressions indexed by DO variables.

The components of the I/O lists are defined as follows:

input_item is variable

or io_implied_do

output_item is expr

or io_implied_do

io_implied_do is (io_implied_do_object_list, io_implied_do_control)

io_implied_do_object is input_item

or output_item

io_implied_do_control is do_variable = scalar_numeric_expr,
scalar_numeric_expr [, scalar_numeric_expr]

007–3693–005 21

Fortran Language Reference Manual, Volume 2

The DO variable must be a scalar integer or real variable. If it is real, it must be
default real or double-precision real.

ANSI/ISO: The Fortran standard does not specify real or double-precision DO
variables. The CF90 and MIPSpro 7 Fortran 90 compilers support these types
as an extension to the Fortran standard.

Each scalar numeric expression must be of type integer or real. If it is of type
real, each must be of type default real or default double precision; the use of
such real expressions is considered obsolescent. They need not be all of the
same type nor of the type of the DO variable.

The DO variable must not be one of the input items in the implied-DO; it must
not be associated with an input item either.

Two nested implied-DOs must not have the same (or associated) DO variables.

An implied-DO object, when it is part of an input item, must itself be an input
item; that is, it must be a variable or an implied-DO object whose objects are
ultimately variables. Similarly, an implied-DO object, when it is part of an
output item, must itself be an output item; that is, it must be an expression or
an implied-DO object whose objects are ultimately expressions.

For an I/O implied-DO, the loop is initialized, executed, and terminated in the
same manner as for the DO construct. Its iteration count is established at the
beginning of processing of the items that constitute the I/O implied-DO.

An array appearing without subscripts in an I/O list is treated the same as if all
elements of the array appeared in array-element order. In the following
example, assume UP is an array of shape (2,3):

READ *, UP

The preceding statement is the same as the following code:

READ *, UP(1,1), UP(2,1), UP(1,2), &

UP(2,2), UP(1,3), UP(2,3)

When a subscripted array is an input item, it is possible that when a value is
transferred from the file to the variable, it might affect another part of the input
item. This is not allowed. Consider the following READ statements, for example:

INTEGER A(100), V(10)

READ *, A(A)

READ *, A(A(1):A(9))

! Suppose V’s elements are defined with

22 007–3693–005

Input and Output (I/O) Processing [1]

! values in the range 1 to 100.

READ *, A(V)

The first two READ statements are not valid because the data values read affect
other parts of array A. The third READ statement is allowed as long as no two
elements of V have the same value.

Assumed-size arrays cannot appear in I/O lists unless a subscript, a section
subscript specifying an upper bound, or a vector subscript appears in the last
dimension.

In formatted I/O, a structure is treated as if, in place of the structure, all
components were listed in the order of the components in the derived-type
definition. In the following statement, assume that FIRECHIEF is a structure of
type PERSON:

READ *, FIRECHIEF

The preceding statement is the same as the following:

READ *, FIRECHIEF%AGE, FIRECHIEF%NAME

A pointer can be an I/O list item but it must be associated with a target at the
time the data transfer statement is executed. For an input item, the data in the
file is transferred to the associated target. For an output item, the target
associated with the pointer must be defined, and the value of the target is
transferred to the file.

On UNICOS and UNICOS/mk systems, the following types of items cannot be
used in an I/O list: a structure with an ultimate component that is a pointer,
auxiliary variables, or auxiliary arrays.

ANSI/ISO: The Fortran standard does not specify auxiliary variables or
auxiliary arrays.

A constant or an expression with operators, parentheses, or function references
cannot appear as an input list item, but can appear as an output list item. A
function reference in an output list must not cause execution of another I/O
statement on this same unit.

ANSI/ISO: The Fortran standard does not allow the execution of another I/O
statement on any unit through a function reference in an I/O list. For more
information on restrictions, see Section 1.9, page 81.

An input list item, or an entity associated with it, must not contain any portion
of an established format specification.

007–3693–005 23

Fortran Language Reference Manual, Volume 2

On output, every entity whose value is to be written must be defined.

1.2.3 Explicitly Formatted Advancing Sequential Access Data Transfer

For formatted input and output, the file consists of characters. These characters
are converted into representations suitable for storing in the computer memory
during input and converted from an internal representation to characters on
output. When a file is accessed sequentially, records are processed in the order
in which they appear in the file.

The explicitly formatted, advancing, sequential access data transfer statements
have the following formats:

READ ([UNIT =] io_unit, &
[FMT =] format &
[, IOSTAT = scalar_default_int_variable] &
[, ERR = label] &
[, END = label] &
[, ADVANCE = ’YES’]) &
[, input-item-list]

READ format [, input_item_list]

WRITE ([UNIT =] io_unit, &
[FMT =] format &
[, IOSTAT = scalar_default_int_variable] &
[, ERR = label] &
[, ADVANCE = ’YES’]) &
[output_item_list]

PRINT format [, output_item_list]

WRITE format [, output_item_list]

The I/O unit is a scalar integer expression with a nonnegative value, an asterisk
(*), or a character literal constant (external name). All three I/O unit forms
indicate that the unit is a formatted sequential access external unit.

ANSI/ISO: The Fortran standard does not specify the use of a character
literal constant (external name) as an I/O unit.

If an ADVANCE= specifier is present, the format must not be an asterisk (*).

24 007–3693–005

Input and Output (I/O) Processing [1]

When an advancing I/O statement is executed, reading or writing of data
begins with the next character in the file. If a previous I/O statement was a
nonadvancing statement, the next character transferred may be in the middle of
a record, even if the statement being executed is an advancing statement. The
essential difference between advancing and nonadvancing sequential data
transfer is that an advancing I/O statement always leaves the file positioned at
the end of the record.

During the data transfer, data is transferred with editing between the file and
the entities specified by the I/O list. Format control is initiated and editing is
performed as described in Chapter 2, page 83. The current record and possibly
additional records are read or written.

For the data transfer, values can be transmitted to or from objects of intrinsic or
derived types. In the latter case, the transmission is in the form of values of
intrinsic types to or from the components of intrinsic types, which ultimately
comprise these structured objects.

For input data transfer, the file must be positioned so that the record read is a
formatted record or an end-of-file record.

For input data transfer, the input record is logically padded with blanks to
satisfy an input list and format specification that requires more characters than
the record contains, unless the PAD= specifier is specified as NO in the OPEN
statement. If the PAD= specifier is NO, the input list and format specification
must not require more characters from the record than the record contains.

For output data transfer, the output list and format specification must not
specify more characters for a record than the record size; recall that the record
size for an external file is specified by a RECL= specifier in the OPEN statement.

If the file is connected for formatted I/O, unformatted data transfer is
prohibited.

Execution of an advancing sequential access data transfer statement terminates
when one of the following occurs:

• Format processing encounters a data or colon edit descriptor, and there are
no remaining elements in the input item list or output item list.

• On input, an end-of-file condition is encountered.

• An error condition is encountered.

Example of formatted READ statements are as follows:

007–3693–005 25

Fortran Language Reference Manual, Volume 2

! Assume that FMT_5 is a character string

! whose value is a valid format specification.
READ (5, 100, ERR=99, END=200) &

A, B, (C(I), I = 1, 40)

READ (9, IOSTAT=IEND, FMT=FMT_5) X, Y

READ (FMT="(5E20.0)", UNIT=5, &

ADVANCE="YES") (Y(I), I = 1, KK)

READ 100, X, Y

Examples of WRITE statements are as follows:

! Assume FMT_103 is a character string with a

! valid format specification.
WRITE (9, FMT_103, IOSTAT=IS, ERR=99) A, B, C, S

WRITE (FMT=105, ERR=9, UNIT=7) X

WRITE (*, "(F10.5)") X

PRINT "(A, E14.6)", " Y = ", Y

1.2.4 Unformatted Sequential Access

For unformatted sequential input and output, the file consists of values stored
using an internal binary representation. This means that little or no conversion
is required during input and output.

Unformatted sequential access data transfer statements are the READ and WRITE
statements with no format specifier or namelist group name specifier. The
formats are as follows:

READ ([UNIT =] scalar_int_expr &
[, IOSTAT = scalar_default_int_variable] &
[, ERR = label] &
[, END = label]) &
[input_item_list]

WRITE ([UNIT =] scalar_int_expr &
[, IOSTAT = scalar_default_int_variable] &
[, ERR = label]) &
[output_item_list]

Data is transferred without editing between the current record and the entities
specified by the I/O list. Exactly one record is read or written.

26 007–3693–005

Input and Output (I/O) Processing [1]

Objects of intrinsic or derived types can be transferred through an unformatted
data transfer statement.

For input data transfer, the file must be positioned so that the record read is an
unformatted record or an end-of-file record.

For input data transfer, the number of values required by the input list must be
less than or equal to the number of values in the record. Each value in the
record must be of the same type as the corresponding entity in the input list,
except that one complex value may correspond to two real list entities or two
real values may correspond to one complex list entity. The type parameters of
the corresponding entities must be the same; if two real values correspond to
one complex entity or one complex value corresponds to two real entities, all
three must have the same kind type parameter values. If an entity in the input
list is of type character, the character entity must have the same length as the
character value.

On output, if the file is connected for unformatted sequential access data
transfer, the record is created with a length sufficient to hold the values from
the output list. This length must be one of the set of allowed record lengths for
the file and must not exceed the value specified in the RECL= specifier, if any, of
the OPEN statement that established the connection.

Execution of an unformatted sequential access data transfer statement
terminates when one of the following occurs:

• The input item list or output item list is exhausted.

• On input, an end-of-file condition is encountered.

• An error condition is encountered.

If the file is connected for unformatted I/O, formatted data transfer is
prohibited.

The following are examples of unformatted sequential access READ statements :

READ (5, ERR=99, END=100) A, B, (C(I), I = 1, 40)

READ (IOSTAT=IEND, UNIT=9) X, Y
READ (5) Y

The following are examples of unformatted sequential access WRITE statements:

WRITE (9, IOSTAT=IS, ERR=99) A, B, C, S
WRITE (ERR=99, UNIT=7) X

WRITE (9) X

007–3693–005 27

Fortran Language Reference Manual, Volume 2

If the access is sequential, the file is positioned at the beginning of the next
record prior to data transfer and positioned at the end of the record when the
I/O is finished, because nonadvancing unformatted I/O is not permitted.

1.2.5 Nonadvancing Formatted Sequential Data Transfer

Nonadvancing formatted sequential I/O provides the capability of reading or
writing part of a record. It leaves the file positioned after the last character read
or written, rather than skipping to the end of the record. Processing of
nonadvancing input continues within a current record, until an end-of-record
condition occurs. Nonadvancing input statements can read varying-length
records and determine their lengths. Nonadvancing I/O is sometimes called
partial record or stream I/O. It may be used only with explicitly formatted,
external files connected for sequential access.

The formats for the nonadvancing I/O statements are as follows:

READ ([UNIT =] io_unit, &
[FMT =] format, &
ADVANCE = ’NO’ &
[, SIZE = scalar_default_int_variable] &
[, EOR = label] &
[, IOSTAT = scalar_default_int_variable] &
[, ERR = label] &
[, END = label]) &
[input_item_list]

WRITE ([UNIT =] io_unit, &
[FMT =] format, &
ADVANCE = ’NO’ &

[, IOSTAT = scalar_default_int_variable] &
[, ERR = label]) &
[output_item_list]

The I/O unit is a scalar integer expression with a nonnegative value, an asterisk
(*), or a character literal constant (external name). The I/O unit forms indicate
that the unit is a formatted sequential access external unit.

The format must not be an asterisk (*).

During the data transfer, data is transferred with editing between the file and
the entities specified by the I/O list. Format control is initiated and editing is

28 007–3693–005

Input and Output (I/O) Processing [1]

performed as described in Chapter 2, page 83. The current record and possibly
additional records are read or written.

For the data transfer, values can be transmitted to or from objects of intrinsic or
derived types. In the latter case, the transmission is in the form of values of
intrinsic types to or from the components of intrinsic types, which ultimately
comprise these structured objects.

For input data transfer, the file must be positioned at the beginning of, end of,
or within a formatted record or at the beginning of an end-of-file record.

For input data transfer, the input record is logically padded with blanks to
satisfy an input list and format specification that requires more characters than
the record contains, unless the PAD= specifier is specified as NO in the OPEN
statement. If the PAD= specifier is NO, the input list and format specification
must not require more characters from the record than the record contains,
unless either the EOR= or IOSTAT= specifier is present. In the exceptional cases
during nonadvancing input, the actions and execution sequence are described
in Section 1.4, page 47.

For output data transfer, the output list and format specification must not
specify more characters for a record than the record size; recall that the record
size for an external file may be specified by a RECL= specifier in the OPEN
statement.

The variable in the SIZE= specifier is assigned the number of characters read
on input. Blanks inserted as padding characters when the PAD= specifier is YES
are not counted.

The program branches to the label given by the EOR= specifier, if an
end-of-record condition is encountered during input. The label must be the
label of a branch target statement in the same scoping unit as the data transfer
statement.

Execution of a nonadvancing, formatted, sequential access data transfer
statement terminates when one of the following occurs:

• Format processing encounters a data edit descriptor or colon edit descriptor,
and there are no remaining elements in the input item list or output item list.

• On input, an end-of-file or end-of-record condition is encountered.

• An error condition is encountered.

Unformatted data transfer is prohibited.

In the following statements, assume that N has the value 7:

007–3693–005 29

Fortran Language Reference Manual, Volume 2

WRITE (*, ’(A)’, ADVANCE="NO") "The answer is "

PRINT ’(I1)’, N

The preceding statements produce the following single output record:

The answer is 7

In the following statements, assume that SSN is a rank-one array of size 9 with
values (1, 2, 3, 0, 0, 9, 8, 8, 6):

DO I = 1, 3

WRITE (*, ’(I1)’, ADVANCE="NO") SSN(I)
ENDDO

WRITE (*, ’("-")’, ADVANCE="NO")

DO I = 4, 5

WRITE (*, ’(I1)’, ADVANCE="NO") SSN(I)

ENDDO

WRITE (*, ’(A1)’, ADVANCE="NO") ’-’
DO I = 6, 9

WRITE (*, ’(I1)’, ADVANCE="NO") SSN(I)

ENDDO

The preceding statements produce the following record:

123-00-9886

1.2.6 Direct Access Data Transfer

In direct access data transfer, the records are selected by record number. The
record number is a scalar integer expression whose value represents the record
number to be read or written. The records can be written in any order, but all
records must be of the length specified by the RECL= specifier in an OPEN
statement.

If a file is connected using the direct access method, then nonadvancing,
list-directed, and namelist I/O are prohibited. Also, an internal file must not be
accessed using the direct access method.

It is not possible to delete a record using direct access. However, records may
be rewritten so that a record can be erased by writing blanks into it.

30 007–3693–005

Input and Output (I/O) Processing [1]

1.2.6.1 Formatted Direct Access Data Transfer

For formatted input and output, the file consists of characters. These characters
are converted into internal representation during input and are converted from
an internal representation to characters on output.

Formatted direct access data transfer statements are READ and WRITE
statements with a REC= specifier and a format specifier. The formats for
formatted direct access data transfer statements are as follows:

READ ([UNIT =] scalar_int_expr, &
[FMT =] format, &
REC = scalar_int_expr &
[, IOSTAT = scalar_default_int_variable] &
[, ERR = label]) &
[input_item_list]

WRITE ([UNIT =] scalar_int_expr, &
[FMT =] format, &
REC = scalar_int_expr &
[, IOSTAT = scalar_default_int_variable] &
[, ERR = label]) &
[output_item_list]

The I/O unit is a scalar integer expression with a nonnegative value, an asterisk
(*), or a character literal constant (external name). The I/O unit forms indicate
that the unit is a formatted sequential access external unit.

The format must not be an asterisk (*).

Note that the above forms are intentionally structured so that the unit cannot be
an internal file, and the END=, ADVANCE=, and namelist specifiers cannot appear.

On input, an attempt to read a record of a file connected for direct access that
has not previously been written causes all entities specified by the input list to
become undefined.

During the data transfer, data is transferred with editing between the file and
the entities specified by the I/O list. Format control is initiated and editing is
performed as described in Chapter 2, page 83. The current record and possibly
additional records are read or written.

For the data transfer, values can be transmitted to or from objects of intrinsic or
derived types. In the latter case, the transmission is in the form of values of

007–3693–005 31

Fortran Language Reference Manual, Volume 2

intrinsic types to or from the components of intrinsic types, which ultimately
comprise these structured objects.

For input data transfer, the file must be positioned so that the record read is a
formatted record.

For input data transfer, the input record is logically padded with blanks to
satisfy an input list and format specification that requires more characters than
the record contains, unless the PAD= specifier was specified as NO in the OPEN
statement. If the PAD= specifier is NO, the input list and format specification
must not require more characters from the record than the record contains.

For output data transfer, the output list and format specification must not
specify more characters for a record than the record size; recall that the record
size for an external file is specified by a RECL= specifier in the OPEN statement.

If the format specification specifies another record (say, by the use of the slash
edit descriptor), the record number is increased by one as each succeeding
record is read or written by that I/O statement.

For output data transfer, if the number of characters specified by the output list
and format do not fill a record, blank characters are added to fill the record.

Execution of a formatted direct access data transfer statement terminates when
one of the following events occurs:

• Format processing encounters a data edit descriptor or colon edit descriptor,
and there are no remaining elements in the input item list or output item list.

• An error condition is encountered.

If the file is connected for formatted I/O, unformatted data transfer is
prohibited.

Examples of formatted direct access I/O statements are as follows. In these
examples, assume that FMT_X is a character entity:

READ (7, FMT_X, REC=32, ERR=99) A

READ (IOSTAT=IO_ERR, REC=34, &

FMT=185, UNIT=10, ERR=99) A, B, D
WRITE (8, "(2F15.5)", REC = N + 2) X, Y

32 007–3693–005

Input and Output (I/O) Processing [1]

1.2.6.2 Unformatted Direct Access Data Transfer

For unformatted input and output, the file consists of values stored using a
representation that is close to or the same as that used in program memory.
This means that little or no conversion is required during input and output.

Unformatted direct access data transfer statements are READ and WRITE
statements with a REC= specifier and no format specifier. The formats for
unformatted direct access data transfer statements are as follows:

READ ([UNIT =] scalar_int_expr, &
REC = scalar_int_expr &
[, IOSTAT = scalar_default_int_variable] &
[, ERR = label]) &
[input_item_list]

WRITE ([UNIT =] scalar_int_expr, &
REC = scalar_int_expr &
[, IOSTAT = scalar_default_int_variable] &
[, ERR = label]) &
[output_item_list]

The I/O unit is a scalar integer expression with a nonnegative value, an asterisk
(*), or a character literal constant (external name). The I/O unit forms indicate
that the unit is a formatted sequential access external unit.

Note that the preceding forms are intentionally structured so that the unit
cannot be an internal file, and the FMT=, END=, ADVANCE=, and namelist
specifiers cannot appear.

On input, an attempt to read a record of a file connected for direct access that
has not previously been written causes all entities specified by the input list to
become undefined.

The number of items in the input list must be less than or equal to the number
of values in the input record.

Data is transferred without editing between the current record and the entities
specified by the I/O list. Exactly one record is read or written.

Objects of intrinsic or derived types may be transferred.

For input data transfer, the file must be positioned so that the record read is an
unformatted record.

007–3693–005 33

Fortran Language Reference Manual, Volume 2

For input data transfer, the number of values required by the input list must be
less than or equal to the number of values in the record. Each value in the
record must be of the same type as the corresponding entity in the input list,
except that one complex value may correspond to two real list entities or two
real values may correspond to one complex list entity. The type parameters of
the corresponding entities must be the same; if two real values correspond to
one complex entity or one complex value corresponds to two real entities, all
three must have the same kind type parameter values. If an entity in the input
list is of type character, the character entity must have the same length as the
character value.

The output list must not specify more values than can fit into the record. If the
file is connected for direct access and the values specified by the output list do
not fill the record, the remainder of the record is undefined.

Execution of an unformatted direct access data transfer statement terminates
when one of the following events occurs:

• The input item list or output item list is exhausted.

• An error condition is encountered.

If the file is connected for unformatted direct access I/O, formatted data
transfer is prohibited.

The following are examples of unformatted direct access I/O statements:

READ (7, REC=32, ERR=99) A
READ (IOSTAT=MIS, REC=34, UNIT=10, ERR=99) A, B, D

WRITE (8, REC = N + 2) X, Y

1.2.7 List-directed Data Transfer

List-directed formatting can occur only with files connected for sequential
access; however, the file can be an internal file. The I/O data transfer must be
advancing. The records read and written are formatted.

List-directed data transfer statements are any data transfer statement for which
the format specifier is an asterisk (*). The formats for the list-directed data
transfer statements are as follows:

34 007–3693–005

Input and Output (I/O) Processing [1]

READ ([UNIT =] io_unit, &
[FMT =] * &
[, IOSTAT = scalar_default_int_variable] &
[, END = label] &
[, ERR = label]) &
[input_item_list]

READ * [, input-item-list]

WRITE ([UNIT =] io_unit, &
[FMT =] * &
[, IOSTAT = scalar_default_int_variable] &
[, ERR = label]) &
[output_item_list]

PRINT * [, output_item_list]

WRITE format [, output_item_list]

Note that the preceding forms are intentionally structured so that the
ADVANCE= and namelist specifiers cannot appear.

During the data transfer, data is transferred with editing between the file and
the entities specified by the I/O list. The rules for formatting the data
transferred are discussed in Section 2.13, page 126. The current record and,
possibly, additional records are read or written.

For the data transfer, values can be transmitted to or from objects of intrinsic or
derived types. In the latter case, the transmission is in the form of values of
intrinsic types to or from the components of intrinsic types, which ultimately
comprise these structured objects.

For input data transfer, the file must be positioned so that the record read is a
formatted record or an end-of-file record.

For output data transfer, one or more records will be written. Additional
records are written if the output list specifies more characters for a record than
the record size.

If the file is connected for list-directed data transfer, unformatted data transfer
is prohibited.

Execution of a list-directed data transfer statement terminates when one of the
following conditions occurs:

007–3693–005 35

Fortran Language Reference Manual, Volume 2

• The input item list or the output item list is exhausted.

• On input, an end-of-file is encountered, or a slash (/) is encountered as a
value separator.

• An error condition is encountered.

The following are examples of list-directed input and output statements:

READ (5, *, ERR=99, END=100) A, B, (C(I), I = 1, 40)

READ (FMT=*, UNIT=5) (Y(I), I = 1, KK)
READ *, X, Y

WRITE (*, *) X

PRINT *, " Y = ", Y

1.2.8 Namelist Data Transfer

Namelist I/O uses a group name for a list of variables that are transferred.
Before the group name can be used in the transfer, the list of variables must be
declared in a NAMELIST statement, which is a specification statement. Using
the namelist group name eliminates the need to specify the list of variables in
the sequence for a namelist data transfer. The formatting of the input or output
record is not specified in the program; it is determined by the contents of the
record itself or the items in the namelist group. Conversion to and from
characters is implicit for each variable in the list.

1.2.8.1 Form of a Namelist Group Declaration

All namelist I/O data transfer statements use a namelist group name, which
must be declared. The format of the namelist group name declaration is as
follows:

NAMELIST / namelist_group_name / variable_name [, variable_name] ...
[[,] / namelist_group_name / variable_name [, variable_name] ...]
...

Examples:

NAMELIST /GOAL/ G, K, R

NAMELIST /XLIST/ A, B /YLIST/ Y, YY, YU

36 007–3693–005

Input and Output (I/O) Processing [1]

1.2.8.2 Forms of Namelist I/O Statements

Namelist input and output data transfer statements are READ and WRITE
statements with a namelist specifier. The formats for namelist data transfer
statements are as follows:

READ ([UNIT =] io_unit, &
[NML =] namelist_group_name &
[, IOSTAT = scalar_default_int_variable] &
[, END = label] &
[, ERR = label])

WRITE ([UNIT =] io_unit, &
[NML =] namelist_group_name &
[, IOSTAT = scalar_default_int_variable] &
[, ERR = label])

Note that the preceding forms do not contain the REC=, FMT=, and ADVANCE=
specifiers. There must be no input or output item list.

The I/O unit must not be an internal file.

During namelist data transfer, data is transferred with editing between the file
and the entities specified by the namelist group name. Format control is
initiated and editing is performed as described in Section 2.14, page 133. The
current record and possibly additional records are read or written.

For the data transfer, values can be transmitted to or from objects of intrinsic or
derived types. In the latter case, the transmission is in the form of values of
intrinsic types to or from the components of intrinsic types, which ultimately
comprise these structured objects.

For namelist input data transfer, the file must be positioned so that the record
read is a formatted record or an end-of-file record.

For namelist output data transfer, one or more records will be written.
Additional records are written if the namelist specifies more characters for a
record than the record size; recall that the record size for an external file can be
specified by a RECL= specifier in the OPEN statement.

If an entity appears more than once within the input record for a namelist input
data transfer, the last value is the one that is used.

007–3693–005 37

Fortran Language Reference Manual, Volume 2

For namelist input data transfer, all values following a name= part within the
input record are transmitted before processing any subsequent entity within the
namelist input record.

Execution of a namelist data transfer statement terminates when one of the
following events occurs:

• On input, an end-of-file is encountered, or a slash (/) is encountered as a
value separator.

• On input, the end of the namelist input record is reached and a name-value
subsequence has been processed for every item in the namelist group object
list.

• On output, the namelist group object list is exhausted.

• An error condition is encountered.

If the file is connected for namelist data transfer, unformatted data transfer is
prohibited.

Examples of namelist data transfer statements are as follows:

READ (NML=NAME_LIST_23, IOSTAT=KN, UNIT=5)
WRITE (6, NAME_LIST_23, ERR=99)

1.2.9 Data Transfer on Internal Files

Transferring data from an internal representation to characters or from
characters back to internal representation can be done between two variables in
an executing program. A formatted sequential access input or output statement,
including list-directed formatting, is used for the transfer. The format is used to
interpret the characters. The internal file and the internal unit are the same
character variable.

With this feature, it is possible to read in a string of characters without knowing
its exact format, examine the string, and then interpret it according to its
contents.

Formatted sequential access data transfer statements on an internal file have the
following formats:

38 007–3693–005

Input and Output (I/O) Processing [1]

READ ([UNIT =] char_variable, &
[FMT =] format &
[, IOSTAT = scalar_default_int_variable] &
[, ERR = label] &
[, END = label]) &
[input_item_list]

WRITE ([UNIT =] char_variable, &
[FMT =] format &
[, IOSTAT = scalar_default_int_variable] &
[, ERR = label]) &
[output_item_list]

Examples of data transfer on internal files are:

READ (CHAR_124, 100, IOSTAT=ERR) MARY, X, J, NAME

WRITE (FMT=*, UNIT=CHAR_VAR) X

The unit must be a character variable that is not an array section with a vector
subscript.

Each record of an internal file is a scalar character variable.

If the character variable is an array or an array section, each element of the
array or section is a scalar character variable and thus a record. The order of
the records is array element order. The length, which must be the same for each
record, is the length of one array element.

If the character variable is an array or part (component, element, section, or
substring) of an array that has the ALLOCATABLE attribute, the variable must be
allocated before it is used as an internal file. It must be defined if it is used as
an internal file in a READ statement.

If the character variable is a pointer, it must be associated with a target. The
target must be defined if it is used as an internal file in a READ statement.

During data transfer, data is transferred with editing between the internal file
and the entities specified by the I/O list. Format control is initiated and editing
is performed as described in Chapter 2, page 83. The current record and
possibly additional records are read or written.

For the data transfer, values can be transmitted to or from objects of intrinsic or
derived types. In the latter case, the transmission is in the form of values of
intrinsic types to or from the components of intrinsic types, which ultimately
comprise these structured objects.

007–3693–005 39

Fortran Language Reference Manual, Volume 2

For output data transfer, the output list and format specification must not
specify more characters for a record than the record size. Recall that the record
size for an internal file is the length of the scalar character variable or an
element in a character array that represents the internal file. The format
specification must not be part of the internal file or associated with the internal
file or part of it.

If the number of characters written is less than the length of the record, the
remaining characters are set to blank.

The records in an internal file are defined when the record is written. An I/O
list item must not be in the internal file or associated with the internal file. An
internal file also can be defined by a character assignment statement, or some
other means, or can be used in expressions in other statements. For example, an
array element may be given a value with a WRITE statement and then used in
an expression on the right-hand side of an assignment statement.

To read a record in an internal file, the character variable comprising the record
must be defined.

Before a data transfer occurs, an internal file is positioned at the beginning of
the first record (that is, before the first character, if a scalar, and before the first
character of the first element, if an array). This record becomes the current
record.

Only formatted sequential access, including list-directed formatting, is
permitted on internal files. Namelist formatting is prohibited.

On input, an end-of-file condition occurs when there is an attempt to read
beyond the last record of the internal file.

During input processing, all nonleading blanks in numeric fields are treated as
if they were removed, right justifying all characters in the field (as if a BN edit
descriptor were in effect). In addition, records are blank padded when an end
of record is encountered before all of the input items are read (as if PAD=YES
were in effect).

For list-directed output, character values are not delimited.

File connection, positioning, and inquiry must not be used with internal files.

Execution of a data transfer statement on an internal file terminates when one
of the following events occurs:

• Format processing encounters a data or colon edit descriptor, and there are
no remaining elements in the input item list or output item list.

40 007–3693–005

Input and Output (I/O) Processing [1]

• If list-directed processing is specified, the input item list or the output item
list is exhausted; or on input, a slash (/) is encountered as a value separator.

• On input, an end-of-file condition is encountered.

• An error condition is encountered.

1.2.10 Printing Formatted Records

Sometimes output records are sent to a device that interprets the first character
of the record as a control character. This is usually the case with line printers. If
a formatted record is transferred to such a device, the first character of the
record is not printed, but instead is used to control vertical spacing. The
remaining characters of the record, if any, are printed on one line beginning at
the left margin. This transfer of information is called printing.

The first character of such a record must be of character type and determines
vertical spacing as specified in Table 3.

Table 3. Interpretation of the first character for printing control

Character Vertical spacing before printing

Blank One line (single spacing)

0 Two lines (double spacing)

1 To first line of next page (begin new page)

+ No advance (no spacing - printing on top of previous line)

If there are no characters in the record, a blank line is printed. If the first
character is not a blank, 0, 1, or +, the character is treated as a blank.

The PRINT statement does not imply that printing actually will occur on a
printer, and the WRITE statement does not imply that printing will not occur.
Whether printing occurs depends on the disposition of the file connected to the
unit number.

You can use the asa(1) command to interpret Fortran carriage control characters.

1.2.11 BUFFER IN and BUFFER OUT Statements (EXTENSION)

You can use the BUFFER IN and BUFFER OUT statements to transfer data.

007–3693–005 41

Fortran Language Reference Manual, Volume 2

ANSI/ISO: The Fortran standard does not describe the BUFFER IN or
BUFFER OUT statements.

Data can be transferred while allowing the subsequent execution sequence to
proceed concurrently. This is called asynchronous I/O. Asynchronous I/O may
require the use of nondefault file formats or FFIO layers, as discussed in the
Application Programmer’s I/O Guide. BUFFER IN and BUFFER OUT operations
can proceed concurrently on several units or files.

BUFFER IN is for reading, and BUFFER OUT is for writing. A BUFFER IN or
BUFFER OUT operation includes only data from a single array or a single
common block.

Either statement initiates a data transfer between a specified file or unit (at the
current record) and memory. If the unit or file is completing an operation
initiated by any earlier BUFFER IN or BUFFER OUT statement, the current
BUFFER IN or BUFFER OUT statement suspends the execution sequence until
the earlier operation is complete. When the unit’s preceding operation
terminates, execution of the BUFFER IN or BUFFER OUT statement completes
as if no delay had occurred.

You can use the UNIT(3I) or LENGTH(3I) intrinsic procedures to delay the
execution sequence until the BUFFER IN or BUFFER OUT operation is
complete. These functions can also return information about the I/O operation
at its termination. On UNICOS and UNICOS/mk systems, you can use the
SETPOS(3) library routine with BUFFER IN and BUFFER OUT for random
positioning.

The general format of the BUFFER IN and BUFFER OUT statements follows:

EXT buffer_in_stmt is BUFFER IN (id, mode) (start_loc, end_loc)

EXT buffer_out_stmt is BUFFER OUT (id, mode) (start_loc, end_loc)

EXT io_unit is external_file_unit

or file_name_expr

EXT mode is scalar_integer_expr

EXT start_loc is variable

EXT end_loc is variable

42 007–3693–005

Input and Output (I/O) Processing [1]

In the preceding definition, the variable specified for start_loc and end_loc cannot
be of a derived type if you are performing implicit data conversion. The data
items between start_loc and end_loc must be of the same type.

The BUFFER IN and BUFFER OUT statements are defined as follows.

BUFFER IN (io_unit, mode) (start_loc, end_loc)

BUFFER OUT (io_unit, mode) (start_loc, end_loc)

io_unit An identifier that specifies a unit or a file name.
The I/O unit is a scalar integer expression with a
nonnegative value, an asterisk (*), or a character
literal constant (external name). The I/O unit
forms indicate that the unit is a formatted
sequential access external unit.

mode Mode identifier. This integer expression controls
the record position following the data transfer.
The mode identifier is ignored on files that do not
contain records; only full record processing is
available.

start_loc, end_loc Symbolic names of the variables, arrays, or array
elements that mark the beginning and ending
locations of the BUFFER IN or BUFFER OUT
operation. These names must be either elements
of a single array (or equivalenced to an array) or
members of the same common block. If start_loc
or end_loc is of type character, then both must be
of type character. If start_loc and end_loc are
noncharacter, then the item length of each must
be equal.

For example, if the internal length of the data
type of start_loc is 64 bits, the internal length of
the data type of end_loc must be 64 bits. To
ensure that the size of start_loc and end_loc are the
same, use the same data type for both.

The mode identifier, mode, controls the position of the record at unit io_unit after
the data transfer is complete. The values of mode have the following effects:

007–3693–005 43

Fortran Language Reference Manual, Volume 2

• Specifying mode ≥ 0 causes full record processing. File and record
positioning works as with conventional I/O. The record position following
such a transfer is always between the current record (the record with which
the transfer occurred) and the next record. Specifying BUFFER OUT with
mode ≥ 0 ends a series of partial-record transfers.

• Specifying mode < 0 causes partial record processing. In BUFFER IN, the
record is positioned to transfer its (n +1)th word if the nth word was the last
transferred. In BUFFER OUT, the record is left positioned to receive
additional words.

The amount of data to be transferred is specified in words without regard to
types or formats. However, the data type of end_loc affects the exact ending
location of a transfer. If end_loc is of a multiple-word data type, the location of
the last word in its multiple-word form of representation marks the ending
location of the data transfer.

BUFFER OUT with start_loc = end_loc + 1 and mode ≥ 0 causes a zero-word
transfer and concludes the record being created. Except for terminating a partial
record, start_loc following end_loc in a storage sequence causes a run-time error.

Example:

PROGRAM XFR

DIMENSION A(1000), B(2,10,100), C(500)

...

BUFFER IN(32,0) (A(1),A(1000))
...

DO 9 J=1,100

B(1,1,J) = B(1,1,J) + B(2,1,J)

9 CONTINUE

BUFFER IN(32,0) (C(1),C(500))

BUFFER OUT(22,0) (A(1),A(1000))
...

END

The first BUFFER IN statement in this example initiates a transfer of 1000 words
from unit 32. If asynchronous I/O is available, processing unrelated to that
transfer proceeds. When this is complete, a second BUFFER IN is encountered,
which causes a delay in the execution sequence until the last of the 1000 words
is received. A transfer of another 500 words is initiated from unit 32 as the
execution sequence continues. BUFFER OUT begins a transfer of the first 1000
words to unit 22. In all cases mode = 0, indicating full record processing.

44 007–3693–005

Input and Output (I/O) Processing [1]

1.3 Execution Model for Data Transfer Statements

When a data transfer statement is executed, the following steps are taken:

1. Determine the direction of data transfer. A READ statement indicates that
data is to be transferred from a file to program variables. A WRITE or
PRINT statement indicates that data is to be transferred from program
variables to a file.

2. Identify the unit. The unit identified by a data transfer I/O statement must
be connected to a file when execution of the statement begins. Note that the
file can be preconnected.

3. Establish the format, if one is specified. If specified, the format specifier is
given in the data transfer statement and implies list-directed, namelist, or
formatted data transfer.

4. Position the file prior to transferring the data. The position depends on the
method of access (sequential or direct) and is described in Section 1.3.2,
page 46.

5. Transfer data between the file and the entities specified by the I/O item list
(if any). The list items are processed in the order of the I/O list for all data
transfer I/O statements, except namelist input data transfer statements,
which are processed in the order of the entities specified within the input
records. For namelist output data transfer, the output items are specified by
the namelist when a namelist group name is used.

6. Determine if an error, end-of-record, or end-of-file condition exists. If one of
these conditions occurs, the status of the file and the I/O items is as
specified in Section 1.4, page 47.

7. Position the file after transferring the data. The file position depends on
whether one of the conditions in step 6 above occurred or if the data
transfer was advancing or nonadvancing.

8. Cause the variables specified in the IOSTAT= and SIZE= specifiers, if
present, to become defined. See the description of these specifiers in the
READ and WRITE data transfer statements in Section 1.2.2, page 21.

9. If ERR=, END=, or EOR= specifiers appear in the statement, transfer to the
branch target corresponding to the condition that occurs. If an IOSTAT=
specifier appears in the statement and the label specifier corresponding to
the condition that occurs does not appear in the statement, the next
statement in the execution sequence is executed. Otherwise, the execution

007–3693–005 45

Fortran Language Reference Manual, Volume 2

of the program terminates. See the descriptions of these label specifiers in
Section 1.2.2, page 21.

1.3.1 Data Transfer

Data is transferred between records in the file and entities in the I/O list or
namelist. The list items are processed in the order of the I/O list for all data
transfer I/O statements except namelist data transfer statements. The list items
for a namelist formatted data transfer input statement are processed in the
order of the entities specified within the input records. The list items for a
namelist data transfer output statement are processed in the order in which the
data objects (variables) are specified in the namelist group object list.

The next item to be processed in the input or output item list is the next effective
item, which is used to determine the interaction between the I/O item list and
the format specification.

Zero-sized arrays and implied-DO lists with zero iteration counts are ignored in
determining the next effective item.

Before beginning the I/O processing of a particular list item, the compiler first
evaluates all values needed to determine which entities are specified by the list
item. For example, the subscripts of a variable in an I/O list are evaluated
before any data is transferred.

The value of an item that appears early in an I/O list can affect the processing
of an item that appears later in the list. In the following example, the old value
of N identifies the unit, but the new value of N is the subscript of X:

READ(N) N, X(N)

1.3.2 File Position Prior to Data Transfer

The file position prior to data transfer depends on the method of access:
sequential or direct.

For sequential access on input, if there is a current record, the file position is not
changed; this will be the case if the previous data transfer was nonadvancing.
Otherwise, the file is positioned at the beginning of the next record and this
record becomes the current record. Input must not occur if there is no next
record (there must be an end-of-file record at least) or if there is a current
record and the last data transfer statement accessing the file performed output.

46 007–3693–005

Input and Output (I/O) Processing [1]

If the file contains an end-of-file record, the file must not be positioned after the
end-of-file record prior to data transfer. If you are using the CF90 compiler,
multiple end-of-file records are permitted for some file structures. The MIPSpro
7 Fortran 90 compiler does not allow multiple end-of-file records, but a REWIND
or BACKSPACE statement can be used to reposition the file.

ANSI/ISO: The Fortran standard does not allow files that contain an
end-of-file record to be positioned after the end-of-file record prior to data
transfer.

For sequential access on output, if there is a current record, the file position is
not changed; this will be the case if the previous data transfer was
nonadvancing. Otherwise, a new record is created as the next record of the file;
this new record becomes the last and current record of the file and the file is
positioned at the beginning of this record.

For direct access, the file is positioned at the beginning of the record specified.
This record becomes the current record.

1.3.3 File Position after Data Transfer

If an error condition exists, the file position is indeterminate. If no error
condition exists, but an end-of-file condition exists as a result of reading an
end-of-file record, the file is positioned after the end-of-file record.

If no error condition or end-of-file condition exists, but an end-of-record
condition exists, the file is positioned after the record just read. If no error
condition, end-of-file condition, or end-of-record condition exists, and the data
transfer was a nonadvancing input or output statement, the file position is not
changed. In all other cases, the file is positioned after the record just read or
written, and that record becomes the preceding record.

1.4 Error and Other Conditions in I/O Statements

In step 6 of the execution model in Section 1.3, page 45, the data transfer
statements admit the occurrence of error and other conditions during the
execution of the statement. The OPEN, CLOSE, INQUIRE, and file positioning
statements also admit the occurrence of error conditions.

Whenever an error condition is detected, the variable of the IOSTAT= specifier
is assigned a positive value, if it is present. Also, if the ERR= specifier is
present, the program transfers to the branch target specified by the ERR=
specifier upon completion of the I/O statement.

007–3693–005 47

Fortran Language Reference Manual, Volume 2

In addition, two other conditions might be detected: end-of-file and
end-of-record. For each of these conditions, branches can be provided using the
END= and EOR= specifiers in a READ statement to which the program branches
upon completion of the READ statement. Also, the variable of the IOSTAT=
specifier, if present, is set to a unique negative integer value, indicating which
condition occurred.

An end-of-file condition occurs when either an end-of-file record is encountered
during a sequential READ statement, or an attempt is made to read beyond the
end of an internal file. An end-of-file condition can occur at the beginning of
the execution of an input statement or during the execution of a formatted
READ statement when more than one record is required by the interaction of the
format specification and the input item list.

An end-of-record condition occurs when a nonadvancing input statement
attempts to transfer data from beyond the end of the record.

Two or more conditions can occur during a single execution of an I/O
statement. If one or more of the conditions is an error condition, one of the
error conditions takes precedence, in the sense that the IOSTAT= specifier is
given a positive value designating the particular error condition and the action
taken by the I/O statement is as if only that error condition occurred.

In summary, an error condition can be generated by any of the I/O statements,
and an end-of-file or end-of-record condition can be generated by a READ
statement. The IOSTAT=, END=, EOR=, and ERR= specifiers allow the program
to recover from such conditions rather than terminate execution of the program.
In particular, when any one of these conditions occurs, the CF90 and MIPSpro 7
Fortran 90 compilers take the following actions:

1. If an end-of-record condition occurs and if the connection has been made
with the PAD= specifier of YES, the record is padded, as necessary, with
blanks to satisfy the input item list and the corresponding data edit
descriptor. For the file position, see Section 1.3.3, page 47.

2. Execution of the I/O statement terminates.

3. If an error condition occurs, the position of the file becomes indeterminate;
if an end-of-file condition occurs, the file is positioned after the end-of-file
record; if an end-of-record condition occurs, the file is positioned after the
current record.

48 007–3693–005

Input and Output (I/O) Processing [1]

4. If the statement also contains an IOSTAT= specifier, the variable specified
becomes defined with a nonzero integer value; the value is positive if an
error condition occurs and is negative if either an end-of-file or
end-of-record condition occurs.

5. If the statement is a READ statement with a SIZE= specifier and an
end-of-record condition occurs, then the variable specified by the SIZE=
specifier becomes defined with an integer value equal to the number of
characters read from the input record; blank padding characters inserted
because the PAD= specifier is YES are not counted. For the file position, see
Section 1.3.3, page 47.

6. All implied-DO variables in the I/O statement become undefined; if an error
or end-of-file condition occurs during execution of a READ statement, all list
items become undefined; if an error condition occurs during the execution
of an INQUIRE statement, all specifier variables except the IOSTAT=
variable become undefined.

7. If an END= specifier is present and an end-of-file condition occurs, execution
continues with the statement specified by the label in the END= specifier. If
an EOR= specifier is present and an end-of-record condition occurs,
execution continues with the statement specified by the label in the EOR=
specifier. If an ERR= specifier is present and an error condition occurs,
execution continues with the statement specified by the label in the ERR=
specifier.

If none of the preceding cases applies, but the I/O statement contains an
IOSTAT= specifier, the normal execution sequence is resumed. If there is no
IOSTAT=, END=, EOR=, or ERR= specifier, and an error or other condition
occurs, the program terminates execution.

The following program segment illustrates how to handle end-of-file and error
conditions:

READ (FMT = "(E8.3)", UNIT=3, IOSTAT=IOSS) X

IF (IOSS < 0) THEN

! PERFORM END-OF-FILE PROCESSING ON THE

! FILE CONNECTED TO UNIT 3.
CALL END_PROCESSING

ELSE IF (IOSS > 0) THEN

! PERFORM ERROR PROCESSING

007–3693–005 49

Fortran Language Reference Manual, Volume 2

CALL ERROR_PROCESSING

END IF

The procedure END_PROCESSING is used to handle the case where an end-of-file
condition occurs and the procedure ERROR_PROCESSING is used to handle all
other error conditions, because an end-of-record condition cannot occur.

1.5 OPEN Statement

The OPEN statement establishes a connection between a unit and an external file
and determines the connection properties. In order to perform data transfers
(reading and writing), the file must be connected with an OPEN statement or be
preconnected. It can also be used to change certain properties of the connection
between the file and the unit, to create a file that is preconnected, or create a file
and connect it.

The OPEN statement can appear anywhere in a program, and once executed, the
connection of the unit to the file is valid in the main program or any
subprogram for the remainder of that execution, unless a CLOSE statement
affecting the connection is executed.

If a file is already connected to one unit, it must not be connected to a different
unit.

1.5.1 Connecting a File to a Unit

The OPEN statement connects an external file to a unit. If the file does not exist,
it is created. If a unit is already connected to a file that exists, an OPEN
statement referring to that unit may be executed. If the FILE= specifier is not
included, the unit remains connected to the file. If the FILE= specifier names
the same file, the OPEN statement may change the connection properties. If it
specifies a different file by name, the effect is as if a CLOSE statement without a
STATUS= specifier is executed on that unit and the OPEN statement is then
executed. For information on default values for the STATUS= specifier, see
Section 1.6.1.3, page 62.

1.5.2 Creating a File on a Preconnected Unit

If a unit is preconnected to a file that does not exist, the OPEN statement creates
the file and establishes properties of the connection.

50 007–3693–005

Input and Output (I/O) Processing [1]

1.5.3 Changing the Connection Properties

Execution of an OPEN statement can change the properties of a connection that
is already established. The properties that can be changed are those indicated
by BLANK=, DELIM=, PAD=, ERR=, and IOSTAT= specifiers. If new values for
DELIM=, PAD=, and BLANK= specifiers are specified, these will be used in
subsequent data transfer statements; otherwise, the old ones will be used.
However, the values in ERR= and IOSTAT= specifiers, if present, apply only to
the OPEN statement being executed; after that, the values of these specifiers
have no effect. If no ERR= or IOSTAT= specifier appears in the new OPEN
statement, error conditions will terminate the execution of the program.

1.5.4 Form of the OPEN Statement

The OPEN statement and the connection specifier are defined as follows:

open_stmt is OPEN (connect_spec_list)

connect_spec is [UNIT =] external_file_unit

or IOSTAT = scalar_default_int_variable

or ERR = label

or FILE = file_name_expr

or STATUS = scalar_char_expr

or ACCESS = scalar_char_expr

or FORM = scalar_char_expr

or RECL = scalar_int_expr

or BLANK = scalar_char_expr

or POSITION = scalar_char_expr

or ACTION = scalar_char_expr

or DELIM = scalar_char_expr

or PAD = scalar_char_expr

file_name_expr is scalar_char_expr

A unit specifier is required. If the keyword UNIT is omitted, the scalar integer
expression must be the first item in the list. Note that the form * for the unit

007–3693–005 51

Fortran Language Reference Manual, Volume 2

specifier is not allowed in the OPEN statement. However, in cases where the
default external unit specified by an asterisk also corresponds to a nonnegative
unit specifier (such as unit numbers 5 and 6 on many systems), inquiries about
these default units and connection properties are possible.

A specifier must not appear more than once in an OPEN statement.

The character expression established for many of the specifiers must contain
one of the permitted values from the list of alternative values for each specifier
described in the following section. For example, OLD, NEW, REPLACE, UNKNOWN,
or SCRATCH are permitted for the STATUS= specifier; any other combination of
letters is not permitted. Trailing blanks in any specifier are ignored. The value
specified can contain both uppercase and lowercase letters.

If the last data transfer to a unit connected for sequential access to a particular
file is an output data transfer statement, an OPEN statement for that unit
connecting it to a different file writes an end-of-file record to the original file.

1.5.5 Connection Specifiers

The OPEN statement specifies the connection properties between the file and the
unit, using keyword specifiers, which are described in this section. Table 4
indicates the possible values for the specifiers in an OPEN statement and their
default values when the specifier is omitted.

Table 4. Values for keyword specifier variables in an OPEN statement

Specifier Possible values Default value

ACCESS= DIRECT, SEQUENTIAL SEQUENTIAL

ACTION= READ, WRITE, READWRITE File dependent

BLANK= NULL, ZERO NULL

DELIM= APOSTROPHE, QUOTE, NONE NONE

ERR= Label No default

FILE= Character expression fort. is prepended to the unit number

FORM= FORMATTED FORMATTED for sequential access

UNFORMATTED UNFORMATTED for direct access

SYSTEM (EXTENSION)

52 007–3693–005

Input and Output (I/O) Processing [1]

Specifier Possible values Default value

IOSTAT= Scalar default integer variable No default

PAD= YES, NO YES

POSITION= ASIS, REWIND, APPEND ASIS

RECL= Positive scalar integer expression File dependent

STATUS= OLD, NEW, UNKNOWN, REPLACE,
SCRATCH

UNKNOWN

UNIT= Scalar integer expression No default

ANSI/ISO: The Fortran standard does not describe the FORM=SYSTEM
specifier.

1.5.5.1 UNIT= Specifier

The UNIT= specifier has the following format:

[UNIT=] scalar_int_expr

The value of scalar_int_expr must be nonnegative.

A unit specifier with an external unit is required. If the keyword UNIT is
omitted, the unit specifier must be the first item in the list.

A unit number identifies one and only one external unit in all program units in
a Fortran program.

1.5.5.2 ACCESS= Specifier

The ACCESS= specifier has the following format:

ACCESS= scalar_char_expr

For scalar_char_expr, specify either DIRECT or SEQUENTIAL. DIRECT specifies
the direct access method for data transfer. SEQUENTIAL specifies the sequential
access method for data transfer; SEQUENTIAL is the default.

If the file exists, the method specified must be an allowed access method for the
file.

007–3693–005 53

Fortran Language Reference Manual, Volume 2

If the file is new, the allowed access methods given for the file must include the
one indicated.

If the ACCESS= specifier has the value DIRECT, a RECL= specifier must be
present.

1.5.5.3 ACTION= Specifier

The ACTION= specifier has the following format:

ACTION= scalar_char_expr

Specify one of the following for scalar_char_expr:

Value Function

READ Indicates that WRITE, PRINT, and ENDFILE
statements are prohibited

WRITE Indicates that READ statements are prohibited

READWRITE Indicates that any I/O statement is permitted

The default value depends on the file structure.

If READWRITE is an allowed ACTION= specifier, READ and WRITE must also be
allowed ACTION= specifiers.

For an existing file, the specified action must be an allowed action for the file.

For a new file, the value of the ACTION= specifier must be one of the allowed
actions for the file.

1.5.5.4 BLANK= Specifier

The BLANK= specifier has the following format:

BLANK= scalar_char_expr

For scalar_char_expr, specify either NULL or ZERO. NULL specifies that the
compiler should ignore all blanks in numeric fields; this is the default. ZERO
specifies that the I/O library should interpret all blanks except leading blanks
as zeros.

54 007–3693–005

Input and Output (I/O) Processing [1]

A field of all blanks evaluates to zero regardless of the argument specified to
BLANK=.

The BLANK= specifier may be specified for files connected only for formatted
I/O.

1.5.5.5 DELIM= Specifier

The DELIM= specifier has the following format:

DELIM= scalar_char_expr

Specify one of the following for scalar_char_variable:

Value Function

APOSTROPHE Use the apostrophe as the delimiting character for
character constants written by a list-directed or
namelist-formatted data transfer statement.

QUOTE Use the quotation mark as the delimiting
character for character constants written by a
list-directed or namelist-formatted data transfer
statement.

NONE Use no delimiter to delimit character constants
written by a list-directed or namelist-formatted
data transfer statement. This is the default.

If the DELIM= specifier is APOSTROPHE, any occurrence of an apostrophe within
a character constant will be doubled; if the DELIM= specifier is QUOTE, any
occurrence of a quote within a character constant will be doubled.

The specifier is permitted only for a file connected for formatted I/O; it is
ignored for formatted input.

1.5.5.6 ERR= Specifier

The ERR= specifier has the following format:

ERR= label

007–3693–005 55

Fortran Language Reference Manual, Volume 2

The program branches to the label in the ERR= specifier if an error occurs in the
OPEN statement. The label must be the label of a branch target statement in the
same scoping unit as the OPEN statement.

If an error condition occurs, the position of the file becomes indeterminate.

If an IOSTAT= specifier is present and an error condition occurs, the IOSTAT
variable specified becomes defined with a positive value.

1.5.5.7 FILE= Specifier

The FILE= specifier has the following format:

FILE= scalar_char_expr

For scalar_char_expr, specify the name of the file to be connected. This is called
the file name expression.

Trailing blanks in the file name are ignored.

The rules regarding file name lengths and path name lengths depend upon
your platform, as follows:

• UNICOS and UNICOS/mk systems allow 256 characters for a file name.
This file name can include a directory name and 1023 characters for the full
path name.

• IRIX systems allow 256 characters for a file name. The full path name is
limited to 1023 characters.

Example:

FILENM = ’dir/fnam’

FNUM = ’/subfnum’

OPEN (UNIT = 8, FILE = ’beauty’)
OPEN (UNIT = 9, FILE = FILENM)

OPEN (UNIT = 10, FILE = FNAME//FNUM)

The FILE= specifier must appear if the STATUS= specifier is OLD, NEW, or
REPLACE; the FILE= specifier must not appear if the STATUS= specifier is
SCRATCH.

If the FILE= specifier is omitted and the unit is not already connected to a file,
the STATUS= specifier must have the value SCRATCH and the unit becomes
connected to a file with the unit number appended to the fort. string.

56 007–3693–005

Input and Output (I/O) Processing [1]

1.5.5.8 FORM= Specifier

The FORM= specifier has the following format:

FORM= scalar_char_expr

For scalar_char_expr, specify either FORMATTED, UNFORMATTED, or SYSTEM.
FORMATTED indicates that all records are formatted. UNFORMATTED indicates
that all records are unformatted.

The default value is UNFORMATTED if the file is connected for direct access and
the FORM= specifier is absent.

The default value is FORMATTED if the file is connected for sequential access
and the FORM= specifier is absent.

A file opened with SYSTEM is unformatted and has no record marks.

If the file is new, the allowed forms given for the file must include the one
indicated.

If the file exists, the form specified by the FORM= specifier must be one of the
allowed forms for the file.

ANSI/ISO: The Fortran standard does not define the SYSTEM argument to
the FORM= specifier.

1.5.5.9 IOSTAT= Specifier

The IOSTAT= specifier has the following format:

IOSTAT= scalar_default_int_variable

The I/O library will return an integer value in scalar_default_int_variable. If
scalar_default_int_variable > 0, an error condition occurred. If
scalar_default_int_variable = 0, no error condition occurred. Note that the value
cannot be negative.

The IOSTAT= specifier applies to the execution of the OPEN statement itself.

1.5.5.10 PAD= Specifier

The PAD= specifier has the following format:

007–3693–005 57

Fortran Language Reference Manual, Volume 2

PAD= scalar_char_expr

For scalar_char_expr, specify either YES or NO. YES indicates that the I/O library
should use blank padding when the input item list and format specification
require more data than the record contains; this is the default. NO indicates that
the I/O library requires that the input record contain the data indicated by the
input list and format specification.

The PAD= specifier is permitted only for a file connected for formatted I/O; it is
ignored for formatted output.

If this specifier has the value YES and an end-of-record condition occurs, the
data transfer behaves as if the record were padded with sufficient blanks to
satisfy the input item and the corresponding data edit descriptor.

1.5.5.11 POSITION= Specifier

The POSITION= specifier has the following format:

POSITION= scalar_char_expr

Specify one of the following for scalar_char_expr:

Value Function

ASIS Indicates that the file position is to remain
unchanged for a connected file and is unspecified
for a file that is not connected. ASIS permits an
OPEN statement to change other connection
properties of a file that is already connected
without changing its position. This is the default.

REWIND Indicates that the file is to be positioned at its
initial point.

APPEND Indicates that the file is to be positioned at the
terminal point or just before an end-of-file record,
if there is one.

The file must be connected for sequential access.

If the file is new, it is positioned at its initial point, regardless of the value of the
POSITION= specifier.

58 007–3693–005

Input and Output (I/O) Processing [1]

1.5.5.12 RECL= Specifier

The RECL= specifier has the following format:

RECL= scalar_int_expr

For scalar_int_expr, specify a positive value that specifies either the length of
each direct access record or the maximum length of a sequential access record.

If the RECL= specifier is absent for a file connected for sequential access, the
default value is 1024 characters for a write operation. For sequential access read
operations, the RECL value is automatically increased as the system determines
necessary.

The RECL= specifier must be present for a file connected for direct access.

If the file is connected for formatted I/O, the length is the number of characters.

If the file is connected for unformatted I/O, the length is measured in 8-bit
bytes.

If the file exists, the length of the record specified must be an allowed record
length.

If the file does not exist, the file is created with the specified length as an
allowed length.

1.5.5.13 STATUS= Specifier

The STATUS= specifier has the following format:

STATUS= scalar_char_expr

Specify one of the following for scalar_char_expr:

Value Function

OLD Requires that the file exist.

NEW Requires that the file not exist.

UNKNOWN Indicates that the file has an unknown status.
This is the default.

007–3693–005 59

Fortran Language Reference Manual, Volume 2

REPLACE Indicates that if the file does not exist, the file is
created and given a status of OLD; if the file does
exist, the file is deleted, a new file is created with
the same name, and the file is given a status of
OLD.

SCRATCH Indicates that an unnamed file is to be created
and connected to the specified unit; it is to exist
either until the program terminates or a CLOSE
statement is executed on that unit.

Scratch files must be unnamed; that is, the STATUS= specifier must not be
SCRATCH when a FILE= specifier is present. The term scratch file refers to this
temporary file.

Note that if the STATUS= specifier is REPLACE, the specifier in this statement is
not changed to OLD; only the file status is considered to be OLD when the file is
used in subsequently executed I/O statements, such as a CLOSE statement.

1.6 CLOSE Statement

Executing a CLOSE statement terminates the connection between a file and a
unit. Any connections not closed explicitly by a CLOSE statement are closed by
the operating system when the program terminates, unless an error condition
has terminated the program.

The CLOSE statement is defined as follows:

close_stmt is CLOSE(close_spec_list)

close_spec or STATUS = scalar_char_expr

is [UNIT =] external_file_unit

or IOSTAT = scalar_default_int_variable

or ERR = label

A specifier must not appear more than once in a CLOSE statement.

A CLOSE statement may appear in any program unit in an executing program.

A CLOSE statement may refer to a unit that is not connected or does not exist,
but it has no effect.

60 007–3693–005

Input and Output (I/O) Processing [1]

If the last data transfer to a file connected for sequential access is an output
data transfer statement, a CLOSE statement for a unit connected to this file
writes an end-of-file record to the file.

After a unit has been disconnected by a CLOSE statement, it can be connected
again to the same or a different file. Similarly, after a file has been disconnected
by a CLOSE statement, it can also be connected to the same or a different unit,
provided the file still exists. The following examples show these situations:

CLOSE (ERR=99, UNIT=9)

CLOSE (8, IOSTAT=IR, STATUS="KEEP")

The sections that follow describe the components of the close_spec_list in more
detail.

1.6.1 UNIT= Specifier

The UNIT= specifier has the following format:

[UNIT=] scalar_int_expr

The value of scalar_int_expr must be nonnegative.

A unit specifier is required. If the keyword UNIT is omitted, scalar_int_expr
must be the first item in the list.

A unit number identifies one and only one external unit in all program units in
a Fortran program.

1.6.1.1 ERR= Specifier

The ERR= specifier has the following format:

ERR= label

If an error condition occurs, the position of the file becomes indeterminate.

If an IOSTAT= specifier is present and an error condition occurs, the IOSTAT
variable specified becomes defined with a positive value.

The program branches to the label in the ERR= specifier if an error occurs in the
CLOSE statement. The label must be the label of a branch target statement in
the same scoping unit as the CLOSE statement.

007–3693–005 61

Fortran Language Reference Manual, Volume 2

1.6.1.2 IOSTAT= Specifier

The format of the IOSTAT= specifier is as follows:

IOSTAT= scalar_default_int_variable

The I/O library returns an integer value in scalar_default_int_variable. If
scalar_default_int_variable > 0, an error condition occurred. If
scalar_default_int_variable = 0, no error condition occurred. Note that the value
cannot be negative.

The IOSTAT= specifier applies to the execution of the CLOSE statement itself.

1.6.1.3 STATUS= Specifier

The format of the STATUS= specifier is as follows:

STATUS= scalar_char_expr

For scalar_char_expr, specify either KEEP or DELETE. KEEP indicates that the file
is to continue to exist after closing the file. DELETE indicates that the file will
not exist after closing the file.

If the unit has been opened with a STATUS= specifier of SCRATCH, the default
is DELETE. If the unit has been opened with any other value of the STATUS=
specifier, the default is KEEP.

KEEP must not be specified for a file whose file status is SCRATCH.

If KEEP is specified for a file that does not exist, the file does not exist after the
CLOSE statement is executed.

1.7 Inquiring About Files

An inquiry can be made about a file’s existence, connection, access method, or
other properties. For each property inquired about, a scalar variable of default
kind must be supplied; that variable is given a value that answers the inquiry.
The variable can be tested and optional execution paths can be selected based
on the answer returned. The inquiry specifiers are determined by keywords in
the INQUIRE statement. The only exception is the unit specifier, which, if no
keyword is specified, must be the first specifier. A file inquiry can be made by

62 007–3693–005

Input and Output (I/O) Processing [1]

unit number, file name, or an output item list. When inquiring by an output
item list, an output item list that might be used in an unformatted direct access
output statement must be present.

1.7.1 INQUIRE Statement

There are three kinds of INQUIRE statements: inquiry by unit, by name, and by
an output item list. The first two kinds use the inquire_spec_list form of the
INQUIRE statement. The third kind uses the IOLENGTH form. Inquiry by unit
uses a unit specifier. Inquiry by file uses a file specifier with the keyword
FILE=. These statements are defined as follows:

inquire_stmt is INQUIRE (inquire_spec_list)

or INQUIRE (IOLENGTH = scalar_default_int_variable) output_item_list

inquire_spec is [UNIT =] external_file_unit

or FILE = file_name_expr

or IOSTAT = scalar_default_int_variable

or ERR = label

or EXIST = scalar_default_logical_variable

or OPENED = scalar_default_logical_variable

or NUMBER = scalar_default_int_variable

or NAMED = scalar_default_logical_variable

or NAME = scalar_char_variable

or SEQUENTIAL = scalar_char_variable

or ACCESS = scalar_char_variable

or DIRECT = scalar_char_variable

or FORM = scalar_char_variable

or FORMATTED = scalar_char_variable

or UNFORMATTED = scalar_char_variable

or RECL = scalar_default_int_variable

or NEXTREC = scalar_default_int_variable

007–3693–005 63

Fortran Language Reference Manual, Volume 2

or BLANK = scalar_char_variable

or POSITION = scalar_char_variable

or ACTION = scalar_char_variable

or READ = scalar_char_variable

or WRITE = scalar_char_variable

or READWRITE = scalar_char_variable

or DELIM = scalar_char_variable

or PAD = scalar_char_variable

An INQUIRE statement with an inquire_spec_list must have a unit specifier or a
FILE= specifier, but not both. If the keyword UNIT is omitted, a scalar integer
expression must be the first item in the list and must have a nonnegative value.

No specifier can appear more than once in a given inquiry specifier list.

For an inquiry by an output item list, the output item list must be a valid
output list for an unformatted, direct-access, output statement. The length value
returned in the scalar default integer variable must be a value that is acceptable
when used as the value of the RECL= specifier in an OPEN statement. This value
can be used in a RECL= specifier to connect a file whose records will hold the
data indicated by the output list of the INQUIRE statement.

An INQUIRE statement can be executed before or after a file is connected to a
unit. The specifier values returned by the INQUIRE statement are those current
at the time at which the INQUIRE statement is executed.

A variable appearing in a specifier or any entity associated with it must not
appear in another specifier in the same INQUIRE statement if that variable can
become defined or undefined as a result of executing the INQUIRE statement.
That is, do not try to assign two inquiry results to the same variable.

Except for the NAME= specifier, character values are returned in uppercase.

If an error condition occurs during the execution of an INQUIRE statement, all
the inquiry specifier variables become undefined except the IOSTAT= specifier.
The following are examples of INQUIRE statements:

INQUIRE (9, EXIST = EX)

INQUIRE (FILE = "T123", OPENED = OP, ACCESS = AC)

INQUIRE (IOLENGTH = IOLEN) X, Y, CAT

64 007–3693–005

Input and Output (I/O) Processing [1]

1.7.2 Specifiers for Inquiry by Unit or File Name

This section describes the format and effect of the inquiry specifiers that may
appear in the inquiry by unit and file forms of the INQUIRE statement.

1.7.2.1 UNIT= Specifier

The format of the UNIT= specifier is as follows:

[UNIT=] scalar_int_expr

The scalar_int_expr indicates an external unit. The value of scalar_int_expr must
be nonnegative.

To inquire by unit, a unit specifier must be present, and a file specifier cannot
be present. If the keyword UNIT is omitted, scalar_int_expr must be the first
item in the list.

A unit number identifies one and only one external unit in all program units in
a Fortran program.

The file is the file connected to the unit, if one is connected; otherwise, the file
does not exist.

1.7.2.2 ACCESS= Specifier

The format of the ACCESS= specifier is as follows:

ACCESS= scalar_char_variable

One of the following is returned in scalar_char_variable:

Value Function

SEQUENTIAL Indicates that the file is connected for sequential
access

DIRECT Indicates that the file is connected for direct access

UNDEFINED Indicates that the file is not connected

1.7.2.3 ACTION= Specifier

The format of the ACTION= specifier is as follows:

007–3693–005 65

Fortran Language Reference Manual, Volume 2

ACTION= scalar_char_variable

One of the following is returned in scalar_char_variable:

Value Function

READ Indicates that the file is connected with access
limited to input only

WRITE Indicates that the file is connected with access
limited to output only

READWRITE Indicates that the file is connected for both input
and output

UNDEFINED Indicates that the file is not connected

1.7.2.4 BLANK= Specifier

The format of the BLANK= specifier is as follows:

BLANK= scalar_char_variable

One of the following is returned in scalar_char_variable:

Value Function

NULL Indicates that null blank control is in effect

ZERO Indicates that zero blank control is in effect

UNDEFINED Indicates that the file is not connected for
formatted I/O or the file is not connected at all

See the BLANK= specifier for the OPEN statement in Section 1.5.5, page 52, for
the meaning of null and zero blank control.

1.7.2.5 DELIM= Specifier

The format of the DELIM= specifier is as follows:

DELIM= scalar_char_variable

One of the following is returned in scalar_char_variable:

66 007–3693–005

Input and Output (I/O) Processing [1]

Value Function

APOSTROPHE Indicates that an apostrophe is used as the
delimiter in list-directed and namelist-formatted
output

QUOTE Indicates that the quotation mark is used as the
delimiter in list-directed and namelist-formatted
output

NONE Indicates that there is no delimiting character in
list-directed and namelist-formatted output

UNDEFINED Indicates that the file is not connected or the file
is not connected for formatted I/O

1.7.2.6 DIRECT= Specifier

The format of the DIRECT= specifier is as follows:

DIRECT= scalar_char_variable

One of the following is returned in scalar_char_variable:

Value Function

YES Indicates that direct access is an allowed access
method

NO Indicates that direct access is not an allowed
access method

UNKNOWN Indicates that the system does not know if direct
access is allowed

1.7.2.7 ERR= Specifier

The format of the ERR= specifier is as follows:

ERR= label

The program branches to the label in the ERR= specifier if there is an error in
the execution of the INQUIRE statement itself. The label must be the label of a
branch target statement in the same scoping unit as the INQUIRE statement.

007–3693–005 67

Fortran Language Reference Manual, Volume 2

If an error condition occurs, the position of the file becomes indeterminate.

If an IOSTAT= specifier is present and an error condition occurs, the IOSTAT
variable specified becomes defined with a positive value. All other inquiry
specifier variables become undefined.

1.7.2.8 EXIST= Specifier

The format of the EXIST= specifier is as follows:

EXIST= scalar_default_logical_variable

The system returns either .TRUE. or .FALSE. in scalar_default_logical_variable.
.TRUE. indicates that the file or unit exists. .FALSE. indicates that the file or
unit does not exist.

1.7.2.9 FILE= Specifier

The format of the FILE= specifier is as follows:

FILE= scalar_char_expr

To inquire by file, a file specifier must be present, and a unit specifier cannot be
present.

The value of scalar_char_expr must be an acceptable file name. Trailing blanks
are ignored. Both uppercase and lowercase letters are acceptable. The use of
uppercase and lowercase is significant for file names.

The file name can refer to a file not connected or to one that does not exist.

1.7.2.10 FORM= Specifier

The format of the FORM= specifier is as follows:

FORM= scalar_char_variable

The system returns one of the following in scalar_char_variable:

68 007–3693–005

Input and Output (I/O) Processing [1]

Value Function

FORMATTED Indicates that the file is connected for formatted
I/O

UNFORMATTED Indicates that the file is connected for
unformatted I/O

UNDEFINED Indicates that the file is not connected

1.7.2.11 FORMATTED= Specifier

The format of the FORMATTED= specifier is as follows:

FORMATTED= scalar_char_variable

The system returns one of the following in scalar_char_variable:

Value Function

YES Indicates that formatted I/O is an allowed form
for the file

NO Indicates that formatted I/O is not an allowed
form for the file

UNKNOWN Indicates that the system cannot determine if
formatted I/O is an allowed form for the file

1.7.2.12 IOSTAT= Specifier

The format of the IOSTAT= specifier is as follows:

IOSTAT= scalar_default_int_variable

The I/O library returns an integer value in scalar_default_int_variable. If
scalar_default_int_variable > 0, an error condition occurred. If
scalar_default_int_variable = 0, no error condition occurred. Note that the value
cannot be negative.

The IOSTAT= specifier applies to the execution of the INQUIRE statement itself.

007–3693–005 69

Fortran Language Reference Manual, Volume 2

1.7.2.13 NAME= Specifier

The format of the NAME= specifier is as follows:

NAME= scalar_char_variable

The I/O library returns either a file name or an undefined value in
scalar_char_variable. If the value is a file name, it is the name of the file
connected to the unit, if the file has a name. An undefined value indicates that
either file does not have a name or no file is connected to the unit.

A name different from the one specified in the FILE= specifier on the OPEN
statement may be returned.

1.7.2.14 NAMED= Specifier

The format of the NAMED= specifier is as follows:

NAMED= scalar_default_logical_variable

The system returns either .TRUE. or .FALSE. in scalar_default_logical_variable.
.TRUE. indicates that the file has a name. .FALSE. indicates that the file does
not have a name.

1.7.2.15 NEXTREC= Specifier

The format of the NEXTREC= specifier is as follows:

NEXTREC= scalar_default_int_variable

The system returns one of the following in scalar_default_int_variable:

Value Function

last record number + 1 Indicates the next record number to be read or
written in a file connected for direct access. The
value is one more than the last record number
read or written.

1 Indicates that no records have been processed.

70 007–3693–005

Input and Output (I/O) Processing [1]

undefined value Indicates that the file is not connected for direct
access or the file position is indeterminate
because of a previous error condition.

This inquiry is used for files connected for direct access.

1.7.2.16 NUMBER= Specifier

The format of the NUMBER= specifier is as follows:

NUMBER= scalar_default_int_variable

The system returns either a unit number or –1 in scalar_default_int_variable. A
unit number indicates the number of the unit connected to the file. –1 indicates
that there is no unit connected to the file.

1.7.2.17 OPENED= Specifier

The format of the OPENED= specifier is as follows:

OPENED= scalar_default_logical_variable

The system returns either .TRUE. or .FALSE. in scalar_default_logical_variable.
.TRUE. indicates that the file or unit is connected (that is, opened). .FALSE.
indicates that the file or unit is not connected (that is, not opened).

1.7.2.18 PAD= Specifier

The format of the PAD= specifier is as follows:

PAD= scalar_char_variable

The system returns either NO or YES in scalar_char_variable. NO indicates that the
file or unit is connected with the PAD= specifier set to NO. YES indicates that
either the file or unit is connected with the PAD= specifier set to YES or that the
file or unit is not connected.

1.7.2.19 POSITION= Specifier

The format of the POSITION= specifier is as follows:

007–3693–005 71

Fortran Language Reference Manual, Volume 2

POSITION= scalar_char_variable

The system returns one of the following in scalar_char_variable:

Value Function

REWIND Indicates that the file is connected with its
position at the initial point

APPEND Indicates that the file is connected with its
position at the terminal point

ASIS Indicates that the file is connected without
changing its position

UNDEFINED Indicates that either the file is not connected or it
is connected for direct access

If any repositioning has occurred since the file was connected, the value
returned is ASIS. It is not equal to REWIND unless positioned at the initial
point, and it is not equal to APPEND unless positioned at the terminal point.

1.7.2.20 READ= Specifier

The format of the READ= specifier is as follows:

READ= scalar_char_variable

The system returns one of the following in scalar_char_variable:

Value Function

YES Indicates that READ is one of the allowed actions
for the file

NO Indicates that READ is not one of the allowed
actions for the file

UNKNOWN Indicates that the action for the file cannot be
determined

1.7.2.21 READWRITE= Specifier

The format of the READWRITE= specifier is as follows:

72 007–3693–005

Input and Output (I/O) Processing [1]

READWRITE= scalar_char_variable

The system returns one of the following in scalar_char_variable:

Value Function

YES Indicates that READWRITE is an allowed action
for the file

NO Indicates that READWRITE is not an allowed
action for the file

UNKNOWN Indicates that the action for the file cannot be
determined

1.7.2.22 RECL= Specifier

The format of the RECL= specifier is as follows:

RECL= scalar_default_int_variable

The system returns either a maximum record length or an undefined value in
scalar_default_int_variable. The maximum record length is the record length, if
the file is connected for sequential access, or the length of each record, if the file
is connected for direct access. An undefined value indicates that the file does
not exist.

For a formatted file, the length is the number of characters for all records.

For an unformatted file, the length is in 8-bit bytes.

1.7.2.23 SEQUENTIAL= Specifier

The format of the SEQUENTIAL= specifier is as follows:

SEQUENTIAL= scalar_char_variable

The system returns one of the following in scalar_char_variable:

Value Function

YES Indicates that sequential access is an allowed
access method

007–3693–005 73

Fortran Language Reference Manual, Volume 2

NO Indicates that sequential access is not an allowed
access method

UNKNOWN Indicates that the access is not known

1.7.2.24 UNFORMATTED= Specifier

The format of the UNFORMATTED= specifier is as follows:

UNFORMATTED= scalar_char_variable

The system returns one of the following in scalar_char_variable:

Value Function

YES Indicates that unformatted I/O is an allowed
form for the file

NO Indicates that unformatted I/O is not an allowed
form for the file

UNKNOWN Indicates that the form cannot be determined

1.7.2.25 WRITE= Specifier

The format of the WRITE= specifier is as follows:

WRITE= scalar_char_variable

The system returns one of the following in scalar_char_variable:

Value Function

YES Indicates that WRITE is an allowed action for the
file

NO Indicates that WRITE is not an allowed action for
the file

74 007–3693–005

Input and Output (I/O) Processing [1]

UNKNOWN Indicates that the action cannot be determined

1.7.3 Table of Values Assigned by the INQUIRE Statement

Figure 6, page 76, summarizes the values assigned to the INQUIRE specifier
variables by the execution of an INQUIRE statement.

007–3693–005 75

Fortran Language Reference Manual, Volume 2

Specifier

INQUIRE by file

Unconnected Connected

INQUIRE by unit

Connected Unconnected

ACCESS=

ACTION=

BLANK=

DELIM=

DIRECT=

EXIST=

FORM=

FORMATTED=

IOSTAT=

NAME=

NAMED=

NEXTREC=

NUMBER=

OPENED=

PAD=

POSITION=

READ=

READWRITE=

RECL=

SEQUENTIAL=

UNFORMATTED=

WRITE=

IOLENGTH=

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

UNKNOWN

.TRUE. if file exists, .FALSE.
otherwise

UNDEFINED

UNKNOWN

0 for no error, a positive integer for an error

File name (may
not be same as
FILE= value)

.TRUE.

Undefined

-1

.FALSE.

YES

UNDEFINED

UNKNOWN

UNKNOWN

Undefined

UNKNOWN

UNKNOWN

UNKNOWN

RECL = value for output_item_list

SEQUENTIAL or DIRECT

READ, WRITE, or READWRITE

NULL, ZERO, or UNDEFINED

APOSTROPHE, QUOTE, NONE, or
UNDEFINED

YES, NO, or UNKNOWN

FORMATTED or UNFORMATTED

YES, NO, or UNKNOWN

.TRUE. if file named, .FALSE.
otherwise

File name if named, else undefined

If direct access, next record number;
else undefined

Unit number

.TRUE.

YES or NO

REWIND, APPEND, ASIS, or
UNDEFINED

YES, NO, or UNKNOWN

YES, NO, or UNKNOWN

If direct access, record length; else,
maximum record length

YES, NO, or UNKNOWN

YES, NO, or UNKNOWN

YES, NO, or UNKNOWN

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

UNKNOWN

.TRUE. if unit exists, .FALSE.
otherwise

UNDEFINED

UNKNOWN

Undefined

.FALSE.

Undefined

-1

.FALSE.

YES

UNDEFINED

UNKNOWN

UNKNOWN

Undefined

UNKNOWN

UNKNOWN

UNKNOWN

a11551

Figure 6. Values for specifier variables in an INQUIRE statement

76 007–3693–005

Input and Output (I/O) Processing [1]

1.8 File Positioning Statements

Execution of a data transfer statement usually changes the file position. In
addition, there are three statements whose main purpose is to change the file
position. Changing the position backwards by one record is called backspacing
and is performed by the BACKSPACE statement. Changing the position to the
beginning of the file is called rewinding and is performed by the REWIND
statement. The ENDFILE statement writes an end-of-file record and positions
the file after the end-of-file record. The following are file positioning statements:

BACKSPACE 9

BACKSPACE (UNIT = 10)
BACKSPACE (ERR = 99, UNIT = 8, IOSTAT = STATUS)

REWIND (ERR = 102, UNIT = 10)

ENDFILE (10, IOSTAT = IERR)

ENDFILE (11)

The file positioning statements have common components.

• The external_file_unit can be a unit specifier or an external name. If it is a
unit specifier, it must have a nonnegative value. See Section 1.1.5, page 10,
for information on units and the external_file_unit.

• The position_spec_list is described in Section 1.8.4, page 80.

ANSI/ISO: The Fortran standard does not address using external names as
external_file_unit specifiers.

The following sections describe the BACKSPACE, REWIND, and ENDFILE
statements in more detail.

1.8.1 BACKSPACE Statement

Executing a BACKSPACE statement causes the file to be positioned before the
current record if there is a current record, or before the preceding record if there
is no current record. If there is no current record and no preceding record, the
file position is not changed. If the preceding record is an end-of-file record, the
file becomes positioned before the end-of-file record.

If the last data transfer to a file connected for sequential access was an output
data transfer statement, a BACKSPACE statement on that file writes an
end-of-file record to the file. If there is a preceding record, the BACKSPACE
statement causes the file to become positioned before the record that precedes
the end-of-file record.

007–3693–005 77

Fortran Language Reference Manual, Volume 2

The BACKSPACE statement is defined as follows:

backspace_stmt is BACKSPACE external_file_unit

or BACKSPACE (position_spec_list)

The BACKSPACE statement is used only to position external files.

If the file is already at its initial point, a BACKSPACE statement has no effect. If
the file is connected, but does not exist, backspacing is prohibited. Backspacing
over records written using list-directed or namelist formatting is prohibited.

BACKSPACE ERROR_UNIT ! ERROR_UNIT is an

! integer variable
BACKSPACE (10, & ! STAT is an integer

! variable of

IOSTAT = STAT) ! default type

1.8.2 REWIND Statement

A REWIND statement positions the file at its initial point. Rewinding has no
effect on the file position when the file is already positioned at its initial point.
If a file does not exist, but it is connected, rewinding the file is permitted, but it
has no effect.

If the last data transfer to a file was an output data transfer statement, a
REWIND statement on that file writes an end-of-file record to the file.

The file must be connected for sequential access.

The REWIND statement is defined as follows:

rewind_stmt is REWIND external_file_unit

or REWIND (position_spec_list)

The REWIND statement is used only to position external files.

REWIND INPUT_UNIT ! INPUT_UNIT is an integer
! variable

REWIND (10, ERR = 200) ! 200 is a label of branch

78 007–3693–005

Input and Output (I/O) Processing [1]

! target in this

! scoping unit

1.8.3 ENDFILE Statement

The ENDFILE writes an end-of-file record as the next record and positions the
file after the end-of-file record written. Writing records past the end-of-file
record is prohibited, except for certain file structures.

If you are using the CF90 compiler, you can find more information on file
structures in the Application Programmer’s I/O Guide.

If you are using the MIPSpro 7 Fortran 90 compiler, IRIX record blocking is the
default form for sequential unformatted files. Text files are used for all other
types of Fortran I/O.

ANSI/ISO: The Fortran standard does not address writing past an end-of-file
record.

After executing an ENDFILE statement, it is necessary to execute a BACKSPACE
or REWIND statement to position the file ahead of the end-of-file record before
reading or writing the file. If the file is connected but does not exist, writing an
end-of-file record creates the file.

The file must be connected for sequential access.

The ENDFILE statement is defined as follows:

endfile_stmt is ENDFILE external_file_unit

or ENDFILE (position_spec_list)

The ENDFILE statement is used only to position external files.

! OUTPUT_UNIT is an integer variable.

ENDFILE OUTPUT_UNIT

ENDFILE (10, ERR = 200, IOSTAT = ST)

! 200 is a label of a branch
! target in this scoping unit

! ST is a default scalar integer

! variable

007–3693–005 79

Fortran Language Reference Manual, Volume 2

A file can be connected for sequential and direct access, but not for both
simultaneously. If a file is connected for sequential access and an ENDFILE
statement is executed on the file, only those records written before the ENDFILE
statement is executed are considered to have been written. Consequently, if the
file is subsequently connected for direct access, only those records before the
end-of-file record can be read.

1.8.4 Specifiers for File Position Statements

The position_spec_list is defined as follows (note that no specifier can be
repeated in a position_spec_list):

position_spec is [UNIT =] scalar_int_expr

or IOSTAT = scalar_default_int_variable

or ERR = label

The following sections describe the form and effect of the position specifiers
that can appear in the file positioning statements.

1.8.4.1 UNIT= Specifier

The format of the UNIT= specifier is as follows:

[UNIT=] scalar_int_expr

The scalar_int_expr specifies an external unit. The value of the scalar_int_expr
must be nonnegative.

A unit specifier is required. If the keyword UNIT is omitted, the scalar integer
expression must be the first item in the position specifier list. A unit number
identifies one and only one external unit in all program units in a Fortran
program.

There must be a file connected to the unit, and the unit must be connected for
sequential access.

1.8.4.2 IOSTAT= Specifier

The format of the IOSTAT= specifier is as follows:

80 007–3693–005

Input and Output (I/O) Processing [1]

IOSTAT= scalar_default_int_variable

The I/O library returns an integer value in scalar_default_int_variable. If
scalar_default_int_variable > 0, an error condition occurred. If
scalar_default_int_variable = 0, no error condition occurred. Note that the value
cannot be negative.

The IOSTAT= specifier applies to the execution of the file positioning statement
itself.

1.8.4.3 ERR= Specifier

The format of the ERR= specifier is as follows:

ERR= label

The program branches to the label in the ERR= specifier if there is an error in
the execution of the particular file positioning statement itself. The label must
be the label of a branch target statement in the same scoping unit as the file
positioning statement.

If an error condition occurs, the position of the file becomes indeterminate.

If an IOSTAT= specifier is present and an error condition occurs, the IOSTAT
variable specified becomes defined with a positive value.

1.9 Restrictions on I/O Specifiers, List Items, and Statements

Any function reference appearing in an I/O statement specifier or in an I/O list
must not cause the execution of another I/O statement on the same file or unit;
this practice is also known as recursive I/O. Note that such function references
also must not have side effects that change any object in the same statement.

WRITE (10, FMT = "(10I5)", REC = FCN(I)) &
X(FCN(J)), I, J

The function FCN must not contain an I/O statement using unit 10 and must
not change its argument because I and J are also output list items.

ANSI/ISO: The Fortran standard does not permit any recursive I/O
operations, even those involving different units.

007–3693–005 81

Fortran Language Reference Manual, Volume 2

A unit or file might not have all of the properties (for example, all access
methods or all forms) required for it by execution of certain I/O statements. If
this is the case, such I/O statements must not refer to files or units limited in
this way. For example, if unit 5 cannot support unformatted sequential files, the
following OPEN statement must not appear in a program:

OPEN (UNIT = 5, IOSTAT = IERR, &

ACCESS = "SEQUENTIAL", FORM = "UNFORMATTED")

82 007–3693–005

Input and Output (I/O) Editing [2]

Usually, data is stored in memory as the values of variables in some binary
form. On the other hand, formatted data records in a file consist of characters.
Thus, when data is read from a formatted record, it must be converted from
characters to the internal representation. When data is written to a formatted
record, it must be converted from the internal representation into a string of
characters.

A format specification provides the information necessary to determine how these
conversions are to be performed. The format specification is basically a list of
edit descriptors, of which there are three general types: data edit descriptors,
control edit descriptors, and string edit descriptors. There is a data edit
descriptor for each data value in the input/output (I/O) list of the data transfer
statement. Control edit descriptors specify the spacing and position within a
record, new records, interpretation of blanks, and plus sign suppression. String
edit descriptors transfer strings of characters represented in format
specifications to output records.

The format reference that indicates where to find the format can be a statement
label that identifies a FORMAT statement, or it can be a character expression
giving the format directly. Using either method is called explicit formatting.

There are two other cases where formatting of a different sort applies. These are
list-directed and namelist formatting. Formatting (that is, conversion) occurs
without specifically providing the editing information usually contained in a
format specification. In these cases, the editing or formatting is implicit; that is,
the details about the width of fields, forms of output values, and location of
output fields within the records is determined by the type of each data value in
the I/O list.

This chapter describes the following information:

• The two methods of specifying explicit formatting.

• The three general types of edit descriptors and an algorithm that describes
the correspondence of the data edit descriptors and items in the data item
list of the data transfer statement.

• The two methods of implicit formatting: list-directed and namelist.

Table 5, page 84 and Table 6, page 84, list the control and data edit descriptors
and provide a brief description of each.

007–3693–005 83

Fortran Language Reference Manual, Volume 2

Table 5. Summary of control edit descriptors

Descriptor Description

BN Ignore nonleading blanks in numeric input fields

BZ Treat nonleading blanks in numeric input fields as zeros

S Do not print optional plus sign

SP Print plus sign

SS Do not print plus sign

T Tab to specified position

TL Tab left the specified number of positions

TR Tab right the specified number of positions

X Tab right the specified number of positions

$ or \ Suppress carriage control (EXTENSION)

/ End current record and move to beginning of next record

: Stop format processing if no further input/output list items
exist

P Interpret certain real numbers with a specified scale factor

ANSI/ISO: The Fortran standard does not specify the $ or \ control edit
descriptors.

Table 6. Summary of data edit descriptors

Descriptor Description

A Convert data of type character

B Convert data of type integer to/from a binary base

D Convert data of type real; same as E edit descriptor

E Convert data of type real with an exponent

EN Convert data of type real to engineering notation

ES Convert data of type real to scientific notation

F Convert data of type real with no exponent on output

84 007–3693–005

Input and Output (I/O) Editing [2]

Descriptor Description

G Convert data of all intrinsic types

I Convert data of type integer

L Convert data of type logical

O Convert data of type integer to/from an octal base

Q Return number of characters left in record (EXTENSION)

R Convert data of type Hollerith (EXTENSION)

Z Convert data of type integer to/from a hexadecimal base

ANSI/ISO: The Fortran standard does not specify the Q or R edit descriptors.

Table 7, page 85, Table 8, page 86, Table 9, page 86, and Table 10, page 86, show
the use of the CF90 and MIPSpro 7 Fortran 90 compilers’ edit descriptors with
all intrinsic data types. In these tables:

• NA indicates invalid usage that is not allowed.

• I,O indicates that usage is allowed for both input and output.

• I indicates legal usage for input only.

Table 7. Default compatibility between data types and data edit descriptors

Data types Q Z R O L I G F ES EN E D B A

Integer I I,O I,O I,O NA I,O I,O NA NA NA NA NA I,O I,O

Real NA I,O I,O I,O NA NA I,O I,O I,O I,O I,O I,O I,O I,O

Complex NA I,O I,O I,O NA NA I,O I,O I,O I,O I,O I,O I,O I,O

Logical NA I,O I,O I,O I,O NA I,O NA NA NA NA NA I,O I,O

Character NA NA NA NA NA NA I,O NA NA NA NA NA NA I,O

Table 8 shows the restrictions for the various data types that are allowed when
you set the FORMAT_TYPE_CHECKING environment variable to RELAXED. Not
all data edit descriptors support all data sizes; for example, you cannot
read/write a 16–byte real variable with an I edit descriptor.

007–3693–005 85

Fortran Language Reference Manual, Volume 2

Table 8. RELAXED compatibility between data types and data edit descriptors

Data types Q Z R O L I G F ES EN E D B A

Integer I I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O NA I,O I,O

Real NA I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O

Complex NA I,O I,O I,O NA NA I,O I,O I,O I,O I,O I,O I,O I,O

Logical NA I,O I,O I,O I,O I,O I,O I,O I,O I,O I,O NA I,O I,O

Character NA NA NA NA NA NA I,O NA NA NA NA NA NA I,O

Table 9, page 86, shows the restrictions for the various data types that are
allowed when you set the FORMAT_TYPE_CHECKING environment variable to
STRICT77.

Table 9. STRICT77 compatibility between data types and data edit descriptors

Data types Q Z R O L I G F ES EN E D B A

Integer NA I,O NA I,O NA I,O NA NA NA NA NA NA I,O NA

Real NA NA NA NA NA NA I,O I,O NA NA I,O I,O NA NA

Complex NA NA NA NA NA NA I,O I,O NA NA I,O I,O NA NA

Logical NA NA NA NA I,O NA NA NA NA NA NA NA NA NA

Character NA NA NA NA NA NA NA NA NA NA NA NA NA I,O

Table 10, page 86, shows the restrictions for the various data types that are
allowed when you set the FORMAT_TYPE CHECKING environment variable to
STRICT90 or STRICT95.

Table 10. STRICT90 and STRICT95 compatibility between data types and data edit descriptors

Data types Q Z R O L I G F ES EN E D B A

Integer NA I,O NA I,O NA I,O I,O NA NA NA NA NA I,O NA

Real NA NA NA NA NA NA I,O I,O I,O I,O I,O I,O NA NA

86 007–3693–005

Input and Output (I/O) Editing [2]

Data types Q Z R O L I G F ES EN E D B A

Complex NA NA NA NA NA NA I,O I,O I,O I,O I,O I,O NA NA

Logical NA NA NA NA I,O NA I,O NA NA NA NA NA NA NA

Character NA NA NA NA NA NA I,O NA NA NA NA NA NA I,O

ANSI/ISO: The Fortran standard does not describe the
FORMAT_TYPE_CHECKING environment variable. The
FORMAT_TYPE_CHECKING environment variable is examined only upon
program startup. Changing the value of this environment variable during
program execution has no effect.

2.1 Explicit Formatting

Explicit formatting information can be provided in one of the following ways:

• Contained in a FORMAT statement, as follows:

WRITE (6, 100) LIGHT, AND, HEAVY

100 FORMAT (F10.2, I5, E16.8)

• Given as the value of a character expression, as follows:

WRITE (6, ’(F10.2, I5, E16.8)’) LIGHT, AND, HEAVY

2.1.1 FORMAT Statement

The FORMAT statement is defined as follows:

format_stmt is FORMAT format_specification

format_specification is ([format_item_list])

As the following sample format shows, the FORMAT statement must be labeled.
The label is used in the I/O statement to reference a particular FORMAT
statement.

label FORMAT ([format_item_list])

007–3693–005 87

Fortran Language Reference Manual, Volume 2

Each I/O statement in a program can reference a unique FORMAT statement, or
a FORMAT statement can be used in more than one I/O statement.

2.1.2 Character Expression Format Specifications

A character expression can be used in the I/O statement as a format
specification. The leading part of the character expression must be a valid
format specification including the parentheses; that is, the value of the
expression must be such that the first nonblank character is a left parenthesis,
followed by a list of valid format items, followed by a right parenthesis.

All variables in the character expression must be defined when the I/O
statement is executed.

Characters can appear following the last right parenthesis in the character
expression; they have no effect.

If the expression is a character array, the format is scanned in array element
order. For example, the following format specification is valid (where A is a
character array of length at least 8 and size at least 2):

A(1) = ’(1X,I3,’
A(2) = ’ I7, I9)’

PRINT A, MUTT, AND, JEFF

If the expression is an array element, the format must be entirely contained
within that element.

If the expression is a character variable, it or any part of it must not be
redefined or become undefined during the execution of the I/O statement.

If the expression is a character constant delimited by apostrophes, two
apostrophes must be written to represent each apostrophe in the format
specification. If a format specification contains, in turn, a character constant
delimited by apostrophes, there must be two apostrophes for each of the
apostrophe delimiters, and each apostrophe within the character constant must
be represented by four apostrophes (see the example below). If quotes are used
for the string delimiters and quotes are used within the string, a similar
doubling of the quote marks is required. One way to avoid nested delimiter
problems is to use delimiters different from the characters within the format
specification, if possible. Another way to avoid the problem is to put the
character expression in the I/O list instead of the format specification. This is
shown in the second line of the following example, where A16 is a character
edit descriptor specifying a field width of 16 positions:

88 007–3693–005

Input and Output (I/O) Editing [2]

PRINT ’(’’I can’’’’t hear you’’)’

PRINT "(A16)", "I can’t hear you"

The preceding example can be written without a field width (character count),
as in the following example:

PRINT "(A)", "I can’t hear you"

When a character expression is used as a format specification, errors in the
format specification might not be detected until the program is executed
because the format specification may not be complete or known until the data
transfer statement is executed.

2.2 Format Specifications

Each item in the format item list of a format specification is an edit descriptor,
which can be a data edit descriptor, control edit descriptor, or character string
edit descriptor. Each data list item must have a corresponding data edit
descriptor.

Blanks can be used freely in format specifications without affecting the
interpretation of the edit descriptors, both in the free and fixed source forms.
Named constants are not allowed in format specifications because they would
create ambiguities in the interpretation of the format specifications. For
example, if N12 were a named integer constant with value 15, the engineering
format edit descriptor E N12.4 could be interpreted as the edit descriptor
EN12.4 or E15.4.

The format_item is defined as follows:

format_item is [r] data_edit_desc

or control_edit_desc

or char_string_edit_desc

or [r] (format_item_list)

r is int_literal_constant

In the preceding format, r must be a default integer literal constant and is called
a repeat factor. If a repeat factor is not present, it is as if it were present with the
value of 1.

007–3693–005 89

Fortran Language Reference Manual, Volume 2

r must not have a kind value specified for it. r must be a positive integer.

The comma between edit descriptors can be omitted in the following cases:

• Between the scale factor (P) and the numeric edit descriptors F, E, EN, ES, D,
or G

• Before a new record indicated by a slash when there is no repeat factor
present

• After the slash for a new record

• Before or after the colon edit descriptor

Blanks can be used in the following cases:

• Before the first left parenthesis.

• Anywhere in the format specification. Blanks within a character edit
descriptor are significant. Blanks outside of a character edit descriptor are
not significant.

Edit descriptors can be nested within parentheses, or an edit descriptor can be
preceded by a repeat factor indicating that the edit descriptor is repeated. A
parenthesized list of edit descriptors can also be preceded by a repeat factor;
this indicates that the entire list is to be repeated.

The following examples illustrate many of the edit descriptors that are
described in the following sections:

100 FORMAT (2(5E10.1, I10) / (1X, SP, I7, ES15.2))
110 FORMAT (I10, F14.1, EN10.2)

120 FORMAT (TR4, L4, 15X, A20)

130 FORMAT (’MORE SNOW’)

140 FORMAT (9X, 3A5, 7/ 10X, 3L4)

2.2.1 Data Edit Descriptor Form

Data edit descriptors specify the conversion of values to and from the internal
representation to the character representation in the formatted record of a file.
The data edit descriptors are defined as follows:

90 007–3693–005

Input and Output (I/O) Editing [2]

data_edit_desc is Iw[.m]

or Bw[.m]

or Ow[.m]

or Zw[.m]

or Fw.d

or Ew.d[Ee]

or ENw.d[Ee]

or ESw.d[Ee]

or Gw.d[Ee]

or Lw

or A[w]

or Dw.d

EXT or Dw.dEe

EXT or Rw

EXT or Q

m is int_literal_constant

d is int_literal_constant

e is int_literal_constant

ANSI/ISO: The Fortran standard does not specify the Dw.dEe, Rw, or Q data
edit descriptors.

The w, m, d, and e descriptors must be default integer literal constants. They
have the following meanings:

Descriptor Specification

w The width of the field.

m The least number of digits in the field.

d The number of fractional digits in the field.

e The number of digits in the exponent. Must be a positive number.

The w, m, d, and e descriptors must not have a kind value specified for them.

007–3693–005 91

Fortran Language Reference Manual, Volume 2

The I, B, O, Z, F, E, EN, ES, G, L, A, D, R, and Q edit descriptors indicate the
manner of editing.

The meanings of the data edit descriptors are described in Section 2.5, page 99,
through Section 2.7, page 115.

2.2.2 Control Edit Descriptor Form

Control edit descriptors determine the position, form, layout, and interpretation
of characters transferred to and from formatted records in a file. The control
edit descriptors are defined as follows:

control_edit_desc is position_edit_desc

or [r] /

or :

or sign_edit_desc

or k P

or blank_interp_edit_desc

k is signed_int_literal_constant

position_edit_desc is T n

or TL n

or TR n

or n X

EXT or $

EXT or \

n is int_literal_constant

sign_edit_desc is S

or SP

or SS

blank_interp_edit_desc is BN

or BZ

92 007–3693–005

Input and Output (I/O) Editing [2]

The n and r descriptors must be default integer literal constants. k must be a
signed default integer literal constant. n, k, and r must not have a kind value
specified for them. k, n, and r have the following meanings:

Descriptor Specification

k A scale factor.

n A position in the record to move, relative to the left tab limit, for
descriptor T. Specifies the number of spaces to move for
descriptors X, TR, and TL. n must be positive.

r The repeat factor.

The control edit descriptors T, TL, TR, X, the dollar sign ($), and the backslash
(\) are called position edit descriptors. The control edit descriptors S, SP, and SS
are called sign edit descriptors. The control edit descriptors BN and BZ are called
blank interpretation edit descriptors.

ANSI/ISO: The Fortran standard does not describe the dollar sign ($) or the
backslash (\) as position edit descriptors.

In k P, k is called the scale factor.

T, TL, TR, X, $, slash (/), backslash (\), colon (:), S, SP, SS, P, BN, and BZ
indicate the manner of editing and are described in detail in Section 2.11, page
119.

2.3 Character String Edit Descriptor Form

Character string edit descriptors specify character strings to be transmitted to
the formatted output record of a file. The character string edit descriptors are
defined as follows:

char_string_edit_desc is char_literal_constant

c or int_literal_constant

c must be a default integer literal constant and is a character count. c must not
have a kind value specified for it. c must be positive.

The second form of the character edit descriptor is obsolescent.

007–3693–005 93

Fortran Language Reference Manual, Volume 2

The character string edit descriptors are described in detail in Section 2.12, page
125.

2.4 Formatted Data Transfer

The format specification indicates how data is transferred by READ, WRITE, and
PRINT statements. The data transfer typically involves a conversion of a data
value. The particular conversion depends on the next data input or output
item, along with the current edit descriptor in the format specification.

READ (*, ’(A7, I10, E16.8)’) X, Y, Z
WRITE (*, 100) X, Y, Z

100 FORMAT (A7, I10, E16.3)

An empty format specification ()is restricted to I/O statements with no items in
the I/O data item list or a list of items all of which have zero size. A
zero-length character string requires an A edit descriptor.

The effect on I/O of an empty format specification depends on whether the
data transfer is advancing or nonadvancing, and on whether there is a current
record. The effect is described by the following cases.

When the data transfer is advancing:

• If there is no current record, then:

– On input, skip the next record

– On output, write an empty record

• If there is a current record, then:

– On input, skip to the end of the current record

– On output, terminate the current record

When the data transfer is nonadvancing:

• If there is no current record, then:

– On input, move to the initial point of the next record

– On output, create an empty record and move to its initial point

• If there is a current record, then:

– On input, there is no effect

94 007–3693–005

Input and Output (I/O) Editing [2]

– On output, there is no effect

The following example program segment reads N character strings, each of
length M, from a single record and then advances to the beginning of the next
record:

DO I = 1, N

READ (5, ’(A1)’, ADVANCE=’NO’) &

(CHARS(I)(J:J), J = 1, M)

ENDDO
READ (5, ’()’, ADVANCE = ’YES’)

The data and the edit descriptors are converted in a left-to-right fashion, except
for repeated items, which are repeated until either the data items are exhausted
or the repeat number is reached. A complex data item requires two data edit
descriptors for data items of type real; that is, two of the edit descriptors E, F,
D, ES, EN, or G. The two edit descriptors may be different.

Control edit descriptors and character edit descriptors do not require a
corresponding data item in the list. The effect is directly on the record
transferred. When the data items are completed, no further change is made to
record on output, and no change is made to the position in the file on input.

2.4.1 Parentheses Usage

The effect of parentheses in a format specification depends on the nesting level
of the parentheses.

When the rightmost right parenthesis of a complete format specification is
encountered and there are no more data items, the I/O data transfer terminates.
Remember that the format specification can also be given by a character string
expression. In such a case, the right parenthesis matching the leftmost left
parenthesis can be followed by any characters, including parentheses. None of
these trailing characters are relevant to the rules and restrictions in this chapter.
For example, the following character string can be used as a format specification
in a character string, and the part after the first right parenthesis is ignored:

’(I5,E16.8,A5) (This part is ignored)’

If there are more data items when the rightmost right parenthesis is
encountered, format control continues beginning at the left parenthesis
corresponding to the last preceding right parenthesis in the specification, if
there is one, with an implied slash (/) to cause a new record to begin. If there is
no preceding right parenthesis, the reversion is to the beginning of the format.

007–3693–005 95

Fortran Language Reference Manual, Volume 2

If there is a repeat factor encountered when reverting, the repeat before the
parenthesis is reused.

Reversion does not affect the scale factors, the sign control edit descriptor, or
blank interpretation. These remain in effect for the duration of the format
action. Example:

CHR_FMT = ’(I5, 4(3F10.2, 10X), E20.4)’

In the previous example, if the character string were used in a formatted output
data transfer statement, the first output data item must be an integer. The
remaining items must be of type real (or complex); 13 real values are written on
the first record after the integer, and the next real values are written in each
new record, 13 at a time, until the data items are exhausted. All but the last
record will have 13 real values written, 3 real values using the F10.2 edit
descriptor, 10 blanks, followed by 3 more real values and 10 blanks repeated 4
times in total, followed by a real value using the E20.4 edit descriptor. This
behavior is described in more detail in the next section.

2.4.2 Correspondence between a Data-edit Descriptor and a List Item

The best way to describe how this correspondence is determined is to think of
two markers, one beginning at the first item of the I/O data item list and the
other beginning at the first left parenthesis of the format specification. Before
describing how each marker proceeds through each list, the I/O data item list is
considered to be expanded by writing out each element of an array, each
component of a structure, each part (real and imaginary) of each item of type
complex, and each iteration of each implied-DO list. The expanded item list is
called the effective data item list, and each item in the list is called an effective
item. Note that zero-sized arrays yield no effective items, but zero-length
character objects yield effective items. Also, the format specification is
considered expanded for each repeat factor preceding any data or slash edit
descriptor but not a parenthesized format item list. If the data item list is
nonempty, there must be at least one data edit descriptor in the format
specification. Given the effective data item list and expanded format
specification, the markers proceed as follows:

1. The marker proceeds through the format specification until the first data
edit descriptor or right parenthesis is encountered. Any control edit
descriptor or string edit descriptor encountered before the first data edit
descriptor is encountered is interpreted according to its definition, each
possibly changing the position within the record or the position within the
file, or changing the interpretation of data in the record or conversion of
data to the record.

96 007–3693–005

Input and Output (I/O) Editing [2]

2. If a data edit descriptor is encountered first, the effective data item pointed
to by the marker in the data item list is transferred and converted according
to the data edit descriptor, and the marker in the data item list proceeds to
the next effective data item.

3. If a right parenthesis is encountered and the right parenthesis is not the
outermost one of the format specification, the repeat factor in front of the
matching left parenthesis is reduced by one. If the reduced factor is
nonzero, the marker scans right from this left parenthesis, looking for a
data edit descriptor as above. If the repeat factor becomes zero, the format
specification marker then proceeds right from the right parenthesis, again
looking for a data edit descriptor. If the right parenthesis is the outermost
right parenthesis, the marker reverts to the left parenthesis corresponding to
the last preceding right parenthesis, if there is one; if there is no preceding
right parenthesis, it reverts to the first left parenthesis of the format
specification. Upon reversion, a slash edit descriptor is interpreted
implicitly, and the format marker proceeds right from this left parenthesis,
honoring any repeat factor in front of it.

4. If no effective data item remains when a data edit descriptor is encountered
or when a colon edit descriptor is encountered, the I/O operation
terminates.

To illustrate how this works, consider the following example:

INTEGER A(3)

COMPLEX C

TYPE RATIONAL

INTEGER N, D

END TYPE
TYPE(RATIONAL) R

. . .

WRITE (*, &

"(’A and C appear on line 1, R appears on line 2’ &

/ (1X, 3I5, 2F5.2))") A, C, R

The data item list is first expanded as described above. The expanded data item
list becomes the following:

A(1), A(2), A(3), REAL(C), AIMAG(C), R%N, R%D

The format specification is also expanded and becomes the following:

(’A and C appear on line 1, R appears on line 2’ &

/ (1X, I5, I5, I5, F5.2, F5.2))

007–3693–005 97

Fortran Language Reference Manual, Volume 2

A marker is established in the data item list, which initially points at the item
A(1). A marker is also established in the format specification and initially
points to the first left parenthesis. The marker in the format specification
proceeds right to the first edit descriptor, which is the first I5. In so doing, it
sees the string edit descriptor (which is transferred to the output record), the
slash edit descriptor (which causes the previous record to terminate and to
begin a new record), and the position edit descriptor (which positions the
record at the second character, blank filling the first character). The item A(1)
is then converted according to the I5 specification and the converted value is
transferred to the output record. The marker in the data item list is moved to
A(2). The format specification marker is moved right to the second I5 edit
descriptor, and A(2) is converted and transferred to the output record.
Similarly, A(3), the real part of C, and the imaginary part of C are converted
and transferred to the output record.

At this point, the data item list marker is pointing at R%N, and the format
specification marker begins scanning after the second F5.2 edit descriptor
looking for the next edit descriptor. The first right parenthesis is encountered
and the scan reverts back to the corresponding left parenthesis. The repeat
factor in front of this parenthesis is 1 by default and is reduced by 1 to 0. The
marker in the format specification proceeds right from the first right parenthesis,
encountering the outermost right parenthesis and then reverts to the left
parenthesis before the edit descriptor 1X. As a result, an implicit slash edit
descriptor is interpreted, causing the previous output record to be completed
and a new record to be started. The format specification marker scans right
looking for a data edit descriptor, which is the first I5. In the process of the
scan right, the position edit descriptor is interpreted, which positions the file at
the second character of the next record (and blank fills the skipped character).

Finally, the N and D components of R are converted and transferred to the
output record, using the first two I5 edit descriptors. The data item list marker
finds no further items, so the output operation terminates.

The following is an example of writing a zero-sized array and zero-length
character string using formatted output data transfer:

REAL A(10)

CHARACTER(4) CHR

. . .

WRITE(6, ’()’) A(1:0)

WRITE(6, ’(A4)’) CHR(4:3)

An empty format specification is allowed for the first WRITE statement, because
the array to be printed is a zero-sized array section. The format specification in

98 007–3693–005

Input and Output (I/O) Editing [2]

the second WRITE statement is required to have at least one A edit descriptor
because the effective data item is a zero-length character string, not a zero-sized
array. In the first case, an empty record is written, and in the second case, a
record consisting of four blank characters is written.

2.5 File Positioning by Format Control

Assume that there is a current record being processed. After each data edit
descriptor is used, the file position within that record is following the last
character read or written by the particular edit descriptor. On output, after a
string edit descriptor is used, the file is positioned within that record following
the last character written. (See the description of the control edit descriptors T,
TL, TR, X, backslash (\), and the dollar sign ($) for any special positioning
within the current record; see the description of the slash edit descriptor for
special positioning within the file.)

The remaining control edit descriptors do not affect the position within a record
or within the file; they affect only the interpretation of the input characters or
the form of the output character string or how subsequent edit descriptors are
interpreted. The interpretation of the edit descriptors is not affected by whether
the operation is an advancing or nonadvancing I/O operation.

2.6 Numeric Editing

There following edit descriptors cover numeric editing: B, D, E, EN, ES, F, G, I,
O, and Z. The following rules apply to all of them:

On input:

• Leading blanks are never significant.

• Plus signs can be omitted in the input data.

• A blank field is considered to be zero, regardless of the BN edit descriptor or
the BLANK= specifier in effect.

• Within a field, blanks are interpreted in a manner that depends on the
BLANK= specifier default for preconnected files, the BLANK= specifier
provided in an OPEN statement for the unit, or if there is a BN or BZ blank
edit descriptor in effect.

007–3693–005 99

Fortran Language Reference Manual, Volume 2

• In numeric fields that have a decimal point and correspond to F, E, EN, ES,
D, or G edit descriptors, the decimal point in the input field overrides the
placement of the decimal point specified by the edit descriptor specification.

• Data input is permitted to have more digits of significance than can be used
to represent a number.

• The lowercase exponent letters e and d are equivalent to the corresponding
uppercase exponent letters.

On output:

• A positive or zero value may have a plus sign, depending on the sign edit
descriptors used.

• Negative floating-point values have a negative sign on systems that support
IEEE floating-point arithmetic. Negative values on other systems have a
negative sign unless the printed value would be zero.

For example, suppose variable SMALL has the value -0.000314. On output,
the characters transferred to output unit 6 by the following statements will
contain a negative sign on systems that support IEEE floating-point
arithmetic:

WRITE(6,10) SMALL

10 FORMAT(F5.2)

The field will be as follows on systems that support IEEE floating-point
arithmetic:

-0.00

On other systems, the field will not contain a negative sign, and the output
will be:

b0.00

On UNICOS and UNICOS/mk systems that support IEEE floating-point
arithmetic, the field contains a negative sign. On IRIX systems, the field
does not contain a negative sign.

The following assign(1) command option can be specified for one or more
external files to control the writing of the negative sign:

assign -Z ON | OFF

Example 1: The following assign(1) command specifies that a negative
sign should not be written:

100 007–3693–005

Input and Output (I/O) Editing [2]

assign -Z ON u:9

Example 2: The following assign(1) command specifies that a negative
sign should be written:

assign -Z OFF u:9

For more information, see assign(1).

• The number is right justified in the field. Leading blanks may be inserted.

• If the number or the exponent is too large for the field width specified in the
edit descriptor, the entire output field is filled with asterisks.

• Asterisks are not produced when the optional characters can be omitted and
the output character string fits in the output field.

!
Caution: Certain machine instructions and compiler optimizations on IRIX
systems can return an unexpected -0.0 if the operations involve the value
0.0.

2.6.1 Integer Editing

The Fortran standard states that the I/O list item corresponding to an integer
edit descriptor must be of type integer, except for the G edit descriptor. The
integer edit descriptors are as follows:

I[w[.m]]

B[w[.m]]

O[w[.m]]

Z[w[.m]]

G[w.d[Ee]]

w, m, d, and e have the following meanings:

Descriptor Specification

w The width of the field

m The minimum number of digits in the field

007–3693–005 101

Fortran Language Reference Manual, Volume 2

d The number of fractional digits in the field

e The number of digits in the exponent

For both input and output:

• The value of m must not exceed the value of w unless w is zero.

• For an integer I/O list item, the edit descriptor Gw.d[Ee] follows the same
rules as the Iw edit descriptor for the given value of w.

ANSI/ISO: The Fortran standard does not allow w to be zero for the G edit
descriptor, nor does it permit w to be omitted for the I, B, O, Z, or G edit
descriptors.

On input:

• m has no effect on an input field.

• For the I edit descriptor, the character string in the file must be an
optionally signed integer constant, but it cannot have an underscore or a
kind parameter value.

• For the B, O, or Z edit descriptors, the character string must be a string of
blanks, a sign, and digits of binary, octal, or hexadecimal base, respectively.
For example, the character string corresponding to a B edit descriptor must
not contain digits 2 through 9. The character string corresponding to an O
edit descriptor must not contain the digits 8 or 9. The character string
corresponding to a Z edit descriptor may consist of the digits 0 through 9,
the letters A through F, or the letters a through f.

ANSI/ISO: The Fortran standard does not allow signed binary, octal, or
hexadecimal values as input.

On output:

• If m is not present, each edit descriptor behaves as if it were present with
the value 1.

• For the Iw.m edit descriptor with m positive, the field is w characters wide
and consists of zero or more leading blanks, followed by an optional sign,
followed by an unsigned integer consisting of at least m digits. Leading
zeros pad an integer field until there are m digits.

• For the Bw.0, Iw.0, Ow.0, and Zw.0 edit descriptors, if the output list
item has the value 0, the field consists entirely of blanks.

102 007–3693–005

Input and Output (I/O) Editing [2]

• For the B0.0, I0.0, O0.0, and Z0.0 edit descriptors, if the output list item
has the value 0, the field consists of exactly one blank.

• If m is not present and the value of the output list item is nonzero, the first
digit will be nonzero; otherwise, the field consists of only one 0 digit with
no sign character. Negative zero is never produced.

• For the B, O, or Z edit descriptors, the rules for forming the output field for
the values w and m are the same as for the I edit descriptor except that the
signed integer must consist of digits from the binary, octal, or hexadecimal
base, respectively. A negative value is indicated in the encoding of the digits
written; that is, a minus sign is never written.

If the field width (w) is zero or is omitted, a default field width is used. Table
11, page 103, describes the default widths. The default field width is equal to
the number of digits (binary, octal, decimal, or hexadecimal) necessary to
display the largest possible value plus one for a leading blank and (I and G
only) one for an optional sign.

Table 11. Default field widths for integer formats

Edit Kind (or data size in bytes):

Descriptor 1 2 4 8 16

B 9 17 33 65 130

I 5 7 12 21 NA

G (for integer) 5 7 12 21 NA

O 5 8 13 24 45

Z 3 5 9 17 33

If the minimum digits (m) field is specified, the default field width is increased,
if necessary, to allow for that minimum width.

Note: Not all data sizes are supported on all architectures. UNICOS systems
do not support 1–, 2–, or 4–byte data types. UNICOS/mk systems do not
support 1– or 2–byte data types. 16–byte data are printed with a space
separating the two halves.

007–3693–005 103

Fortran Language Reference Manual, Volume 2

2.6.2 Real Editing

The F, E, EN, ES, and D edit descriptors specify editing for real and complex
I/O list items. The G edit descriptor may also be used for real and complex
items. Two such edit descriptors are required for each complex data item.

The forms of the edit descriptors for real values are as follows:

F[w.d]

E[w.d[Ee]]

EN[w.d[Ee]]

ES[w.d[Ee]]

D[w.d]

G[w.d[Ee]]

D[w.dEe] (EXTENSION)

ANSI/ISO: The Fortran standard does not describe the D[w.dEe] edit
descriptor.

w, d, and e have the following meanings:

Descriptor Specification

w The width of the field

d The number of fractional digits in the field

e The number of digits in the exponent

If the field width, w, is zero or is omitted, the default field width is equal to the
number of fractional digits plus the number of exponent digits plus six. This is
the maximum number of additional characters added to the representation, and
it includes a leading blank, an optional sign, an optional leading zero, a decimal
point, the E exponent designator, and the exponent sign.

As Table 12, page 105, shows, the default number of fractional and exponent
digits in the field depends on the data size and representation used.

104 007–3693–005

Input and Output (I/O) Editing [2]

Table 12. Default fractional and exponent digits

Data size and representation w d e

4-byte (32-bit) IEEE 17 9 2

8-byte (64-bit) IEEE 26 17 3

8-byte (64-bit) Cray floating-point 26 16 4

16-byte (128-bit) IEEE 46 36 4

16-byte (128-bit) double double IEEE 43 34 3

16-byte (128-bit) Cray floating-point 40 30 4

The default values of d and e shown in Table 12, page 105, ensure that
floating-point numbers can be read and written with no loss of precision and
that the exponent fields are large enough for the largest possible exponents.
Note that for F edit descriptors, an exponent is never printed, and the field
width is not automatically adjusted for variables of larger magnitude.

Thus, a format specification of E, when used with a 4–byte (32–bit) IEEE
floating-point value, is interpreted as E17.9E2.

The size of the fractional and exponent fields can, however, still be selected. For
example, a format specification of E0.3E2 is interpreted as E11.3E2.

The default size of the fractional field can also be modified using the
ZERO_WIDTH_PRECISION environment variable. This environment variable
accepts the following values:

Value Action

PRECISION Sets the default fractional field width to the
decimal precision of a number in the real number
model as described on the MODELS(3I) man page.

HALF Sets the default fractional field width to half of
the maximum precision shown in Table 12, page
105. Specifically, (d + 1)/2.

ANSI/ISO: The Fortran standard does not describe the
ZERO_WIDTH_PRECISION environment variable. This environment variable
is examined only upon program startup. Changing the value of the
environment variable during program execution has no effect.

007–3693–005 105

Fortran Language Reference Manual, Volume 2

2.6.2.1 F Editing

The Fw.d editing converts to or from a string occupying w positions.

For both input and output:

• d must not exceed w unless w is zero.

• The value in the input field or the value transferred to the output field may
be signed.

ANSI/ISO: The Fortran standard does not allow w to be zero or omitted for
the D, E, EN, ES, or G edit descriptors.

On input:

• d specifies the number of decimal places in the input value if a decimal
point is not present in the input field.

• The input field may be one of the following:

– A signed integer or real literal constant but without an underscore and
kind parameter value

– A signed digit string followed by a sign followed by an unsigned digit
string treated as an exponent

– A signed digit string containing a decimal point followed by a sign
followed by an unsigned digit string treated as an exponent

Blanks may be freely inserted anywhere in the input field.

• If the input field contains a decimal point, the value of d has no effect.

• If there is no decimal point, a decimal point is inserted in front of the
rightmost d digits of the nonexponent part, treating blanks as 0 digits or as
if they were not present, according to the BLANK= specifier or the BZ or BN
edit descriptor currently in effect.

Consider the format specification F5.1. The following input data item is
treated as the real number 19.9, if the BLANK= specifier is NULL or the BN
edit descriptor is in effect, and is treated as the real number 1009.9 if the
BLANK= specifier is ZERO or the BZ edit descriptor is in effect:

1bb99

• There might be more digits in the number than the internal representation
can contain.

106 007–3693–005

Input and Output (I/O) Editing [2]

• The number can contain an E or D indicating an exponent value; a field with
a D exponent letter is processed identically to the same field with an E
exponent letter. If there is no exponent field on input, the assumption is that
the character string is followed by an exponent with the value -k where k is
the scale factor established by a previous kP edit descriptor.

On output:

• d specifies the number of digits after the decimal point.

• The form of the output field consists of w positions comprised of leading
blanks, if necessary, and an optionally signed real constant with a decimal
point, rounded to d digits after the decimal point but with no exponent,
underscore, or kind parameter value.

• Leading zeros are not written unless the number is less than 1.

• At least one zero is written if no other digits would appear.

• The scale factor has no effect on F editing on output.

• Negative zero is produced on UNICOS and UNICOS/mk systems that
support IEEE floating-point arithmetic, but it is not produced on other
systems. For more information on negative zero, see Section 2.6, page 99.

• An exponent is not printed, so large-magnitude variables require
correspondingly larger field widths. If a variable is too large for the field
width, a field of asterisks (*) is printed.

Example:

READ (5, 100) X, Y
100 FORMAT (F10.2, F10.3)

Assume the following input field:

bbbb6.42181234567890

The values assigned to X and Y are 6.4218 and 1234567.89, respectively. The
value of d is ignored for X because the input field contains a decimal point.

2.6.2.2 E and D Editing

The Ew.d[Ee] , Dw.dEe, and Dw.d edit descriptors convert to and from a string
occupying w positions. For the edit descriptors Ew.d[Ee], Dw.dEe, and Dw.d,
the field representing the floating point number contains w characters, including
an exponent.

007–3693–005 107

Fortran Language Reference Manual, Volume 2

For both input and output:

• w is the field width, d is the number of places after the decimal, and e is the
exponent width.

• d and e must not exceed w unless w is zero.

On input:

• The forms Ew.d[Ee], Dw.dEe, and Dw.d are the same as for Fw.d editing,
where either E or D in the input data record may indicate an exponent. e has
no effect on input.

On output:

• The form of the output field for a scale factor of zero is as follows:

[+ | -] [0] . x1x2 ... xd exp

The [+ | -] notation signifies a plus or a minus.

x1 x2... xd are the d most significant digits of the data value after rounding.

exp is a decimal exponent having one of the forms specified in Table 13,
where each zi is a decimal digit.

Table 13. Forms for the exponent exp in E and D editing

Edit descriptor Absolute value of exponent Form of exponent

E[w.d] | exp | .LE. 99 E [+ | -] z1z2

99 < | exp | .LE. 999 [+ | -]z1z2z3

999 < | exp | .LE. 2466 [+ | -]z1z2z3z4

Ew.dEe | exp | .LE. 10e – 1 E[+ | -]z1z2. . . ze

Dw.d | exp | .LE. 99 E[+ | -]z1z2

99 < | exp | .LE. 999 [+ | -]z1z2z3

999 < | exp | .LE. 2466 [+ | -]z1z2z3z4

Dw.dEe | exp | .LE. 10e – 1 E[+ | -]z1z2. . . ze

ANSI/ISO: The Fortran standard restricts the use of Ew.d and Dw.d to an
exponent less than or equal to 999. The Ew.dEe form must be used.

108 007–3693–005

Input and Output (I/O) Editing [2]

• The sign in the exponent is always written.

• Plus is used for zero exponents.

• A scale factor kP can be used to specify the number of digits to the left of
the decimal point, with the exponent adjusted accordingly; that is, the scale
factor k controls the decimal normalization. If -d < k .LE. 0, the output
field contains the decimal point, exactly | k | leading zeros, and d - | k
| significant digits. If 0 < k < d < + 2, the output field contains exactly k
significant digits to the left of the decimal point and d - k + 1 significant
digits to the right of the decimal point. Other values of k are not permitted;
that is, those values of k that will produce no digits to the left of the decimal
point or specify fewer than zero digits to the right of the decimal point. The
output field will contain w asterisks.

• The form of zero on output always contains a decimal point, d zero digits,
and an exponent of 4 characters whose digits are zero.

Consider the following example:

WRITE (6, 105) Y, Z

105 FORMAT (E15.3,4PD15.3)

If the values of Y and Z are -21.2 and 26542.1232 respectively, the output
record produced is as follows:

bbbbb-0.212E+02bbb2654.212E+01

2.6.2.3 Engineering Edit Descriptor EN

The EN edit descriptor converts to or from a string using engineering notation
for a value occupying w positions.

On input:

• The form ENw.d[Ee] is the same as for Fw.d editing.

On output:

• The output of the number is in the form of engineering notation, where the
exponent is divisible by 3 and the absolute value of the significand is 1000 >
| significand | .GE. 1. This is the same form as the E edit descriptor, except
for these exponent and significand differences.

WRITE (6, 110) B

110 FORMAT (EN13.3)

007–3693–005 109

Fortran Language Reference Manual, Volume 2

If the value of B is 0.212, the output record produced is as follows:

bb212.000E-03

• The form of zero is the same as noted for the E edit descriptor except that
there is exactly one zero digit before the decimal point.

• The form of the output field is as follows:

[+ | -] yyy.x1x2 ... xd exp

The [+ | -] notation signifies a plus or a minus.

yyy are the 1 to 3 decimal digits representing the most significant digits of the
value of the data after rounding (yyy is an integer such that 1 .LE. yyy < 1000 or,
if the output value is zero, yyy = 0).

x1x2 ... xd exp are the d next most significant digits of the value of the data after
rounding. If the output value is zero, the xi are all 0.

exp is a decimal integer, divisible by 3, representing the exponent and must
have one of the forms shown in Table 14, where each zi is a decimal digit.

Table 14. Forms for the exponent exp in EN editing

Edit descriptor Absolute value of exponent Form of exponent

ENw.d | exp | .LE. 99 E[+ | -]z1z2

99 < | exp | < 999 [+ | -]z1z2z3

999 < | exp | .LE. 2466 [+ | -]z1z2z3z4

ENw.dEe | exp | .LE. 10 e – 1 E[+ | -]z1z2. . . ze

• The sign in the exponent is always written. A plus sign is written if the
exponent value is zero. The form ENw.dEe must be used with a sufficiently
large value of e if |exp| > 999.

Internal value Output field using SS, EN12.3

6.421 6.421E+00

–.5 –500.000E–03

.00217 2.170E–03

110 007–3693–005

Input and Output (I/O) Editing [2]

4721.3 4.721E+03

2.6.2.4 Scientific Edit Descriptor ES

The scientific edit descriptor ES converts to or from a string using scientific
notation for a value occupying w positions.

On input:

• The form ESw.d[Ee] is the same as for Fw.d editing.

On output:

• The output of the number is in the form of scientific notation, where the
absolute value of the significand is 10 > | significand | .GE. 1. This is the
same form as the E edit descriptor, except for the significand difference.
Example:

WRITE (6, 110) B

110 FORMAT (ES12.3)

If the value of B is 0.12345678, the output record produced is as follows:

bbb1.235E-01

• The form of zero is the same as noted for the EN edit descriptor.

• The form of the output field is as follows:

[+ | -] y.x1x2 ... xd exp

The [+ | -] notation signifies a plus or a minus.

y is a decimal digit representing the most significant digit of the value of the
data after rounding (y is an integer such that 1 .LE. y < 10 or, if the
output value is zero, y = 0).

x1x2 ... xd are the d next most significant decimal digits of the value of the
data after rounding. If the output value is zero, the xi are all 0.

exp is a decimal exponent of one of the forms, given in Table 15, where each
zi is a decimal digit.

007–3693–005 111

Fortran Language Reference Manual, Volume 2

Table 15. Forms for the exponent exp in ES editing

Edit descriptor Absolute value of exponent Form of exponent

ESw.d | exp | .LE. 99 E[+ | -]z1z2

99 < | exp | .LE. 999 [+ | -]z1z2z3

999 < | exp | .LE. 2466 [+ | -]z1z2z3z4

ESw.dEe | exp | .LE. 10e – 1 E[+ | -]z1z2. . . ze

• The sign in the exponent is always written.

• A plus sign is written if the exponent value is zero.

• The form ESw.dEe must be used with a sufficiently large value of e if |exp|
> 999.

Internal value Output field using SS, ES12.3

6.421 6.421E+00

–.5 –5.000E–01

.00217 2.170E–03

4721.3 4.721E+03

2.6.2.5 Complex Editing

Complex editing follows the rules for numeric editing. Editing of complex
numbers requires two real edit descriptors, the first one for the real part and the
second one for the imaginary part. Different edit descriptors may be used for
the two parts. Control and character string edit descriptors can be inserted
between the edit descriptors for the real and imaginary parts. Example:

COMPLEX CM(2)

READ(5, "(4E7.2)") (CM(I), I = 1, 2)

Assume that the input record is as follows:

bb55511bbb2146bbbb100bbbb621

The values assigned to CM(1) and CM(2) are 555.11 + 21.46i and 1.0 +
6.21i, respectively.

112 007–3693–005

Input and Output (I/O) Editing [2]

2.6.2.6 Generalized Editing of Real Data

Gw.d[Ee] converts to or from a string using generalized editing. The form for
generalized editing is determined by the magnitude of the value of the number.

On input:

• The Gw.d[Ee] edit descriptor is the same as the Fw.d edit descriptor.

On output:

• Assume that N is the magnitude of a number to be printed using a G edit
descriptor. If N = 0 and d is not zero, or if N is approximately between 0.1
and 10 Table 16, page 114, specifies the form of the output, where n is 4 for
Gw.d and n is e + 2 for Gw.dEe. A kP scale factor has no effect.

• If N is outside this range, or if N is identically zero and d is zero, output
editing with the edit descriptor kPGw.d [Ee] is the same as that with
kPEw.d[Ee] .

007–3693–005 113

Fortran Language Reference Manual, Volume 2

Table 16. The form of the output using a G edit descriptor for a number of magnitude N

Magnitude of data1 s t

N = 0 w – n2 d – 1

0.1 – 0.5 x 10-d-1 .LE. N < 1 – 0.5 x 10-d w – n d

1 – 0.5 x 10-d .LE. N < 10 – 0.5 x 10-d+1 w – n d – 1

10 – 0.5 x 10-d+1 .LE. N < 100 – 0.5 x 10-d+2 w – n d – 2

... ...

10d-2 – 0.5 x 10-2 .LE. N < 10d–1 – 0.5 x 10-1 w – n 1

10d-1 – 0.5 x 10-1 .LE. N < 10d – 0.5 w – n 0

Example 1:

PRINT "(G10.1)", 8.76E1

The preceding statement produces the following output:

bbb0.9E+02

The magnitude of N is outside the range for an F edit descriptor; it yields the
format E10.1.

Example 2:

PRINT "(G10.3)", 8.76E1

The preceding statement produces the following output:

bb87.6bbbb

With the G10.3 edit descriptor, n is 4, and the format reduces to F6.1,4X (the
fourth line in Table 16, page 114) because of the magnitude of the number.

Example 3:

PRINT "(G10.3E1)", 8.76E1

1 Assume that the equivalent conversion for all is Fs.t, nX, where X indicates blanks.
2 n is 4 for Gw.d edit descriptors, and n is e + 2 for Gw.dEe edit descriptors.

114 007–3693–005

Input and Output (I/O) Editing [2]

The preceding statement produces the following output because n is 3 (=1+2),
and the format reduces to F7.1,3X:

bbb87.6bbbb

2.7 Logical Editing

The logical edit descriptors convert to or from a string representing a logical
value that is true or false. The edit descriptors used for logical editing are as
follows:

L[w]

G[w.d[Ee]]

w, d, and e have the following meanings:

Descriptor Specification

w The width of the field.

d The number of fractional digits in the field. d is ignored when G
is used for logical data.

e The number of digits in the exponent. e is ignored when G is
used for logical data.

For both input and output:

• Generalized logical editing Gw.d[Ee] follows the rules for Lw editing.

On input:

• The input field for a logical value consists of zero or more blanks, followed
by an optional period, followed by T or F, for a true or false value
respectively, followed by zero or more characters.

• The T or F and any following letters can be in lowercase. They are treated
the same as the uppercase letters.

For example, if you use the following READ statement:

READ(5, "(2L8)") L1, L2

to read the following input record:

007–3693–005 115

Fortran Language Reference Manual, Volume 2

.TRUE.bb.Falseb

L1 and L2 will have the values true and false, respectively. The result
would be the same if the input record were as follows:

TUESDAYbFRIDAYbb

On output:

• The output field consists of w - 1 leading blanks, followed by T or F, for a
true or false value, respectively.

WRITE(6, "(2L7)") L1, L2

If L1 and L2 are true and false, respectively, the output record will be as
follows:

bbbbbbTbbbbbbF

If the field width is zero or is omitted, a default field width of two is used.

ANSI/ISO: The Fortran standard does not allow w to be zero or omitted on
the L or G edit descriptors.

2.8 Character Editing

Character editing converts to or from a string of characters. The edit descriptors
for character editing are as follows:

A[w]

G[w.d[Ee]]

w, d, and e have the following meanings:

Descriptor Specification

w The width of the field

d The number of fractional digits in the field. d is ignored when G
is used for character editing.

e The number of digits in the exponent. e is ignored when G is
used for character editing.

For both input and output:

116 007–3693–005

Input and Output (I/O) Editing [2]

• w is the field width measured in characters.

• A Gw.d[Ee] general edit descriptor is the same as an Aw edit descriptor for
character data.

• If w is omitted from the A or G format, the length of the character data object
being transferred is used as the field width.

ANSI/ISO: The Fortran standard does not allow w to be zero or omitted on
the G edit descriptor.

On input:

• If w is greater than or equal to the length len of the character data read, len
rightmost characters of the input field are read.

• If w is less than the length len of the character data read, the w characters of
the character data will be read from the input field and placed left justified
in the character list item followed by len-w trailing blanks.

On output:

• If w exceeds the length len of the character data written, w-len blank padding
characters are written followed by len characters of the character data.

• If w is less than or equal to the length len of the character data written, the w
leftmost characters of the character data will appear in the output field.

CHARACTER(LEN = 14), PARAMETER :: &

SLOGAN = "SAVE THE RIVER"

WRITE (*, "(A)") SLOGAN

The preceding lines produce the following output record:

SAVE THE RIVER

2.9 Character Editing

This type of character editing transfers a string of characters to or from
noncharacter data types. It is available primarily for programs that were
written before a true character type was available. It provides the ability to
read, or write, ASCII data into, or from, noncharacter, typically integer, data.

The character edit descriptors are as follows:

007–3693–005 117

Fortran Language Reference Manual, Volume 2

A[w]

R[w]

In the preceding format, w represents the width of the field.

For both input and output:

• w is the field width measured in characters/bytes.

• If w is omitted, the length of the character data object being transferred is
used as the field width.

On input:

• If w is greater than or equal to the length, len, of the variable being read, the
len rightmost characters of the input field are read.

• If w is less then the len of the variable being read, then w characters of the
data are read from the input field. For the A edit descriptor, they are placed
left-justified in the input list item followed by len - w blanks. For the R edit
descriptor, they are left-justified in the input list item preceded by binary
zeros.

On output:

• If w is greater than or equal to the len of the variable being written, then
w - len blank padding characters are written, followed by len characters of
the output list item.

• If w is less than the len of the output list item, then for the A edit descriptor,
the w leftmost characters of the data appear in the output field. For the R edit
descriptor, the w rightmost characters of the data appear in the output field.

ANSI/ISO: The Fortran standard does not specify the R edit descriptor, nor
does it specify the ability to use the A edit descriptor on noncharacter data
types.

2.10 Q Editing

The Q edit descriptor is used to determine the number of characters remaining
in the input record. It has the following format:

Q

118 007–3693–005

Input and Output (I/O) Editing [2]

When a Q edit descriptor is encountered during execution of an input
statement, the corresponding input list item must be of type integer.
Interpretation of the Q edit descriptor causes the input list item to be defined
with a value that represents the number of characters remaining to be read in
the formatted record.

For example, if c is the character position within the current record of the next
character to be read, and the record consists of n characters, then the item is
defined with the following value MAX(n-c+1,0).

If no characters have yet been read, then the item is defined as n (the length of
the record). If all the characters of the record have been read (c>n), then the
item is defined as zero.

The Q edit descriptor must not be encountered during the execution of an
output statement.

The following example code uses Q on input:

INTEGER N

CHARACTER LINE * 80

READ (*, FMT=’(Q,A)’) N, LINE(1:N)

ANSI/ISO: The Fortran standard does not specify the Q edit descriptor.

2.11 Control Edit Descriptors

No data is transferred or converted with the control edit descriptors. Control
edit descriptors affect skipping, tabbing, scale factors, and printing of optional
signs. These edit descriptors may affect how the data is input or output using
the subsequent data edit descriptors in the format specification.

2.11.1 Position Editing

Position edit descriptors control relative tabbing left or right in the record
before the next list item is processed. The edit descriptors for tabbing, where n
is a positive integer, are as follows:

Descriptor Meaning

Tn Tab to position n

TLn Tab left n positions

TRn Tab right n positions

007–3693–005 119

Fortran Language Reference Manual, Volume 2

nX Tab right n positions

$ or \ Carriage control

ANSI/ISO: The Fortran standard does not specify the dollar sign ($) or the
backslash (\) edit descriptors.

The tabbing operations to the left are limited by a position called the left tabbing
limit. This position is normally the first position of the current record but, if the
previous operation on the file was a nonadvancing formatted data transfer, the
left tabbing limit is the current position within the record before the data
transfer begins. If the file is positioned to another record during the data
transfer, the left tabbing limit changes to the first position of the new record.

The Tn edit descriptor positions the record just before the character in position
n relative to the left tabbing limit. TRn and nX move right n characters from the
current position. TLn moves left n characters from the current position, but is
limited by the left tabbing limit.

For both input and output:

• n must be a positive integer constant with no kind parameter value specified
for it.

• Left tabbing is always limited so that even if left tabbing specifies a position
to the left of the left tabbing limit, the record position is set to the left
tabbing limit in the record.

• The left tabbing limit in the record is determined by the position in the
record before any data transfer begins for a particular data transfer
statement.

• If a file is positioned to another record during a particular data transfer
statement, the left tabbing limit is the first position of the record.

On input:

• The T descriptor might move the position within a record either left or right
from the current position.

• Moving to a position left of the current position allows input to be
processed twice, provided the same input statement is performing the
processing for advancing input, or provided nonadvancing input is in effect.

• The X descriptor always moves the position to the right and skips characters.

On output:

120 007–3693–005

Input and Output (I/O) Editing [2]

• The positioning does not transmit characters, and does not by itself cause
the record to be shorter or longer.

• Positions that are skipped and have not been filled previously behave as if
they are blank filled.

• Positions previously filled can be replaced with new characters, but are not
blank filled when they are skipped using any of the position edit descriptors.

For example, assume that DISTANCE and VELOCITY have the values 12.66
and -8654.123.

PRINT 100, DISTANCE, VELOCITY

100 FORMAT (F9.2, 6X, F9.3)

The preceding code produces the following record:

bbbb12.66bbbbbb-8654.123

Continue to assume that DISTANCE and VELOCITY have the values 12.66 and
-8654.123.

PRINT 100, DISTANCE, VELOCITY

100 FORMAT(F9.2, T7, F9.3)

The preceding code produces the following record because T7 specifies the first
position for VELOCITY as the seventh character in the record:

bbbb12-8654.123

A dollar sign character ($) or a backslash character (\) in a format specification
modifies the carriage control specified by the first character of the record. In an
output statement, the $ and \ descriptors suppress the carriage return or line
feed. In an input statement, the $ and \ descriptors are ignored. It is intended
primarily for interactive output.

2.11.2 Slash Editing

The slash edit descriptor consists of the single slash character (/). The current
record is ended when a slash is encountered in a format specification.

On input:

• If the file is connected for sequential access, the file is positioned at the
beginning of the next record. The effect is to skip the remainder of the
current record.

007–3693–005 121

Fortran Language Reference Manual, Volume 2

• For direct access, the record number is increased by one, and the file is
positioned at the beginning of the record with this increased record number,
if it exists; it becomes the current record.

• A record can be skipped entirely on input.

On output:

• If the file is connected for sequential access, the current record is written.
The current record can be an empty record.

• For direct access, the current record is blank filled, if necessary, the record
number is increased by one, and this record becomes the current record.

• For an internal file that is a scalar, the current record is blank-filled, if
necessary. No other action is taken until a check of the contents of the
format is done; that is, the format determines what happens next.

• For an internal file that is an array, the current record is blank filled, and the
file is positioned at the beginning of the next array element.

Assume in the following code that ALTER, POSITION, and CHANGE have the
values 1.1, 2.2, and 3.3, respectively:

PRINT "(F5.1, /, 2F6.1)", ALTER, POSITION, CHANGE

The preceding code produces the following two records:

bb1.1
bbb2.2bbb3.3

2.11.3 Colon Editing

The colon edit descriptor consists of the character colon (:). If the list of items
in a formatted READ or WRITE statement is exhausted, a colon stops format
processing at that point. If the list is not exhausted, the colon edit descriptor
has no effect.

For example, assume in the following code that ALTER, POSITION, and
CHANGE have the values 1.1, 2.2, and 3.3, respectively:

WRITE(6, 100) ALTER, POSITION, CHANGE

100 FORMAT(3F5.2, :, "STOP")

The preceding code produces the following:

bb1.1bb2.2bb3.3

122 007–3693–005

Input and Output (I/O) Editing [2]

The characters STOP are not printed because the output list is exhausted when
the colon edit descriptor is processed. If the colon edit descriptor were not
present in the above format, the string "STOP" would be printed.

2.11.4 Sign Editing

Sign editing applies to the output data transfer of positive integer and real
values only. It controls the writing of the optional plus sign when the edit
descriptor I, F, E, EN, ES, D, or G is used. The sign edit descriptors are as
follows:

Descriptor Meaning

SP The plus sign is always written

S, SS The plus sign is not written

The descriptors remain in effect until another sign edit descriptor is
encountered in the format specification. The descriptors have no effect during
formatted input data transfers.

For example, assume in the following code that SPEED(1) and SPEED(2) are
1.46 and 2.3412 respectively:

WRITE(6, 110) (SPEED(K), K = 1, 2)

110 FORMAT(SP, 2F10.2)

The preceding code produces the following:

bbbbb+1.46bbb+234.12

2.11.5 Scale Factors

The k P edit descriptor indicates scaling, where the scale factor k is a signed
integer literal constant.

The scale factor is zero at the beginning of a formatted I/O statement. When a
kP descriptor occurs, the scale factor becomes k, and all succeeding numeric
fields processed with an F, E, EN, ES, D, or G edit descriptor may be affected by
this scale factor until another kP edit descriptor occurs.

On input:

• If the input field has no exponent, the scale factor effect is that the external
number equals the internal number multiplied by a scale factor 10k.

007–3693–005 123

Fortran Language Reference Manual, Volume 2

• The scale factor has no effect if the input field has an exponent.

Input example:

Assume that the input record contains 10.12:

READ (5,100) MASS
100 FORMAT (3PF15.3)

The preceding code gives MASS the value 10120.0.

On output:

• For the F edit descriptor, the value is multiplied by 10k.

• For the E and D edit descriptors, the significand of the value is multiplied by
10k and the exponent is reduced by k.

• The G edit descriptor is not affected by the scale factor if the number will
print correctly with the appropriate F edit descriptor as described in Table
16, page 114. Otherwise, the scale factor for the G edit descriptor has the
same effect as for the E edit descriptor.

• EN and ES edit descriptors are not affected by a scale factor.

Assume that TREE has the value 12.96:

WRITE(6,200) TREE

200 FORMAT(2PG10.1)

The preceding code produces the following:

b1296.E-02

2.11.6 Blanks in Numeric Fields

Blanks other than leading blanks are ignored or interpreted as zero characters
in numeric input fields as determined by the blank edit descriptors:

Descriptor Meaning

BN Treat nonleading blanks in numeric input fields as nonexistent

BZ Treat nonleading blanks in numeric input fields as zeros

The interpretation is for input fields only when the field is processed using an
I, B, O, Z, F, E, EN, ES, D, or G edit descriptor; output fields are not affected.

124 007–3693–005

Input and Output (I/O) Editing [2]

The BLANK= specifier in the OPEN statement affects the interpretation of blanks
if no BN or BZ descriptor is used.

On input:

• The BLANK= specifier for an internal file is NULL.

• If the BLANK= specifier is NULL, or a BN edit descriptor is in effect, the
nonleading blanks are ignored in succeeding numeric fields.

• If the BLANK= specifier is ZERO, or a BZ edit descriptor is in effect, the
nonleading blanks are interpreted as zeros in succeeding numeric fields.

• The BN and BZ edit descriptors override the effect of the BLANK= specifier
during the execution of a particular input data transfer statement.

Example:

READ (5, 100) N1, N2

100 FORMAT (I5, BZ, I5)

Considering the preceding code, if the input record is as follows, and unit 5 has
been opened with a BLANK= specifier equal to NULL, the values assigned to N1
and N2 are 99 and 90909, respectively:

b9b9b9b9b9

2.12 Character String Edit Descriptors

Character string edit descriptors are used to transfer characters to an output
record. They must not be used on input. The character string edit descriptors
are apostrophe, quote, and Hollerith. They have the following format:

’characters’

"characters"

cHcharacters

ANSI/ISO: The Fortran standard has declared the Hollerith string edit
descriptor to be obsolescent.

007–3693–005 125

Fortran Language Reference Manual, Volume 2

On output:

• The apostrophe and quote edit descriptors have the form of literal character
constants with no kind parameter values. They cause those constants to be
placed in the output.

• The Hollerith descriptor cH . . . may be used to print the c characters
following the H. c must be a positive integer and must not have a kind value
specified for it.

• To write a quote in the output field when a quote is the delimiting character,
use two consecutive quotes; to write an apostrophe in the output field when
an apostrophe is the delimiting character, use two consecutive apostrophes.

• The field width is the length of the character constant, but doubled
apostrophes or quotes count as one character.

For example, assume in the following code that TEMP has the value 32.120001:

WRITE (6, 120) TEMP

120 FORMAT (’ TEMPERATURE = ’, F13.6)

The preceding code produces the following record:

bTEMPERATUREb=bbbbb32.120001

2.13 List-directed Formatting

List-directed formatting is one of the implicit formatting methods in Fortran.
Conversion from characters in READ statements to characters in PRINT and
WRITE statements does not use an explicit format specification. The editing
occurs based on the type of the list item. Data is separated by commas or
blanks. The I/O statement uses an asterisk (*) instead of an explicit format
specification, as follows:

READ (5, *) HOT, COLD, WARM

For both input and output:

• A list-directed record consists of values and value separators.

• c and r must be specified without any kind type parameter.

• The values allowed in a list-directed input record are as follows:

126 007–3693–005

Input and Output (I/O) Editing [2]

Value Content

null A null value. Specified, for example, by two consecutive
commas (,,).

c Either 1) A literal constant or 2) a nondelimited character
string with no embedded blanks. See Section 2.13.1.1, page
129, for the requirements for nondelimited character constants.

r*c r repetitions of the constant c. r must be an unsigned, nonzero
integer.

r* r repetitions of the null value, where r is nonzero. r must be
an unsigned, nonzero integer.

Embedded blanks are allowed only within values as specified for each data
type. For example, embedded blanks are allowed within a delimited
character constant or at certain positions within a complex value.

• The value separators allowed in a list-directed input record are as follows:

Separator Meaning

, A comma, optionally preceded or followed by contiguous
blanks.

/ A slash, optionally preceded or followed by contiguous blanks.

<blank> One or more contiguous blanks between two nonblank values
or following the last nonblank value, where a nonblank value
is a constant, an r*c form, or an r* form.

• List-directed formatting must not be specified for direct access or
nonadvancing sequential data transfer.

• If there are no list items and there is no current record, an input record is
skipped or an output record that is empty is written. If there are no list
items and there is a current record, the current record is skipped (the file is
positioned at the end of the current record) or the current record is
terminated at the current position. Recall that a current record exists only if
the previous I/O data transfer to the unit was nonadvancing. An empty
record is either a blank-filled record or a record with no characters in it,
depending on the file structure used. If you are using UNICOS or
UNICOS/mk systems, see the Application Programmer’s I/O Guide, for more
information on file structures.

007–3693–005 127

Fortran Language Reference Manual, Volume 2

• The end of a record has the same effect as a blank, unless it occurs within a
delimited character literal constant. Similarly, a sequence of two or more
consecutive blanks is treated as a single blank.

2.13.1 List-directed Input

Input values are generally accepted as list-directed input if they are the same as
those required for explicit formatting with an edit descriptor. The exceptions
are as follows:

• When the data list item is of type integer, the constant must be of a form
suitable for the I edit descriptor. The CF90 and MIPSpro 7 Fortran 90
compilers permit binary, octal, and hexadecimal based values in a
list-directed input record to correspond to I edit descriptors.

ANSI/ISO: The Fortran standard specifies that binary, octal, and
hexadecimal values must not be used in a list-directed input record.

• When the data list item is of type real, the constant must be of a form
suitable for the F edit descriptor. If no decimal point appears in the
constant, the constant has no fractional digits specified for it.

• Blanks are never zeros.

• Embedded blanks are allowed within a delimited character constant. Values
of type complex include the parentheses for a complex constant. Blanks may
occur before or after the comma and before or after the parentheses. The
following are input examples:

"NICE DAY"

(1.2, 5.666)

TODAY

• Logical items must not use value separators as the optional characters
following the T or F. TUESDAY is allowed. Specifying T,TOO is not allowed
because the value TOO will be used as the next input value.

• An end-of-record cannot occur within a constant, except a complex constant
or a delimited character constant. For a complex constant, the end of record
can occur between the real part and the comma, or between the comma and
the imaginary part. For a character constant, the end-of-record can occur
anywhere in the constant except between any consecutive (doubled) quotes
or apostrophes in the constant. The end-of-record does not cause a blank or
any other character to become part of the character value. A complex or
character constant can be continued on as many records as needed.

128 007–3693–005

Input and Output (I/O) Editing [2]

• Value separators may appear in any delimited character constant. They are,
however, not interpreted as value separators, but are characters in the
delimited character constant.

• Assume that len is the length of the corresponding input list item and w is
the number of effective characters in the character value. If len ≤ w, the
leftmost len characters of the constant are used. If len > w, the w characters
of the constant are left justified in the input list item and the list item is
blank filled on the right.

For example, consider the following code:

CHARACTER (2) NAME

. . .

READ (5,*) NAME

Assume that the input record is as follows:

JONES

After the READ statement, the value in NAME is JO, because len (=2) is less
than w (=5).

2.13.1.1 Requirements for Nondelimited Character Strings As Values

In certain cases, the delimiters are not required for character values on input.
However, nondelimited character strings impose the following requirements:

• The corresponding data list item must be of type character.

• The character string must not contain any value separator.

• The character string must not be continued across a record boundary.

• The first nonblank character is neither an apostrophe (’) nor a quote (").

• The leading characters are not a string of digits followed immediately by an
asterisk.

In any of these cases, the character constant represented by the character string
is terminated by the first value separator or end-of-record, and apostrophes (’)
and quotes (") are not doubled.

007–3693–005 129

Fortran Language Reference Manual, Volume 2

2.13.1.2 Null Values

Null values are used to specify no change of the items in the input item list.
Null values have the following forms:

• No value between separators, such as ,,

• A nonblank value separator as the first entity in the record; for example, a
record beginning with slash as the first nonblank character represents a null
value, as in /4.56.

• r* followed by a value separator as in the following:

7*,’TODAY’

An end-of-record does not signify a null value.

The null value does not affect the definition status or value of the
corresponding list item.

For a complex constant, the entire constant can be null, but not one of the parts.

If a slash terminates input, the remaining characters in the record are ignored,
and the remaining list items are treated as though null values had been read.
This applies to any remaining items in an implied-DO or to any remaining
elements of an array. Example:

REAL AVERAGE(2)

READ (5, *) NUMBER, AVERAGE

If the input record is the following, the result is that NUMBER = 6,
AVERAGE(1) is unchanged, and AVERAGE(2) = 2.418:

b6,,2.418

2.13.2 List-directed Output

List-directed output uses similar conventions to those used for list-directed
input. The following rules and restrictions apply to both input and output:

• Except for nondelimited character values, a comma, optionally preceded or
followed by a blank, is used as a separator.

• New records are begun as needed, at any point in the list of output items. A
new record does not begin in the middle of a value, except as noted below
for character values. Each new record begins with a blank for carriage
control, except for delimited character constants.

130 007–3693–005

Input and Output (I/O) Editing [2]

• Slashes and null values are not written.

• If two or more consecutive values from an array are identical, they can be
written using the repeat factor r*c.

There are a few exceptions. These are noted as follows for each of the intrinsic
types:

• Integer. The effect is as though an Iw edit descriptor were used, using a
suitable value for w.

• Real. The effect is as though an 0PFw.d or an 1PEw.dEe edit descriptor
were used, using suitable values for w, d, and e. The edit descriptor chosen
depends on the magnitude of the number written.

• Complex. The real and imaginary parts are enclosed in parentheses and
separated by a comma. A complex value must fit within one record.

• Logical. List-directed output prints T or F depending on the value of the
logical data item.

• Character. The form of the output for character values depends on the value
of the DELIM= specifier in the OPEN statement for that unit.

– The following are true if there is no DELIM= specifier, if the value of the
DELIM= specifier is NONE, or if the file is an internal file:

• Character values are not delimited

• Character values are not surrounded by value separators

• Only one quote or apostrophe is needed for each quote or apostrophe
in the string transferred

• A blank is inserted at the beginning of new records for a continued
character value

– The following are true if the DELIM= specifier is QUOTE or APOSTROPHE:

• Character values are delimited with the specified delimiter

• All values are surrounded by value separators

• A character that is the same as the specified delimiter is doubled
when written to the output record

007–3693–005 131

Fortran Language Reference Manual, Volume 2

• No blank is inserted at the beginning of a continued record for
carriage control in the case of a character value continued between
records

List-directed output of real values uses either an F or an E format with a number
of decimal digits of precision that assures full-precision printing of the real
values. This allows later formatted or list-directed input of real values to result
in the generation of a bit-identical binary floating-point representation, which
allows a value to be written and reread without changing the stored value.

You can set the LISTIO_PRECISION environment variable to control the
number of digits of precision printed by list-directed output. The following
values can be assigned to LISTIO_PRECISION:

Value Result

FULL Prints full precision (default).

PRECISION Prints x or x +1 decimal digits, where x is value of the
PRECISION intrinsic function for a given real value. This is a
smaller number of digits, which usually ensures that the last
decimal digit is accurate to within 1 unit. This number of digits is
usually insufficient to assure that subsequent input will restore a
bit-identical floating-point value.

YMP80 Causes list-directed and namelist output of real values to be of
the format used in UNICOS 8.0 and previous library versions on
CRAY Y-MP systems. The YMP80 specification is available in
UNICOS 8.0 libraries, but this functionality will be removed in a
later UNICOS release.

ANSI/ISO: The Fortran standard does not specify full-precision printing or
environment variables.

Example:

REAL :: TEMPERATURE = -7.6

INTEGER :: COUNT = 3
CHARACTER(*), PARAMETER :: PHRASE = "This isn’t so"

OPEN(10, DELIM = ’NONE’)

WRITE(10, *) TEMPERATURE, COUNT, PHRASE

The output record on unit 10 would be:

-7.6 3 This isn’t so

132 007–3693–005

Input and Output (I/O) Editing [2]

The -U option on the assign(1) command controls three other assign(1)
options: -y, -S, and -W, as follows:

Option Purpose

-y Suppress repeat count in list-directed output.

-S Suppress use of comma as a separator in list-directed output.

-W Suppress compressed width in list-directed output.

2.14 Namelist Formatting

In some programs, it is convenient to create a list of variables that can be read
or written by referencing the name of the list. The term namelist denotes this
kind of data transfer. Before input or output can begin using this facility, the
NAMELIST specification statement is used to define the list and give it a group
name. In the following example, the NAMELIST statement defines the group
name MEETING made up of the data objects JAKE, JOE, and JANE:

NAMELIST /MEETING/ JOE, JAKE, JANE

The namelist input and output records consist of an ampersand (&) followed by
a namelist group name followed by a sequence of name-value pairs followed by
a slash (/). A name-value pair is a name or a subobject designator, an equal sign,
and one or more values separated by value separators; that is, name=value or
name=value,value, The name in a name-value pair must appear in the
NAMELIST statement specifying the namelist group name. The name-value
pairs provide a convenient form of documentation.

For example, consider the following input data transfer statement:

READ (*, NML = MEETING)

The preceding statement sets the variables JAKE and JOE when the input
record is as follows:

&MEETING JAKE = 3505, JOE = 1 /

It does not change the value of the variable JANE.

Namelist output is convenient for debugging or writing values in a form that
can later be read by a READ statement referencing the same namelist group
name. All variables in the namelist group name appear in the output record
and they must all be defined when the output statement is executed. For
example, consider the following WRITE statement:

007–3693–005 133

Fortran Language Reference Manual, Volume 2

WRITE (*, NML = MEETING)

The preceding statement creates the following output record (assuming JANE is
defined with the value 0):

&MEETING JAKE = 3505, JOE = 1, JANE = 0 /

In namelist I/O records, blanks can appear before the ampersand, after the
namelist group name, before or after the equal sign in the name-value pairs, or
before the slash terminating the namelist records.

The rules and restrictions for a blank and an end-of-record in a character
constant are the same as for delimited character constants in list-directed
formatting. Nondelimited character strings are not permitted in namelist input
records.

2.14.1 Namelist Input

Namelist input consists of the following items, in order:

• Optional blanks and namelist comments.

• An ampersand (&).

• The group name.

• One or more blanks.

• A sequence of zero or more name-value pairs whose names are in the
namelist group and whose values are described in the following sections.
These must be separated by value separators and followed by a slash, which
terminates the namelist input.

The name-value pairs are separated by value separators that are composed of
the following characters:

• A comma, optionally preceded or followed by contiguous blanks

• A slash, optionally preceded or followed by contiguous blanks

• One or more contiguous blanks between two name-value pairs

Blanks can precede the ampersand (&) or the slash (/).

When the name in the name-value pair is a subobject designator, it must not be
a zero-sized array, zero-sized array section, or a zero-length character string.

134 007–3693–005

Input and Output (I/O) Editing [2]

A lowercase letter is the same as an uppercase letter and vice versa when used
in the group name.

A namelist comment can appear after any value separator except a slash (/). A
namelist comment can start in the first nonblank position of an input record
except within a character constant.

An example of namelist input is as follows:

READ (*, NML = MEETING)

The input record for the preceding statement might be as follows:

&MEETING JAKE = 3500, JOE = 100, JANE = 0/

2.14.1.1 Names in Name-value Pairs

This section describes the rules and restrictions for the names used in the
name-value pairs in the namelist records.

• The name-value pairs can appear in any order in the input records.

• The name-value pairs are evaluated serially, in left-to-right order.

• A name in the namelist group can be omitted.

• Each name must correspond with a name in the designated namelist group;
a component name, if any, must also be the name of a component of a
structure named in the namelist group.

• Optionally-signed integer literal constants with no kind parameter values
must be used in all expressions that appear in subscripts, section
designators, or substring designators.

• The name of a structure or a subobject designator can be the name in a
name-value pair.

• A name in an input record must not contain embedded blanks. A name in
the name-value pair can be preceded or followed by one or more blanks.

• A lowercase letter is the same as an uppercase letter and vice versa when
used in the name of a name-value pair.

• A namelist group object name or subobject designator can appear in more
than one name-value pair in a sequence.

Recall that each name must not be the name of an array dummy argument with
nonconstant bounds, an automatic object, a character variable with nonconstant

007–3693–005 135

Fortran Language Reference Manual, Volume 2

length, a pointer, or a structure variable of a type with a component that is a
pointer, or an allocatable array.

2.14.1.2 Values in Name-value Pairs

The value in a name-value pair must be in a form acceptable for a format
specification for the type of the name, except for restrictions noted below.

Null values can have the following forms:

• No value between value separators

• No value between the equal sign and the first value separator

• The r* form, followed by one or more blanks

Null values do not change the value of the named item or its definition status.
An entire complex constant can be null; neither of the parts can be. The end of
a record following a value separator does not specify a null value.

Each value is a null value or one of the following forms. In these forms, r is
assumed to be a repeat factor and is nonzero. c and r must be specified without
any kind type parameter. The forms are as follows:

Value Representation

c Indicates a literal constant, which must be unsigned

r*c Indicates r successive literal constants c

r* Indicates r successive null values

The form of a value must be acceptable to a format specification for an entity of
the type of the corresponding list item, except as noted below; for example, the
value c corresponding to a list item of type real can be of the following forms:

1

1.0E0

The value c corresponding to a list item of type real cannot be of the following
forms:

(1.0,0.0)

A0
1.0EN-3

2.2_QUAD

136 007–3693–005

Input and Output (I/O) Editing [2]

Blanks are never treated as zeros, and embedded blanks must not appear in
numeric or logical constants. The exception is that a blank can appear as a
character in a character constant, or preceding or following the real or
imaginary parts of a complex constant.

The number of values following the equal sign must not be larger than the
number of elements of the array when the name in the name-value pair is an
array, or must not be larger than the ultimate number of components when the
name in the name-value pair is that of a structure. Any array or component
that is an array is filled in array element order.

Consider the following example:

TYPE PERSON

INTEGER LEN

CHARACTER(10) :: NAME

END TYPE PERSON

TYPE(PERSON) PRESIDENT, VICE_PRES
NAMELIST /PERSON_LIST/ PRESIDENT, VICE_PRES

READ (5, NML = PERSON_LIST)

The input record for the preceding code might be as follows:

&PERSON_LIST PRESIDENT%LEN=10,

PRESIDENT%NAME="WASHINGTON",
VICE_PRES%LEN=5, VICE_PRES%NAME="ADAMS"/

If there are fewer values in the expanded sequence than array elements or
structure components, null values are supplied for the missing values.

If a slash occurs in the input, it is as if null values were supplied for the
remaining list items, and the namelist input data transfer is terminated. The
remaining values after the slash within the current record are ignored. The
namelist input record can be terminated by the characters &END.

An integer value is interpreted as if the data edit descriptor were Iw for a
suitable value of w.

A complex value consists of a pair of parentheses surrounding the real and
imaginary parts, separated by a comma. Blanks can appear before and after
these values.

A logical value must not contain slashes, commas, or blanks as part of the
optional characters permitted for logical values. The required characters for
logical values include the first few characters, such as the initial:

007–3693–005 137

Fortran Language Reference Manual, Volume 2

• .T

• .F

• T

• F

The optional characters on logical values, which include ALSE., RUE., and so
on, cannot include slashes, commas, or blanks.

A character literal constant may contain slashes, commas, or blanks as part of
the constant. On namelist input, the DELIM= specifier is ignored.

2.14.1.3 Blanks

Blanks are part of the value separator except when used in the following
situations:

• In a character constant

• Before or after the parts of a complex constant

• Before or after an equal sign, unless after the equal sign the blanks are
followed immediately by a comma or slash

• Before the ampersand indicating the namelist group name and after the
namelist group name

2.14.1.4 Namelist Comments

An exclamation point (!) character initiates a namelist comment. Namelist
comments are not recognized within a character literal constant, but they can
appear after a value separator or in the first nonblank position of a namelist
input record. The comment extends to the end of the current input record and
can contain any graphic character allowed by the system.

The comment is ignored. A slash (/) within the namelist comment does not
terminate the execution of the namelist input statement.

Example:

PROGRAM NML_COMMENTS

NAMELIST /NMLA/RVALUE,IVALUE

RVALUE = 100.0

IVALUE = 90

READ(9,NMLA)

138 007–3693–005

Input and Output (I/O) Editing [2]

PRINT *,’IVALUE =’,IVALUE

PRINT *,’RVALUE =’,RVALUE
END

For the preceding code, assume that the input records contain the following:

!THIS IS COMMENT ZERO

$NMLA !THIS IS COMMENT ONE

!THIS IS COMMENT TWO, IVALUE = 1

IVALUE = 2 !THIS IS COMMENT THREE IVALUE = 3
RVALUE = !THIS IS COMMENT FOUR 4.0

5.0 !THIS IS COMMENT FIVE RVALUE = 6.0

/

Output from this program is as follows:

IVALUE = 2

RVALUE = 5.

2.14.1.5 Use of Namelist Input

Namelist input skips blank records and records that begin with namelist
comments. Namelist input requires a namelist group name, preceded by an
ampersand, to be on the first nonblank uncommented record read by the
namelist READ statement.

The following is an example of namelist input:

REAL A(3), B(3)

CHARACTER(LEN = 3) CHAR
COMPLEX X

LOGICAL LL

NAMELIST /TOKEN/ I, A, CHAR, X, LL, B

READ (*, NML = TOKEN)

Assume that the input record for the preceding is as follows:

&TOKEN A(1:2) = 2*1.0 CHAR = "NOP" B = ,3.13,,

X = (2.4,0.0) LL = T /

The results of the READ statement are as follows:

Name Value

I Unchanged

007–3693–005 139

Fortran Language Reference Manual, Volume 2

A(1) 1.0

A(2) 1.0

A(3) Unchanged

B(1) Unchanged

B(2) 3.13

B(3) Unchanged

CHAR "NOP"

X (2.4, 0.0)

LL True

On UNICOS and UNICOS/mk systems, the input namelist group name must
match the group name specified in the READ statement.

On IRIX systems, the input namelist group is skipped if the group name does
not match the group name specified in the READ statement. You can use the
assign(1) command’s -Y ON|OFF option to change this default behavior.

2.14.2 Namelist Output

Value separators can be blanks, commas, or a combination of blanks and
commas. A new record can begin anywhere, except within a name or value,
unless the value is a character constant or a complex constant; a record can
begin anywhere within a character constant, or can begin before or after the
comma, or left or right parenthesis of a complex constant. A blank can occur
anywhere, except in a name or a noncharacter value.

2.14.2.1 Use of Namelist Output

A number of rules, similar to those for list-directed formatting, apply for
namelist output. They are as follows:

• Namelist output consists of a series of records. The first nonblank record
begins with an ampersand, followed by the namelist group name, followed
by a sequence of name-value pairs, one pair for each variable name in the
namelist group object list of the NAMELIST statement, and ends with a slash.

• A logical value is either T or F.

• An integer value is one that would be produced by an I w edit descriptor
using a suitable value of w.

140 007–3693–005

Input and Output (I/O) Editing [2]

• For real output, the rules for list-directed output are followed using
reasonable values for the w, e, and d that appear in real data edit descriptors
and are appropriate for the output value.

• Parentheses enclose the value of a complex constant, and the parts are
separated by a comma. A complex value must fit within one record. Blanks
can be embedded after the comma and before the end of the record.

• Character constants follow the rules for list-directed output.

• Repeat factors of the form r*c are allowed on output for successive identical
values.

• An output record does not contain null values.

• Each record begins with a blank for carriage control.

• No values are written for zero-sized arrays.

• For zero-length character strings, the name is written, followed by an equal
sign, followed by a zero-length character string, and followed by a value
separator or slash.

NAMELIST /CALC/ DEPTH, PRESSURE

DIMENSION DEPTH(3), PRESSURE(3)

FLOAT1 = 0.2

FLOAT2 = 3.0

DO 10 I=1,3
DEPTH(I) = FLOAT1 + FLOAT(I)

PRESSURE(I) = FLOAT2 + (FLOAT(I-1) * 0.1)

10 CONTINUE

WRITE(6,NML=CALC)

END

This program produces the following output:

&CALC DEPTH = 1.2, 2.2, 3.2, PRESSURE = 3., 3.1, 3.2 /

The -U option on the assign(1) command controls three other assign(1)
options: -y, -S, and -W, as follows:

Option Purpose

-y Suppress repeat count in list-directed output.

-S Suppress use of comma as a separator in
list-directed output.

007–3693–005 141

Fortran Language Reference Manual, Volume 2

-W Suppress compressed width in list-directed
output.

2.14.2.2 DELIM= Specifier for Character Constants

The form of the output for character values depends on the value of the
DELIM= specifier in the OPEN statement for that unit.

If there is no DELIM= specifier or if the value of the DELIM= specifier is NONE,
the following actions occur:

• Character values are not delimited.

• Character values are not surrounded by value separators.

• Only one quote or apostrophe is needed for each quote or apostrophe in the
string transferred.

• A blank is inserted in new records for a continued character value to allow
for carriage control.

If the DELIM= specifier is QUOTE or APOSTROPHE, the following actions occur:

• Character values are delimited with the specified delimiter.

• A character that is the same as the specified delimiter is doubled when
written to the output record.

For example, in the following code, assume LEFT and RIGHT with values
"SOUTH" and "NORTH". The program has a DELIM= specifier of QUOTE for unit
10:

CHARACTER(5) LEFT, RIGHT

NAMELIST /TURN/ LEFT,RIGHT

LEFT = ’SOUTH’
RIGHT = ’NORTH’

WRITE(10,NML=TURN)

END

The preceding code produces the following output record:

&TURN LEFT = SOUTH, RIGHT = NORTH /

Note that if the DELIM= specifier is NONE in an OPEN statement, namelist output
might not be usable as namelist input when character values are transferred,
because namelist input of character values requires delimited character values.

142 007–3693–005

Input and Output (I/O) Editing [2]

2.14.3 Namelist Distinctions

The CF90 and MIPSpro 7 Fortran 90 compilers have extended the namelist
feature. The following additional rules govern namelist processing:

• An ampersand (&) or dollar sign ($) can precede the namelist group name or
terminate namelist group input. If an ampersand precedes the namelist
group name, either the slash (/) or the ampersand must terminate the
namelist group input. If the dollar sign precedes the namelist group name,
either the slash or the dollar sign must terminate the namelist group input.

• Octal and hexadecimal constants are allowed as input to integer and
single-precision real namelist group items. An error is generated if octal and
hexadecimal constants are specified as input to character, complex, or
double-precision real namelist group items.

Octal constants must be of the following form:

– O"123"

– O’123’

– o"123"

– o’123’

Hexadecimal constants must be of the following form:

– Z"1a3"

– Z’1a3’

– z"1a3"

– z’1a3’

ANSI/ISO: The Fortran standard does not specify the namelist distinctions
described in this section.

007–3693–005 143

Program Units [3]

There are several kinds of executable and nonexecutable program units in
Fortran. Each of these program units provides unique functionality. The
executable program units are the main program and procedure subprograms.
The nonexecutable program units are block data units and modules, which
provide definitions used by other program units. This chapter describes each of
these units as well as the closely related concepts of host association and use
association.

3.1 Overview

A Fortran program is a collection of program units. One and only one of these
units must be a main program. In all but the simplest programs, the individual
tasks are typically organized into a collection of function and subroutine
subprograms and module program units. The program can be organized so that
the main program drives (or manages) the collection of program units making
up the executable program, but other program organizations can work as well.

Each program unit is an ordered set of constructs and statements. The heading
statement identifies the kind of program unit it is, such as a subroutine or a
module; it is optional in a main program. An ending statement marks the end
of the unit. The principal kinds of program units are as follows:

• Main program

• External function subprogram

• External subroutine subprogram

• Module program unit

• Block data program unit

The module program unit can help you to organize elements of a program. A
module itself is not executable, but it can contain data declarations, derived-type
definitions, procedure interface information, and subprogram definitions used
by other program units. Block data program units are also nonexecutable and
are used only to specify initial values for variables in named common blocks.

Program execution begins with the first executable statement in the main
program. The Fortran Language Reference Manual, Volume 1, explains the
high-level syntax of Fortran and how to put a Fortran program together. It is a

007–3693–005 145

Fortran Language Reference Manual, Volume 2

good place to review the ways statements can be combined to form a program
unit.

The Fortran program in Figure 7 is an example of a program that contains four
program units: a main program, a module, and two subroutines.

PROGRAM DRIVER
...
CALL MECHANIC(TUNEUP)
...

END PROGRAM DRIVER

SUBROUTINE PARTS &
 (PART,MODEL,YEAR)
USE STOCK_ROOM
...

END SUBROUTINE PARTS

MODULE STOCK_ROOM
...

END MODULE STOCK_ROOM

SUBROUTINE MECHANIC(SERVICE)
USE STOCK_ROOM
...

...
END SUBROUTINE MECHANIC

a10755

CALL PARTS (PLUGS,"CRX",1992)

Figure 7. Four program units

Module STOCK_ROOM contains data and procedure information used by
subroutines MECHANIC and PARTS. The main program DRIVER invokes the task
represented by subroutine MECHANIC, but DRIVER does not itself need the
information in STOCK_ROOM.

3.2 Main Program

The main program specifies the overall logic of a Fortran program and is where
execution of the program begins. A main program is similar to the other
program units, particularly external subprograms, and has the following
principal parts:

• The specification part, which defines the data environment of the program

• The execution part, in which execution begins and program logic is described

146 007–3693–005

Program Units [3]

• The internal procedure part, which is included if the main program contains
internal procedures

The principal ways of stopping the execution are as follows:

• Executing a STOP statement anywhere in the program (in any program unit
in the program)

• Reaching the end of the main program

• Encountering certain error conditions

3.2.1 Main Program Organization

A main program is defined as follows:

main_program is [program_stmt]
[specification_part]
[execution_part]
[internal_subprogram_part]

end_program_stmt

program_stmt is PROGRAM program_name [(arg_list)]

EXT arg is Any character in the character set. The compiler

ignores any args specified after program_name.

end_program_stmt is END [PROGRAM [program_name]]

ANSI/ISO: The Fortran standard does not specify the use of a parenthesized
list of args at the end of a PROGRAM statement.

The preceding BNF definition results in the following general format to use for
constructing a main program:

[PROGRAM program_name]
[specification_part]
[execution_part]
[internal_subprogram_part]
END [PROGRAM [program_name]]

007–3693–005 147

Fortran Language Reference Manual, Volume 2

The simplest of all programs is as follows:

END

The following simple program is more interesting:

PROGRAM SIMPLE

PRINT *, ’Hello, world.’

END PROGRAM SIMPLE

The PROGRAM statement is optional for a main program.

The program name on the END statement, if present, must be the same as the
name on the PROGRAM statement and must be preceded by the keyword
PROGRAM.

A main program has no provisions for dummy arguments.

A main program must not be referenced anywhere; that is, a main program
must not be recursive (either directly or indirectly).

A main program must not contain RETURN or ENTRY statements, but internal
procedures in a main program can have RETURN statements.

3.2.2 Specification Part

The principal purpose of the specification part is to describe the nature of the
data environment of the program: the arrays, types and attributes of variables,
initial values, and so forth. The complete list of specification part statements is
given in the Fortran Language Reference Manual, Volume 1.

The following list summarizes the Fortran specification statements that are valid
in a main program:

• ALLOCATABLE

• AUTOMATIC

• COMMON

• DATA

• DIMENSION

• EQUIVALENCE

• EXTERNAL

148 007–3693–005

Program Units [3]

• FORMAT

• IMPLICIT

• INTRINSIC

• NAMELIST

• PARAMETER

• POINTER

• SAVE

• TARGET

• USE

• Derived-type definitions and declarations

• Interface blocks

• Statement function statement

• Type declaration statement

ANSI/ISO: The POINTER attribute and statement specify dynamic objects.
The Cray pointer is an extension to Fortran and is different from the Fortran
pointer. They both use the POINTER keyword, but they are specified such
that the compiler can differentiate them. The TARGET attribute and statement
specify a target for a Fortran pointer.

In the entity-oriented style of declaration, all attributes of an entity can be
declared in the same statement.

OPTIONAL and INTENT attributes or statements cannot appear in the
specification part of a main program; they are applicable only to dummy
arguments.

The accessibility attributes or statements, PUBLIC and PRIVATE, cannot appear
in a main program; they are applicable only within modules.

Automatic objects are not permitted in main programs.

The SAVE attribute or statement can appear in a program, but it has no effect in
a main program.

007–3693–005 149

Fortran Language Reference Manual, Volume 2

3.2.3 Execution Part

The Fortran Language Reference Manual, Volume 1 lists the execution part
statements that can appear in a main program.

The following list summarizes the execution part statements:

• ALLOCATE and DEALLOCATE

• Assignment statement

• Pointer assignment statement

• BACKSPACE

• BUFFER IN and BUFFER OUT

• CALL

• CASE construct

• CLOSE

• CONTINUE

• CYCLE

• DATA

• DO construct

• END

• ENDFILE

• ENTRY

• EXIT

• FORALL statement and construct

• FORMAT

• Computed GO TO

• GO TO

• Arithmetic IF

• IF statement

150 007–3693–005

Program Units [3]

• IF construct

• INQUIRE

• NULLIFY

• OPEN

• PRINT

• READ

• REWIND

• STOP

• WHERE statement and WHERE construct

• WRITE

ANSI/ISO: Pointer assignment statement should not be confused with Cray
pointers and Cray character pointers. The Fortran standard does not describe
Cray pointers or Cray character pointers.

The Fortran standard does not describe BUFFER IN and BUFFER OUT
statements.

The Fortran standard has declared the arithmetic IF and computed GO TO
statements to be obsolescent.

3.2.4 Internal Subprogram Part

A set of internal procedures comprises the internal subprogram part. Internal
procedures are described in the following section.

3.3 Internal Procedures

Internal procedures are very much like external procedures, except that they are
packaged inside a main program or other procedure subprograms. This makes
their names local, rather than global like external procedures, so an internal
procedure can be referenced only within the program unit that contains its
definition.

The format of the internal procedure part of the host is as follows:

007–3693–005 151

Fortran Language Reference Manual, Volume 2

CONTAINS
internal_subprogram
[internal_subprogram] ...

Each internal procedure is either a function or subroutine, as follows:

function_statement
[specification_part]
[execution_part]
END FUNCTION [function_name]

subroutine_statement
[specification_part]
[execution_part]
END SUBROUTINE [subroutine_name]

The following is an example of an internal procedure:

PROGRAM WEATHER

. . .

CONTAINS

FUNCTION STORM(CLOUD)
. . .

END FUNCTION STORM

END

Internal procedures must not themselves contain internal procedures; that is,
internal procedures must not be nested.

Internal procedures must not contain ENTRY statements.

Internal procedures must not contain PUBLIC or PRIVATE attributes or
statements.

Internal procedures must not be passed as actual arguments.

The specification part of an internal procedure may contain the same statements
as the specification part of a main program, plus the INTENT statement and the
OPTIONAL statement.

The execution part of an internal procedure may contain the same statements as
the execution part of a main program, plus the RETURN statement.

152 007–3693–005

Program Units [3]

There must be at least one internal subprogram after the CONTAINS statement.

An internal procedure can be referenced in the execution part of its host (for
example, the main program that contains it) and in the execution part of any
internal procedure contained in the same host. This includes itself, so internal
procedures may be referenced recursively, either directly or indirectly.

An internal procedure name is a local name in its host and therefore is subject
to the rules governing such names. An internal procedure name has the
following characteristics:

• It gives the internal procedure precedence over any external procedure or
intrinsic procedure with the same name

• It must be different from the names of other internal procedures in the same
host and different from the imported names of any module procedures
either imported into the host or into the internal procedure itself

• It must be different from any other local name in the host or itself and from
names made accessible by a USE statement

The next section describes the rules governing other names that appear in the
host and/or the internal procedure. The host association rules apply to a
module procedure and its host module, as well as to an internal procedure and
its host (such as a main program).

3.4 External Subprograms

External subprograms are global to the Fortran program; they can be referenced
or called anywhere. An internal procedure, on the other hand, is known only
within its host.

The major difference between external procedures and internal (and module)
procedures is not syntactic; it is the fact that an external procedure interface is
not known at the point of procedure reference. Also, internal (and module)
procedures are compiled with their hosts, whereas external procedures usually
are compiled separately. For internal (and module) procedures, interface
information is available at the point of procedure reference. This is a very
significant difference and a major practical advantage of internal and module
procedures; Section 4.8, page 224, describes the benefits of explicit interfaces,
which come automatically with internal and module procedures, but must be
provided for external procedures.

Another difference between internal and external procedures is that external
procedures can contain internal procedures; internal procedures cannot.

007–3693–005 153

Fortran Language Reference Manual, Volume 2

The organization of external subprograms is very much like that of main
programs. As the following formats show, external subprograms are of two
types, functions and subroutines:

function_statement
[specification_part]
[execution_part]
[internal_subprogram_part]
END [FUNCTION [function_name]]

subroutine_statement
[specification_part]
[execution_part]
[internal_subprogram_part]
END [SUBROUTINE [subroutine_name]]

The following are examples of external procedures:

FUNCTION FOOTBALL(GAME)

INTEGER FOOTBALL

FOOTBALL = N_PLAYERS

. . .

END FUNCTION FOOTBALL
SUBROUTINE SATURDAY(SEVEN)

X = . . .

END

Unlike the main program, the program unit heading (FUNCTION or
SUBROUTINE statement) is required in an external subprogram. For more
information on the FUNCTION statement, see Section 4.3.1, page 185. For more
information on the SUBROUTINE statement, see Section 4.2.1, page 179.

The procedure name, if present on the END statement, must be the same as that
in the heading statement.

OPTIONAL and INTENT attributes and statements for dummy arguments are
allowed in the specification part of an external subprogram, but only for
dummy arguments.

The specification and execution parts of an external subprogram can contain
ENTRY statements and the execution part may contain RETURN statements.

154 007–3693–005

Program Units [3]

External subprograms must not contain PUBLIC or PRIVATE attributes or
statements.

External procedures can be directly or indirectly recursive, in which case the
RECURSIVE keyword is required on the heading statement.

An external subprogram is the host to any internal procedures defined within it.

An external procedure name can be used as an actual argument in a procedure
reference, corresponding to a dummy procedure argument in the procedure
referenced.

Procedures, including internal, external, and module procedures, are described
in detail in section Chapter 4, page 173.

3.5 Modules

A module allows you to package data specifications and procedures in one
place for use in any computational task in the program.

Anything required by more than one program unit can be packaged in modules
and made available where needed. A module is not itself executable, though
the procedures it contains can be individually referenced in the execution part
of other program units. The number of modules is not restricted, and a module
may use any number of other modules as long as the access path does not lead
back to itself. Modules are powerful tools for managing program organization
and simplifying program design.

3.5.1 Module Organization

A module is defined as follows:

module is module_stmt
[specification_part]
[module_subprogram_part]

end_module_stmt

module_stmt is MODULE module_name

end_module_stmt is END [MODULE [module_name]]

007–3693–005 155

Fortran Language Reference Manual, Volume 2

The preceding BNF definition results in the following general format to use for
constructing a module:

MODULE module_name
[specification_part]
[module_subprogram_part]
END [MODULE [module_name]]

The module name, if present on the END statement, must be the same as on the
MODULE statement.

3.5.2 Specification Part

The form of the specification part of a module is similar to that for other
program units. The statements it can contain are as follows:

• ALLOCATABLE

• COMMON

• DATA

• DIMENSION

• EQUIVALENCE

• EXTERNAL

• IMPLICIT

• INTRINSIC

• NAMELIST

• PARAMETER

• POINTER

• PRIVATE

• PUBLIC

• SAVE

• TARGET

• USE

156 007–3693–005

Program Units [3]

• Derived-type definition statements

• Interface blocks

• Type declaration statements

The following paragraphs describe the rules and restrictions that apply to the
specification part of a module. The specification parts of the module procedures
have the same rules as those for external procedures, which are described in the
previous section.

The following types of attributes and statements are not allowed: AUTOMATIC
attribute, OPTIONAL or INTENT attributes or statements, ENTRY statements,
FORMAT statements, automatic objects, and statement function statements.

PUBLIC and PRIVATE attributes and statements are allowed.

The SAVE attribute and statement can be used in the specification part of a
module to ensure that module data object values remain intact. Without SAVE,
module data objects remain defined as long as any program unit using the
module has initiated, but not yet completed, execution. However, when all such
program units become inactive, any data objects in the module not having the
SAVE attribute become undefined. SAVE can be used to specify that module
objects continue to be defined under these conditions.

The following is an example of a simple module for providing global data:

! This module declares three scalar variables (A,
! KA, and X) and two arrays (Y and Z). X is given

! an initial value. These five variables can be

! considered to be global variables that can

! selectively be made available to other program! units.

!

MODULE T_DATA
INTEGER :: A, KA

REAL :: X = 7.14

REAL :: Y(10,10), Z(20,20)

END MODULE T_DATA

!
! The USE statement makes A, KA, X, Y, and Z

! available to subroutine TASK_2!

SUBROUTINE TASK_2

USE T_DATA

. . .
END SUBROUTINE TASK_2

007–3693–005 157

Fortran Language Reference Manual, Volume 2

3.5.3 Module Subprogram Part

The module subprogram part is similar to the internal procedure part of a main
program or external subprogram. It is a collection of procedures local to the
module and sharing its data environment through host association. The two
principal differences between module subprograms and internal subprograms
are as follows:

• The organization, rules, and restrictions of module procedures are those of
external procedures rather than internal procedures. For example, module
procedures can contain internal procedures.

• Module procedures are not strictly local to the host module, nor are they
global to the program. Only program units using the module can access the
module’s procedures not specified to be PRIVATE.

The form of the module subprogram part is as follows:

CONTAINS
module_subprogram
[module_subprogram] ...

There must be at least one module subprogram after the CONTAINS statement.

Each module subprogram is a function or subroutine and has one of the
following formats:

function_statement
[specification_part]
[execution_part]
[internal_subprogram_part]
END FUNCTION [function_name]

subroutine_statement
[specification_part]
[execution_part]
[internal_subprogram_part]
END SUBROUTINE [subroutine_name]

158 007–3693–005

Program Units [3]

An example of a module procedure is as follows:

MODULE INTERNAL
. . .

CONTAINS

FUNCTION SET_INTERNAL(KEY)

. . .

END FUNCTION
END

The rules for host association and implicit typing in a module procedure are the
same as those described for internal procedures in Section 6.2.1.3, page 288. A
module procedure acquires access to entities in its host module through host
association, but not to entities in a program unit that uses the module.

3.5.4 Using Modules

A program unit can use the specifications and definitions in a module by
referencing (using) the module. This is accomplished with a USE statement in
the program unit requiring access to the specifications and definitions of that
module. Such access causes an association between named objects in the
module and the using program unit and is called use association. USE statements
must immediately follow the program unit heading.

Each entity in a module has the PUBLIC or PRIVATE attribute, which
determines the accessibility of that entity in a program unit using the module. A
PRIVATE entity is not accessible (that is, it is hidden) from program units using
the module. A PUBLIC entity is accessible, although its accessibility may be
further limited by the USE statement itself. Figure 8 depicts these phenomena:

007–3693–005 159

Fortran Language Reference Manual, Volume 2

USE
gets all PUBLIC

entities

PUBLIC
entities

USE...ONLY
gets all of the
PUBLIC entities

named in the
ONLY clause

PRIVATE
entities

(not available
outside the

module)

Module

Using
program

units

a10759

Figure 8. Public and private entities in a module

3.5.4.1 Accessing All Public Entities in a Module

The USE statement gives the program unit access to public entities in the
module and is defined as follows:

use_stmt is USE module_name [, rename_list]

or USE module_name, ONLY: [only_list]

rename is local_name => use_name

only is generic_spec

or only_use_name

or only_rename

only_use_name is use_name

only_rename is local_name=>use_name

Specifying a USE statement with a rename_list allows any of the public entities
in the module to be renamed to avoid name conflicts or to blend with the
readability flavor in the using program unit.

160 007–3693–005

Program Units [3]

Examples:

USE FOURIER

USE S_LIB, PRESSURE => X_PRES

With both USE statements in the preceding example, all public entities in the
respective modules are made accessible. In the case of FOURIER, the names are
those specified in the module. In the case of S_LIB, the entity named X_PRES
is renamed PRESSURE in the program unit using the module. The other entities
accessed from S_LIB have the same name in the using program unit as in the
module.

3.5.4.2 Accessing Only Part of the Public Entities

To restrict the entities accessed from a module, specify ONLY on the USE
statement, as follows:

USE module_name, ONLY: only_list

In this case, the using program unit has access only to those entities explicitly
identified in the ONLY clause of the USE statement. All items in this list must
identify public entities in the module. As with the unrestricted form of the USE
statement, named accessed entities may be renamed for local purposes. The
possible forms of each item in the only_list are as follows:

[local_name =>] module_entity_name

OPERATOR(defined_operator)

ASSIGNMENT(=)

The local_name, if present, specifies the name of the module entity in the using
program unit.

USE MTD, ONLY: X, Y, OPERATOR(.ROTATE.)

USE MONTHS, ONLY: JANUARY => JAN, MAY, JUNE => JUN

In the case of MTD, only X, Y, and the defined operator .ROTATE. are accessed
from the module, with no renaming. In the case of MONTHS, only JAN, MAY, and
JUN are accessed. JAN is renamed JANUARY and JUN is renamed JUNE.

007–3693–005 161

Fortran Language Reference Manual, Volume 2

In addition, specifying the statement on the left is equivalent to specifying the
two statements on the right:

USE MTD, ONLY: X, Y USE MTD, ONLY: X
USE MTD, ONLY: Y

3.5.4.3 Entities Accessible from a Module

The following items can be defined, declared, or specified in a module, and
may be public. They are accessed through the USE statement by other program
units. Any public entity, except a defined operator or assignment interface, can
be renamed in the using program unit.

• Declared variables

• Named constants

• Derived-type definitions

• Procedure interfaces

• Module and intrinsic procedures

• Generic identifiers

• Namelist groups

Note that the preceding list does not contain the implicit type rules of the
module; these are not accessible through a USE statement.

A common block can be declared in a module. Because a common block name
is global, however, it is not one of the name categories that is made available to
another program unit via a USE statement. The names of the members of the
common block in a module, though, are made available through the USE
statement; these member names can be given local names through the USE
statement renaming clauses. Consider, for example, the following module:

MODULE definer

COMMON /def/ i, j, r

END MODULE

All three of the members of common block DEF are made accessible to a
program unit containing the following USE statement because all three variables
are public entities of the module:

USE definer

162 007–3693–005

Program Units [3]

The following USE statement limits access to only common block member R
and gives it the local name MY_R:

USE def, ONLY: MY_R => R

The default accessibility for all entities in a module is PUBLIC unless this
default has been changed by a PRIVATE statement with an empty entity list. If
the default has been turned to PRIVATE, an entity can be made PUBLIC by its
appearance in a PUBLIC statement or in a type declaration that contains the
PUBLIC attribute. An entity can be specified to be PRIVATE in a PRIVATE
statement or in a type declaration statement that contains the PRIVATE attribute.

Each named entity in a module is classified as either public or private.
Regardless of this classification, all module entities can be used freely within
the module, including within module procedures in the module; within a
module procedure a module entity is governed only by the rules of host
association. Outside the module, however, only the public entities are accessible
(via the USE statement). Figure 9 illustrates these rules:

Public
entities

 Host
association Private

entities

Module
procedures

Use
association

Using
program
units

Module

a10760

Local

Figure 9. Use of public and private module entities

3.5.4.4 Name Conflicts When Using Modules

When using modules, name conflicts can occur in the following two ways:

• A public entity in a module might have the same name as a local entity in
the using program.

• Two modules being used might each have a public entity with the same
name. Such a name conflict is allowed if and only if that name is never

007–3693–005 163

Fortran Language Reference Manual, Volume 2

referenced in the using program. If a name is to be referenced in the using
program, potential conflicts involving that name must be prevented through
use of the rename or ONLY facilities of the USE statement. This is the case
even if the using program is another module.

Example:

MODULE BLUE

INTEGER A, B, C, D

END MODULE BLUE
MODULE GREEN

USE BLUE, ONLY : AX => A

REAL B, C

END MODULE GREEN

! in program RED:
! integer A is accessed as AX or A

! integer B is accessed as B

! real B is accessed as BX

! neither C is accessible, because

! there is a name conflict

PROGRAM RED
USE BLUE ! accesses A, B, C, and D

USE GREEN, BX => B ! accesses A as AX, B as

! BX, and C

REAL D ! Illegal; D cannot be

. . . ! redeclared locally.
END

3.5.4.5 Use Association

The USE statement gives a program unit access to other entities not defined or
specified locally within the using program. The association between a module
entity and a local entity in the using program unit is termed use association.
Host association is analogous, but host association applies only to a module
and its module procedures and to internal procedures and their hosts. There
are many similarities between use association and host association. Their rules,
however, are different in the following two ways:

• The implicit typing rules of a module have no effect on the environment of a
using program unit

• Entities accessed through a USE statement must not be respecified locally

164 007–3693–005

Program Units [3]

The only exception to the second rule is that if the using program unit is
another module, then the using module can specify an entity from the used
module to be PRIVATE in the using module, rather than maintaining public
accessibility. This is perhaps best illustrated with an example. In the following
code, program units using module M2, defined as follows, can access X but not
Y, even though Y is a public entity of M1:

MODULE M2
USE M1, ONLY: X, Y

PRIVATE Y

. . .

END MODULE M2

The prohibition on respecifying entities accessed via use association includes
the use of module data objects in locally specified COMMON and EQUIVALENCE
specifications.

While a name accessed from a module must not be respecified locally, the same
name can be imported from another module under either of the following
conditions:

• Both accesses are to the same entity. For example, if a program unit uses
both M1 and M2 in the preceding example, both give access to the same X.
This is allowed.

• The accesses are to different entities, but the using program unit makes no
reference to that name.

3.5.5 Typical Applications of Modules

Some Fortran applications may be easier to write and understand when using
modules. Modules provide a way of packaging the following types of data:

• Global data, previously packaged in common blocks

• User-defined operators

• Software libraries

• Data abstraction

These uses for modules are summarized in the following sections.

007–3693–005 165

Fortran Language Reference Manual, Volume 2

3.5.5.1 Global Data

A module provides an easy way of making type definitions and data
declarations global in a program. Data in a module does not have an implied
storage association or an assumption of any form of sequence or any order of
appearance, unless it is a sequence structure or in a common block. Global data
in a module can be of any type or combination of types, as follows:

MODULE MODELS

COMPLEX :: GTX(100, 6)
REAL :: X(100)

REAL, ALLOCATABLE :: Y(:), Z(:, :)

INTEGER CRX, GT, MR2

END MODULE

There are alternative ways to use the preceding module. The following
statement makes all the data (and their attributes) of the module available:

USE MODELS

The following statement makes only the data named X and Y and their
attributes available to the program using the module:

USE MODELS, ONLY: X, Y

The following statement makes the data object named Z available, but it is
renamed to T for that particular application. In addition, it makes the other
public entities of the module MODELS available with the same names they have
in the module:

USE MODELS, T => Z

3.5.5.2 Common Blocks in a Module

One way of packaging common blocks is by putting them in a module.
Consider the following program:

MODULE LATITUDE

COMMON . . .

COMMON . . .

COMMON /BLOCK1/ . . .
END MODULE

. . .

PROGRAM NAVIGATE

USE LATITUDE

166 007–3693–005

Program Units [3]

. . .

END

The USE statement in the preceding example makes all of the variables in the
common blocks in the module available to the program NAVIGATE. These
common blocks can be made available to other program units in the same way.

Unless there is a reason for variables to have their storage association in a
particular order, there is no need to include a common block in a module. The
data in a module is already global.

3.5.5.3 Global User-defined Types

A derived type defined in a module is a user-defined type that can be made
accessible to other program units. The same type definition can be referenced
through a USE statement by more than one program unit. Consider the
following code:

MODULE NEW_TYPE

TYPE TAX_PAYER

INTEGER SSN

CHARACTER(20) NAME

END TYPE TAX_PAYER
END MODULE NEW_TYPE

In the preceding example, the module NEW_TYPE contains the definition of a
new type called TAX_PAYER. Procedures using the module NEW_TYPE may
declare objects of type TAX_PAYER.

3.5.5.4 Operator Extensions

An interface block can declare new operators or give additional meanings to the
intrinsic ones, such as +, .EQ., .OR., and //. The assignment symbol = also
can be given additional meanings and may be redefined for derived-type
intrinsic assignment. (Derived-type assignment is the only instance of an
intrinsic operation or assignment that can be redefined.) These extensions
require that the OPERATOR or ASSIGNMENT option be on the interface block, the
details of which appear in Section 4.8, page 224.

A simple example of an OPERATOR interface for matrix inversion requires a
function and an interface block defining the new operator. In the following
example, which normally (but not necessarily) would be in a module, the
function INVERSE defines the desired operation, and the operator .INVERSE.
can be used in an expression to reference the function:

007–3693–005 167

Fortran Language Reference Manual, Volume 2

INTERFACE OPERATOR(.INVERSE.)

FUNCTION INVERSE(MATRIX_1)
TYPE(MATRIX), INTENT(IN) :: MATRIX_1

TYPE(MATRIX) :: INVERSE

END FUNCTION INVERSE

END INTERFACE

An example of its use might be as follows (assuming + also has been extended
to add a real value and a MATRIX):

1.0 + (.INVERSE. A)

3.5.5.5 Data Abstraction

Data type definitions and operations can be packaged together in a module.
Program units using this module will have the convenience of a new data type
specific to a particular application. The following is a simple example:

MODULE POLAR_COORDINATES

TYPE POLAR

PRIVATE

REAL RHO, THETA
END TYPE POLAR

INTERFACE OPERATOR(*)

MODULE PROCEDURE POLAR_MULT

END INTERFACE

CONTAINS
FUNCTION POLAR_MULT(P1, P2)

TYPE(POLAR),INTENT(IN) :: P1,P2

TYPE(POLAR) :: POLAR_MULT

POLAR_MULT = &

POLAR(P1%RHO * P2%RHO, &
P1%THETA + P2%THETA)

END FUNCTION POLAR_MULT

. . .

END MODULE POLAR_COORDINATES

In the function POLAR_MULT, the structure constructor POLAR computes a value
that represents the result of multiplication of two arguments in polar
coordinates. Any program unit using the module POLAR_COORDINATES has
access to both the type POLAR and the extended intrinsic operator * for polar
multiplication.

168 007–3693–005

Program Units [3]

3.5.5.6 Procedure Libraries

A module can contain a collection of interface blocks for related procedures.
Argument keywords, as well as optional arguments, can be used to differentiate
various applications using these procedures. The following is a simple example:

MODULE ENG_LIBRARY

INTERFACE

FUNCTION FOURIER(X, Y)

. . .
END

SUBROUTINE INPUT(A, B, C, L)

OPTIONAL C

. . .

END SUBROUTINE INPUT
END INTERFACE

END MODULE ENG_LIBRARY

The following example shows that an input routine can be called using optional
or keyword arguments:

CALL INPUT (AXX, L = LXX, B = BXX)

A collection of related procedures that need to access the same type definitions
and data declarations can be placed in a module. The following example shows
this:

MODULE BOOKKEEPING

TYPE, PRIVATE :: ID_DATA

INTEGER ID_NUMBER

CHARACTER(20) NAME, ADDRESS(3)

REAL BALANCE_OR_SALARY

END TYPE ID_DATA
REAL, PRIVATE :: GROSS_INCOME, EXPENSES, &

PROFIT, LOSS

INTEGER, PARAMETER :: NUM_CUST = 1000, &

NUM_SUPP = 100, &

NUM_EMP = 10
CONTAINS

SUBROUTINE ACCTS_RECEIVABLE(CUST_ID, AMOUNT)

. . .

END SUBROUTINE ACCTS_RECEIVABLE

SUBROUTINE ACCTS_PAYABLE(CUST_ID, AMOUNT)
. . .

END SUBROUTINE ACCTS_PAYABLE

007–3693–005 169

Fortran Language Reference Manual, Volume 2

SUBROUTINE PAYROLL(EMP_ID, AMOUNT)

. . .
END SUBROUTINE PAYROLL

FUNCTION BOTTOM_LINE(AMOUNT)

. . .

END FUNCTION BOTTOM_LINE

END MODULE

3.5.6 Independent Compilation

Independent compilation is the practice of compiling or processing subprograms
separately and then using the compiled program units in a number of
applications without the inconvenience or cost of recompiling those units.

The Fortran INCLUDE facility behaves as if the source text from another file were
inserted in place of the INCLUDE line prior to compilation. This departs from
pure independent compilation in some respects because the program unit in
which the INCLUDE line is contained now depends on material from elsewhere.

The use of a module is also a departure from pure independent compilation in
that a program unit being compiled depends on information from a module.

If the program unit contains a reference to a module, the module must have
been previously compiled and available to the using program unit; either
through a module search path or appearing previously in the file being
compiled. However, if no modules or INCLUDE lines are used, program unit
compilation is completely independent of other sources of information.

Because a module is a complete program unit, it can be compiled independently.
An advantage is that the module contents can be put into a precompiled form
that can be incorporated efficiently during the program units’ compilation.

Although there are frequently some dependencies using modules, it is often
possible to put together a self-contained package consisting of certain modules
and the program units that use them. This package is independent of other
packages that might be part of the Fortran program; packages may be used in
the same way as independent compilation has been used in the past. For
example, such a module package may be compiled independently of the main
program and external procedures, both of which may be compiled
independently of the module package as long as these external procedures do
not use the module package. In cases where program units use the module
package, such program units are required to be compiled after the module
package is compiled.

170 007–3693–005

Program Units [3]

3.6 Block Data Program Units

A block data program unit initializes data values in a named common block.
The block data program unit contains data specifications and initial data values.
Executable statements are not allowed in a block data program unit and the
block data program unit is referenced only in EXTERNAL statements in other
program units; its only purpose is to initialize data.

The block data program unit is defined as follows:

block_data is block_data_stmt
[specification_part]

end_block_data_stmt

block_data_stmt is BLOCK DATA [block_data_name]

end_block_data_stmt is END [BLOCK DATA [block_data_name]]

The preceding BNF definition results in the following general format to use for
constructing a block data program unit:

BLOCK DATA [block_data_name]
[specification_part]
END [BLOCK DATA [block_data_name]]

The following is an example of a block data program unit:

BLOCK DATA SUMMER
COMMON /BLOCK_2/ X, Y

DATA X /1.0/, Y /0.0/

END BLOCK DATA SUMMER

The name SUMMER appears on the BLOCK DATA statement and the END
statement. X and Y are initialized in a DATA statement; both variables are in
named common block BLOCK_2.

The CF90 and MIPSpro 7 Fortran 90 compilers allow you to include 26
unnamed block data program units.

ANSI/ISO: The Fortran standard specifies that there can be at most one
unnamed block data program unit in an executable program.

007–3693–005 171

Fortran Language Reference Manual, Volume 2

The block data name on the END statement, if present, must be the same as on
the BLOCK DATA statement.

The specification_part can contain any of the following statements or attributes.
Other statements are prohibited.

• COMMON

• DATA

• DIMENSION

• EQUIVALENCE

• IMPLICIT

• INTRINSIC

• PARAMETER

• POINTER

• SAVE

• TARGET

• USE

• Derived-type definition

• Type declaration

A USE statement in a block data program unit can give access to a limited set of
objects, such as named constants, sequence derived types, and variables used
only as arguments of inquiry functions. Most uses are disallowed by the
restrictions on variables in block data programs.

The block data program unit can initialize more than one named common block.

It is not necessary to initialize an entire named common block.

The CF90 and MIPSpro 7 Fortran 90 compilers permit named common blocks to
appear in more than one block data program unit.

ANSI/ISO: The Fortran standard permits a given named common block to
appear in only one block data program unit.

172 007–3693–005

Using Procedures [4]

Procedures help to structure a problem solution into understandable segments.
This chapter describes the details for constructing and using procedures in
Fortran.

4.1 Procedure Terms and Concepts

This section describes some of the basic terms and concepts associated with
Fortran procedures.

4.1.1 Procedure Terms

A procedure can take two basic forms in a Fortran program: a subroutine and a
function. These two forms are very similar except in the way they are invoked.

4.1.1.1 Subroutines

A subroutine is a procedure whose purpose is to perform an action, such as
modifying a set of arguments and/or global variables, or performing
input/output (I/O). Typically, a subroutine is invoked with a CALL statement,
but Fortran also provides an additional form of subroutine reference: the
defined assignment. A subroutine can be used to define a new form of
assignment, one that is different from those intrinsic to Fortran. Such
subroutines are invoked with assignment syntax (using the = symbol) rather
than with the CALL statement.

4.1.1.2 Functions

The purpose of a function is to provide a value needed in an expression. A
function is invoked as an expression operand, and the result is used as the
value of that operand. In addition, a Fortran function can be used to define a
new operator or extend the meaning of an intrinsic operator symbol; such a
function is invoked by the appearance of the new or extended operator in the
expression along with the appropriate operand(s). For example, an
interpretation for the operator + can be defined for logical operands. This
extends the + operation’s intrinsic definition because the intrinsic definition of +
involves only numeric operands.

007–3693–005 173

Fortran Language Reference Manual, Volume 2

4.1.1.3 Function Results

The main difference between a subroutine and a function is that there is a
function result value associated with a function. More precisely, there is a result
value associated with any particular execution or call to a function. This result
can be of any type, including derived type, and it can be array-valued. The
RESULT option in the FUNCTION statement can be used to give the result a
different name than the function name. The RESULT clause is not required for a
recursive function that calls itself directly unless the function result is
array-valued.

ANSI/ISO: If a function invokes itself directly, the Fortran standard requires
that a RESULT clause be specified.

4.1.1.4 External Procedures

External procedures are stand-alone subroutines and functions that are not part
of any other program unit. They can share information, such as data and
procedures through argument lists, modules, and common blocks, but
otherwise they do not share information with any other program unit. They can
be developed, compiled, and used completely independently of other
procedures and program units. In fact they need not even be written in Fortran.

4.1.1.5 Intrinsic Procedures

Fortran contains intrinsic procedures such as sine and cosine. Intrinsic
procedures are available to any Fortran program unit automatically. There are
over 100 intrinsic procedures in Fortran, and the CF90 and MIPSpro 7 Fortran
90 compilers include several additional procedures as extensions. These
procedures are described in Chapter 5, page 241.

Many of the intrinsic procedures are generic. The generic properties (when two
or more procedures share the same name) of an intrinsic procedure can be
extended and the automatic availability of an intrinsic procedure can be
overridden explicitly by an EXTERNAL statement or a procedure interface block.

Many intrinsic procedures can be called elementally. In these cases an array is
supplied instead of a scalar for an actual argument. The computation is applied
element-by-element to those arguments and returns a conformable array result.
User-defined procedures cannot be called elementally.

174 007–3693–005

Using Procedures [4]

4.1.1.6 Internal Procedures

Internal procedures are defined within other procedures. The procedure that
contains an internal procedure is called the host of the internal procedure. An
internal procedure can be either a subroutine or a function and appears
between the CONTAINS and END statements of its host. An internal procedure
is local to its host and inherits the host’s environment through host association.

4.1.1.7 Module Procedures

Module procedures are defined within module program units. A module
procedure can be either a subroutine or a function and appears between the
CONTAINS and END statements of its host module. A module procedure
inherits the host module’s environment through host association. A module
procedure can be PRIVATE to the module, and hence available only within the
module, or it can be PUBLIC.

4.1.1.8 Statement Functions

Statement functions are one-statement function definitions in the specification
part of a program unit other than a module or a block data program unit. Their
functionality is extended and essentially superseded by internal functions in
Fortran.

4.1.1.9 Procedure Entry

Normally, one procedure is associated with a procedure subprogram. However,
a procedure subprogram, which is a syntactic entity, can define any number of
conceptual procedures. The name of the procedure subprogram identifies one
procedure associated with that subprogram. An ENTRY statement can be used
to specify and identify an additional procedure associated with that
subprogram. These statements are procedure entries, and each defines an
additional procedure. This technique is often used in external procedure
subprograms to define different actions involving the data environment of the
subprogram. The classic example is the use of the same subprogram to define
both the SIN and COS functions, because COS(x)= SIN (� /2-x). This sort of
data sharing is provided by host association for internal and module
procedures; therefore, procedure entries are not needed for internal and module
procedures. Procedure entries are not permitted for internal procedures,
although they are permitted in module procedures.

007–3693–005 175

Fortran Language Reference Manual, Volume 2

4.1.1.10 Procedure Reference

Procedure reference is the term given to the appearance of a procedure name in a
program in such a way that causes the procedure to be executed. This is also
termed calling or invoking the procedure. In most cases reference is used in this
chapter, although occasionally call or invoke is used. These terms are used for
both functions and subroutines. When a procedure is invoked, it suspends
execution of the program making the call while the procedure is executed.
When procedure execution is completed, the invoking program resumes
execution.

A subroutine reference is a standalone action in the form of a CALL statement. In
some cases, the call can take the form of an assignment statement.

A function reference occurs as part of an expression when the name of the
function and its argument list appear as a primary in the expression. In some
cases, a function reference can take the form of a unary or binary operation
involving an operator with the arguments as its operands.

4.1.1.11 Actual Arguments

Actual arguments appear in a procedure reference and specify the actual entities
to be used by the procedure during its execution. These can be variables, for
example, with different values for each reference. Some arguments are used as
input values, others are variables that receive results from the procedure
execution, and some can be both.

4.1.1.12 Dummy Arguments

Dummy arguments are the names by which the actual arguments are known
inside a procedure. You must specify these names when the procedure is
defined and use them to represent arguments in computations in the procedure.
When the procedure is referenced during program execution, the actual
arguments in the reference become associated with the dummy arguments
through argument association. If the procedure interface is explicit, a call to the
procedure can use the dummy argument names as actual argument keywords.

4.1.1.13 Alternate Return

Alternate returns are special arguments allowed only in subroutines. They
permit control to branch immediately to some spot other than the statement
following the call. The actual argument in an alternate return is the label of the
statement to which control should be transferred. This is frequently used in

176 007–3693–005

Using Procedures [4]

accommodating error exits from the subroutine. Alternate returns are an
obsolescent feature, so control structures, such as IF and CASE constructs,
should be used to achieve the desired control.

4.1.1.14 Dummy Procedures

Dummy argument names can be treated within the procedure definition as
procedure names. That is, they can be used as procedure names in procedure
references; this accommodates procedure passing. The associated actual
argument for a dummy procedure must be the name of an actual procedure.
The exceptions are that internal procedures, statement functions, and generic
intrinsic names cannot be used as actual arguments.

4.1.1.15 Non-Fortran Procedures

Procedure definitions can be written in a language other than Fortran. As long
as all references to such a procedure are consistent in terms of the properties of
the interface to this procedure, the calling program remains standard
conforming. It may not be portable, however, because the non-Fortran
procedure or its method of argument communication might differ across
implementations. The only way to guarantee consistent interfaces across
implementations is to write all procedures in standard Fortran.

4.1.2 Argument Association

The term argument association refers to the matching up of data across procedure
boundaries; that is, matching data sources being passed from the calling side
with the appropriate receivers in the called procedure. One helpful image of
this matching up is the plug/socket analogy in Section 4.7.1, page 204.

The term argument association refers first to the overall concept that such a
matching up (or association) must take place in order to use procedures and
second to the rules governing the matchups as described in Section 4.7, page
203.

4.1.3 Recursion

Fortran procedures can be recursive. A procedure involved in either direct or
indirect recursion must have the keyword RECURSIVE added to the FUNCTION
or SUBROUTINE statement of the procedure definition.

007–3693–005 177

Fortran Language Reference Manual, Volume 2

Data initialization implies use of the SAVE attribute. For recursive procedures
that have local data-initialized variables, each layer of recursion shares a single
copy of the variable and initialization takes place only once, at the outset of
program execution.

4.1.4 Host and Use Association

A procedure can access information specified outside its own scope of
definition in the following ways:

• Argument association, described in Section 4.7, page 203.

• Common blocks, described in the Fortran Language Reference Manual, Volume
1.

• Host association, described in Section 6.2.1.3, page 288.

• Use association, described in Section 3.5.4, page 159.

Host association applies to a procedure defined (contained) within another
(host) program unit. A host can be a main program, module program unit,
external procedure, or module procedure. Data and procedure entities specified
in or accessible to the host are accessible to the contained procedure through
host association. The rules for host association are very similar to the scoping
rules of typical block-structured languages, such as Pascal. The main difference
is that the Fortran host association rules must take into account implicit as well
as explicit declarations.

Use association applies to procedures and program units containing USE
statements. All public entities of a module are available to a using procedure
through use association, although the USE...ONLY mechanism can limit
accessibility as the programmer desires. Use association allows shared data and
procedure entities to be gathered together in a central place, with selective
access to and hiding of these entities as appropriate in the specific situation.

4.1.5 Implicit and Explicit Interfaces

The interface to a procedure is the collection of names and attributes of the
procedure and its arguments. When this information is not made available
explicitly to the calling program, the interface is said to be implicit to the calling
program. In this case the interface information is assumed by the calling
program from the properties of the procedure name and actual arguments in
the procedure call. With implicit interfaces, the compiler assumes that the
programmer has specified a valid procedure call and has correctly matched

178 007–3693–005

Using Procedures [4]

actual argument and dummy argument data types, and so on. For array
arguments, element sequence association is assumed. For pointer arguments,
the target is passed. External procedures and statement functions have implicit
interfaces. Note that an implicit interface prohibits the use of generic references
and argument keywords because there are no such mechanisms to describe
these characteristics.

A procedure interface is said to be explicit if the interface information is known
at the point of call and does not have to be assumed. In this case the compiler
can check and guarantee the validity of the call. Intrinsic procedures have
explicit interfaces. The explicit nature of the intrinsic procedure interfaces, for
example, permits generic intrinsic functions and keyword calls. The compiler
can, based on the type of the actual argument, generate a call to the correct
specific intrinsic function, because the compiler has explicit interface
information for all of the intrinsic functions.

The interface block allows optional explicit specification of external procedure
interfaces and is described later in this chapter.

Several Fortran features require explicit interfaces in order to allow correct and
efficient procedure calls. These include optional arguments, calls using
argument keywords, user-defined operations, user-defined assignment, and
user-defined generic procedures. For more information on explicit interfaces,
see Section 4.8.1, page 225.

4.2 Subroutines

A subroutine defines a complete process and is self-contained. It has an initial
SUBROUTINE statement, a specification part, an execution part that comprises
the algorithm, any internal procedures that perform ancillary processes, and an
END statement. When a subroutine is invoked, its execution begins with the
first executable construct in the subroutine. Data objects and other entities may
be communicated to and from the subroutine through argument association,
host association, use association, or common storage association.

4.2.1 Subroutine Definition

The general format of an external, module, or internal subroutine is as follows:

007–3693–005 179

Fortran Language Reference Manual, Volume 2

[prefix] SUBROUTINE subroutine_name [([dummy_arg_list])]
[specification_part]
[execution_part]
[internal_subprogram_part]
END [SUBROUTINE [subroutine_name]]

This format contains entities and statements that are defined as follows:

subroutine_subprogram is subroutine_stmt
[specification_part]
[execution_part]
[internal_subprogram_part]

end_subroutine_stmt

subroutine_stmt is [prefix] SUBROUTINE subroutine_name [([dummy_arg_list])]

prefix is prefix_spec [prefix_spec] ...

prefix_spec is RECURSIVE

or PURE

or ELEMENTAL

dummy_arg is dummy_arg_name

or *

end_subroutine_stmt is END [SUBROUTINE [subroutine_name]]

A dummy_arg is either a dummy argument name or an asterisk (*), where the
asterisk designates an alternate return. When a subroutine is executed, the
dummy arguments become associated with the actual arguments specified in
the call (see Section 4.7, page 203, for more information on this).

The following examples show SUBROUTINE statements:

SUBROUTINE CAMP(SITE)
SUBROUTINE TASK()

SUBROUTINE INITIALIZE_DATABASE

SUBROUTINE LIGHT(INTENSITY, M, *)

RECURSIVE SUBROUTINE YKTE(Y, KE)

The following example shows a subroutine subprogram:

180 007–3693–005

Using Procedures [4]

SUBROUTINE TROUT(STREAM, FLY)

CHARACTER*10 STREAM
INTENT(IN) FLY

STREAM = . . .

. . .

END SUBROUTINE TROUT

If the END statement contains a subroutine name, it must be the same name as
that in the SUBROUTINE statement.

An internal subroutine must not contain an internal subprogram part. An
internal subroutine must not contain ENTRY statements.

In an internal or module subroutine, the END statement must be of the
following form because the keyword SUBROUTINE is required:

END SUBROUTINE [subroutine_name]

The use of alternate returns is an obsolescent feature.

The following rules apply to the subroutine prefix:

• The prefix can contain no more than one of each type of prefix_spec. For
example, you cannot specify PURE twice in a prefix.

• If you specify ELEMENTAL or PURE, the subroutine itself must conform to
the rules governing elemental or pure procedures. See Section 4.5, page 199,
for information on pure procedures. See Section 4.6, page 201, for
information on elemental procedures.

• When a subroutine calls itself either directly or indirectly, you must specify
RECURSIVE.

Dummy argument attributes can be specified explicitly in the body of the
subroutine or may be declared implicitly. Each dummy argument is a local
variable of the subroutine; therefore, its name must be different from that of any
other local variable in the subroutine.

The INTENT attribute can be specified for the dummy arguments of the
subroutine, but an INTENT attribute cannot be specified for a dummy pointer
or a dummy procedure.

The PRIVATE and PUBLIC attributes must not be specified in a subroutine.

007–3693–005 181

Fortran Language Reference Manual, Volume 2

4.2.2 Subroutine Reference

To use or invoke a subroutine, place a CALL statement or defined assignment at
that point in a program where the process the subroutine performs is needed.
A subroutine invocation specifies the arguments to be used and the name of the
subroutine.

A subroutine reference is defined as follows:

call_stmt is CALL subroutine_name [([actual_arg_spec_list])]

actual_arg_spec is [keyword =] actual_arg

keyword is dummy_arg_name

actual_arg is expr

or variable

or procedure_name

or alt_return_spec

alt_return_spec is * label

Each actual_arg is associated with the corresponding dummy argument, as
described in Section 4.7, page 203, by its position in the argument list or the
name of its keyword. A variable is a special case of expression in the context of
an actual_arg; a variable may be associated with dummy arguments used with
any intent (IN, OUT, INOUT), whereas other forms of expressions must be
associated either with dummy arguments with intent IN or dummy arguments
that do not have an INTENT attribute.

Positional arguments must appear first in the argument list if both positional
and keyword arguments are used in the same actual_arg_spec_list. Once the first
keyword is used, the rest of the arguments must be keyword arguments.

Exactly one actual_arg is associated with each nonoptional dummy argument.
For an optional dummy argument, the actual_arg may be omitted.

The keyword is the name of the dummy argument in the explicit interface for the
subroutine. If a keyword is present, the actual_arg is associated with the dummy
argument with that keyword name.

182 007–3693–005

Using Procedures [4]

If the keyword is omitted, it must be omitted from all preceding actual_arg s in
that argument list. If no keyword is used, the arguments all have a positional
correspondence.

The label in the alternate return specifier must be a branch target in the same
scoping unit as the CALL statement.

An actual_arg must not be the name of an internal procedure or statement
function.

An actual_arg associated with a dummy procedure must be the specific name of
a procedure. (There may be an identical generic name, but it is the procedure
with that specific name that is passed.) Certain specific intrinsic function names
must not be used as actual_args; see the Intrinsic Procedures Reference Manual, for
more information on this.

If a reference to a pure procedure has an actual_arg that is a procedure_name, the
actual_arg must be the name of a pure procedure.

A reference to an elemental subroutine is an elemental reference if all actual
arguments corresponding to INTENT(OUT) and INTENT(INOUT) dummy
arguments are arrays that have the same shape and if the remaining actual
arguments are conformable with them.

Example of subroutine references:

CALL TYR(2.0*A, *99) ! SUBROUTINE TYR (R, *)

. . .

99 . . . ! error recovery

CALL TEST(X = 1.1, Y = 4.4) ! SUBROUTINE

! TEST (Y, X)

In the first example, an alternate return to statement 99 in the calling program
unit is the last argument. Keyword arguments are used for X and Y in the
second CALL statement; therefore, the order of the actual arguments does not
matter.

Another way to invoke or reference a subroutine is with user-defined
assignment. A subroutine can define forms of assignment different from the
intrinsic assignment supplied by Fortran. Defined assignment is particularly
useful with data structures. Defined assignment subroutines require an
ASSIGNMENT interface as described in Section 4.7.4, page 216. They have
exactly two arguments, arg1 and arg2, both required and the first with intent
OUT or INOUT and the second with intent IN. Defined assignment is invoked
with the following assignment syntax:

007–3693–005 183

Fortran Language Reference Manual, Volume 2

arg1 = arg2

The attributes of the arguments select the defined assignment. This facility, in
effect, allows you to extend the generic properties of assignment.

Example of defined assignment:

MODULE POLAR_COORDINATES

TYPE POLAR

REAL :: RHO, THETA
END TYPE POLAR

INTERFACE ASSIGNMENT (=)

MODULE PROCEDURE ASSIGN_POLAR_TO_COMPLEX

END INTERFACE

. . .
CONTAINS

SUBROUTINE ASSIGN_POLAR_TO_COMPLEX(C, P)

COMPLEX, INTENT(OUT) :: C

TYPE(POLAR), INTENT(IN) :: P

C = CMPLX(P%RHO * COS(P%THETA), &
P%RHO * SIN(P%THETA))

END SUBROUTINE ASSIGN_POLAR_TO_COMPLEX

END MODULE POLAR_COORDINATES

PROGRAM CART

USE POLAR_COORDINATES
COMPLEX :: CARTESIAN

. . .

CARTESIAN = POLAR(R, PI/6)

. . .

END PROGRAM

This last assignment is equivalent to the following subroutine call:

CALL ASSIGN_POLAR_TO_COMPLEX(CARTESIAN, POLAR(R, PI/6))

The structure constructor POLAR constructs a value of type POLAR from R and
PI/6 and assigns this value to CARTESIAN according to the computations
specified in the subroutine.

184 007–3693–005

Using Procedures [4]

4.3 Functions

A function is similar to a subroutine, except that its principal use is as a
primary in an expression. Analogous to a subroutine, a function has an initial
FUNCTION statement, a specification part, an execution part, possibly internal
procedures, and an END statement. An argument list provides data
communication with the function, but in this case arguments typically serve as
input data for the function. The principal output is delivered as the function
result to the expression invoking the function. Data objects also may be
available to the function through host association, use association, and common
storage association.

4.3.1 Function Definition

The general format of an external, module, or internal function subprogram is
as follows:

[function_prefix] function_statement [RESULT (result_name)]
[specification_part]
[execution_part]
[internal_subprogram_part]
END [FUNCTION [function_name]]

A function is defined as follows:

function_subprogram is function_stmt
[specification_part]
[execution_part]
[internal_subprogram_part]

end_function_stmt

function_stmt is [prefix] FUNCTION function_name ([dummy_arg_name_list])
[RESULT(result_name)]

prefix is prefix_spec [prefix_spec] ...

prefix_spec is type_spec

or RECURSIVE

or PURE

007–3693–005 185

Fortran Language Reference Manual, Volume 2

or ELEMENTAL

end_function_stmt is END [FUNCTION [function_name]]

The simplest function statement can take the following form:

FUNCTION function_name ([dummy_arg_name_list])

When a function is executed, the dummy arguments become associated with
the actual arguments specified in the reference. See Section 4.7, page 203, for
more information on argument association.

The following are some example FUNCTION statements:

FUNCTION HOSPITAL(PILLS)

REAL FUNCTION LASER(BEAM)

RECURSIVE CHARACTER*(10) FUNCTION POLICE(STATION) &

RESULT(ARREST)

The following rules apply to the function prefix:

• The prefix can contain no more than one of each type of prefix_spec. For
example, you cannot specify PURE twice in a prefix.

• If ELEMENTAL is present, RECURSIVE cannot be present.

• If you specify ELEMENTAL, you cannot also specify PURE. These
specifications are mutually exclusive. If you specify ELEMENTAL or PURE,
the function itself must conform to the rules governing elemental or pure
procedures. See Section 4.5, page 199, for information on pure procedures.
See Section 4.6, page 201, for information on elemental procedures.

• When a function is either directly or indirectly recursive, you must specify
RECURSIVE.

The type of the function can be specified in the FUNCTION statement or in a
type declaration statement, but not both. If the type is not explicitly specified in
this way, the default typing rules apply.

If the function result is array valued or a pointer, the declarations must state
these attributes for the function result name. The function result name can be
declared to be an explicit-shape or deferred-shape array. If the function is an
explicit-shape array, the bounds can be nonconstant specification expressions.

186 007–3693–005

Using Procedures [4]

Dummy argument attributes can be specified explicitly in the body of the
function or may be declared implicitly. Each dummy argument is a local
variable of the function; therefore, its name must be different from that of any
other local variable in the function. For more information on this, see Section
6.1, page 276.

If the END statement contains the function name, it must be the same name
used in the FUNCTION statement.

An internal function must not contain an internal subprogram part.

An internal function must not contain ENTRY statements.

In an internal or module function, the END statement must be of the following
form because the keyword FUNCTION is required, as follows:

END FUNCTION [function_name]

If there is no RESULT clause, the function name is used as the result variable. If
the function result is scalar and of type integer, real, complex, logical, or
character, the function name followed by a left parenthesis is considered to be a
recursive reference to the function. Otherwise, it is a reference to the result
variable.

ANSI/ISO: The Fortran standard does not specify direct recursion unless a
RESULT clause is specified on the FUNCTION statement.

If there is a RESULT clause, the result_name is used as the result variable, and
the function name must not be used as the result variable; in this case, all
references to the function name are function references (that is, recursive calls).

The function name must not appear in specification statements if there is a
RESULT clause.

If the result of a function is not a pointer, its value must be completely defined
before the end of execution of the function. If the result is an array, all the
elements must be defined; if the result is a structure, all of the components
must be defined.

If the result of the function is an array or a pointer to an array, its shape must
be determined before the end of execution of the function.

If the result is a pointer, its allocation status must be determined before the end
of execution of the function; that is, a target must be associated with the
pointer, or the pointer must have been explicitly disassociated from a target.

007–3693–005 187

Fortran Language Reference Manual, Volume 2

The INTENT attribute can be specified for the dummy arguments of the
function, except that an INTENT attribute must not be specified for a dummy
pointer or a dummy procedure.

The PRIVATE and PUBLIC attributes must not be specified in a function.

4.3.2 RESULT Option

As with subroutines, when a function is either directly or indirectly recursive,
RECURSIVE must appear in the FUNCTION statement. The RESULT clause
specifies a name different from the function name to hold the function result.
The result name can be declared, defined, and referenced as an ordinary data
object. The function name has the same attributes as the result name. Upon
return from a function with a RESULT clause, the value of the function is the
last value given to the result name.

If there is no RESULT clause, the function name is used as the result data object.
If the function is both array-valued and directly recursive, however, a recursive
reference to the function is indistinguishable from a reference to the
array-valued result. The RESULT clause resolves this ambiguity by providing
one name for the result value (the result name) and another name for recursive
calls (the function name).

A simple example of a recursive function is REVERSE, which reverses the words
in a given phrase:

RECURSIVE FUNCTION REVERSE(PHRASE) RESULT(FLIPPED)
CHARACTER(*) PHRASE

CHARACTER(LEN(PHRASE)) FLIPPED

L = LEN_TRIM(PHRASE)

N = INDEX(PHRASE(1:L), " ", BACK = .TRUE.)

IF (N == 0) THEN

FLIPPED = PHRASE
ELSE

FLIPPED = PHRASE(N+1:L) // " " &

// REVERSE(PHRASE(1:N-1))

END IF

END FUNCTION REVERSE

4.3.3 Function Reference

One way a function can be referenced or invoked is by placing the function
name with its actual arguments as an operand in an expression. The actual

188 007–3693–005

Using Procedures [4]

arguments are evaluated; argument association takes place in accordance with
the rules in Section 4.7, page 203; and the statements in the body of the function
are executed. The reference results in a value that is then used as the value of
that primary in the expression.

In the following example expression, F is a function of one argument that
delivers a numeric result. This result becomes the value of the right-hand
operand of the expression:

A + F(B)

A function reference is defined as follows:

function_reference is function_name ([actual_arg_spec_list])

actual_arg_spec is [keyword =] actual_arg

keyword is dummy_arg_name

actual_arg is expr

or variable

or procedure_name

The only difference between subroutine and function argument lists is that a
function argument list must not contain an alternate return. Otherwise, the
rules and restrictions for actual and dummy arguments are the same for
functions and subroutines as those described in Section 4.2.2, page 182.

A keyword is a dummy argument name in the function interface. As with
subroutines, each actual argument is associated with the corresponding dummy
argument by position or keyword. A variable is a special case of expression in
the context of an actual argument; variables can be associated with dummy
arguments used with any intent (IN, OUT, INOUT), whereas other forms of
expressions must be associated either with dummy arguments with intent IN or
dummy arguments that do not have an INTENT attribute. Note that (A), where
A is a variable, is not a simple reference to the variable but is a more general
expression.

A reference to an elemental function is an elemental reference if one or more
actual arguments are arrays and if all array arguments have the same shape.

007–3693–005 189

Fortran Language Reference Manual, Volume 2

The following are examples of function references:

Y = 2.3 * CAPS(4*12.0, K)! FUNCTION CAPS(SIZE, KK)

PRINT *, TIME(TODAYS_DATE)! FUNCTION TIME(DATE)

Another way to reference a function is with user-defined operators in an
expression. A number of arithmetic, logical, relational, and character operators
are predefined in Fortran; these are called intrinsic operators. These operators
can be given additional meanings, and new operators can be defined. Functions
define these operations and interface blocks associate them with the desired
operator symbols, as described in Section 4.7.3, page 212. A function can be
invoked by using its associated defined operator in an expression. The rules
associated with operator functions are as follows:

• Functions of one argument are used to define unary operations; functions of
two arguments are used to define binary operations.

• The arguments are required and must have intent IN.

• New operators must have the dot form, must contain only letters
(underscores not allowed) between the dots, must have no more than 31
letters, and must not be the same as logical literal constants such as .TRUE.
or .FALSE.. Examples are .FOURIER., .NEWPLUS., and
.BLAHANDBLAAH..

If a defined operator is the same as an intrinsic operator (for example, +, *,
.EQ., .AND.), it extends the generic properties of this operator, as described.
In such an extension, the attributes of the arguments must not match exactly
those of the operands associated with an intrinsic meaning of the operator. For
more information on intrinsic operations, see the Fortran Language Reference
Manual, Volume 1.

In the following example, the presence of .BETA. in the expression in the
PRINT statement invokes the function BETA_OP, with X as the first actual
argument and Y as the second actual argument. The function value is returned
as the value of X .BETA. Y in the expression, as follows:

INTERFACE OPERATOR (.BETA.)

FUNCTION BETA_OP(A, B)
. . . ! attributes of BETA_OP, A, and B

! (including INTENT(IN) for A and B)

END FUNCTION

END INTERFACE

. . .
PRINT *, X .BETA. Y

190 007–3693–005

Using Procedures [4]

4.3.4 Statement Functions

A statement function statement is a function definition that consists of only one
Fortran statement.

ANSI/ISO: The Fortran standard has declared the statement function
definition statement to be obsolescent.

A statement function statement is defined as follows:

OBS stmt_function_stmt is function_name ([dummy_arg_name_list]) = scalar_expr

A statement function statement can be replaced (except within an internal
procedure) with the following equivalent three-line internal function definition:

FUNCTION function_name(dummy_arg_name_list)
function_name = scalar_expression
END FUNCTION

The preceding format assumes that the function and its arguments are typed
the same in both cases. Additional rules governing statement functions follow
these three examples of statement functions:

Example 1:

CHARACTER(5) ZIP_5 ! Notice these are scalar

CHARACTER(10) ZIP_CODE ! character strings

ZIP_5(ZIP_CODE) = ZIP_CODE(1:5)

Example 2:

INTEGER TO_POST, MOVE

TO_POST(MOVE) = MOD(MOVE,10)

Example 3:

REAL FAST_ABS

COMPLEX Z

FAST_ABS(Z) = ABS(REAL(Z)) + ABS(AIMAG(Z))

Note that the function and all the dummy arguments are scalar.

007–3693–005 191

Fortran Language Reference Manual, Volume 2

The expression must contain only intrinsic operations and must be scalar
valued. Note that this allows the expression to include references to
scalar-valued functions having array arguments, such as SUM(A+B), where SUM
is the array reduction intrinsic function and A and B are conformable arrays.

Statement functions are defined in the specification part of a program unit,
internal procedure, or module procedure. Any other statement function
referenced in the expression must have been defined earlier in the specification
part, and hence a statement function cannot be recursive (either directly or
indirectly).

The primaries of the scalar_expr must be constants (literal or named), references
to variables, references to functions and function dummy procedures, or
intrinsic operations. If scalar_expr contains a reference to a function or function
dummy procedure, the following are true:

• The reference must not require an explicit interface.

• The function must not require an explicit interface unless it is an intrinsic.

• The function must not be a transformational intrinsic.

• The result must be a scalar.

If an argument to a function or function dummy procedure is array-valued, it
must be an array name.

If a reference to a statement function appears in scalar_expr, it must have been
defined earlier in the scoping unit, and it cannot be the name of the statement
function being defined.

Named constants and variables used in the expression must have been declared
earlier in the specification part or made available by use or host association.

If an array element is used in the expression, the parent array must have been
declared earlier in the specification part.

The appearance of any entity in the expression that has not previously been
typed explicitly constitutes an implicit type declaration and any subsequent
explicit type declaration for that entity must be consistent with the implicit type.

Statement function dummy arguments have a scope of the statement function
statement.

Statement function dummy arguments are assumed to have the INTENT (IN)
attribute (that is, function references in the expression must not change the
value of any dummy argument of the statement function).

192 007–3693–005

Using Procedures [4]

A statement function must not be used as an actual argument.

A statement function is referenced in the same manner as any other function,
except that the statement function interface is implicit and therefore the
keyword form of actual arguments is not allowed; the argument association
rules are the same.

Note that statement function interfaces are implicit, not explicit; see Section 4.7.1,
page 204, for a discussion of explicit interfaces. Explicit interfaces are associated
with those procedures that can have array-valued results, assumed-shape
dummy arguments, pointer arguments, and keyword arguments, and can have
various generic forms. Because none of these apply to statement functions,
statement functions do not have and are not allowed to have explicit interfaces.

4.4 Procedure-related Statements

Several procedure-related statements (for example, RETURN, CONTAINS, ENTRY,
EXTERNAL, and INTRINSIC) are general in that they apply to both kinds of
procedures (functions and subroutines) or to more than one form of procedure
(for example, external, internal, module). The following sections describe these
statements.

4.4.1 RETURN Statement

A RETURN statement terminates execution of a procedure and returns control to
the calling program. Often, however, it is not needed because the procedure END
statement performs the same function as well as constituting the physical end of
the procedure. It is occasionally convenient to use RETURN statements, however,
because they may be placed anywhere in the execution part of the procedure.

The RETURN statement is defined as follows:

return_stmt is RETURN [scalar_int_expr]

The scalar_int_expr argument is applicable only to subroutines and is used in
conjunction with alternate returns. This expression must be of type integer, and
its value must be in the range 1 to n, where n is the number of alternate returns
in the argument list; the value selects which alternate return, counting from left
to right in the argument list, is to be used for this particular return from the
procedure. The effect of an alternate return is the same as that produced by the

007–3693–005 193

Fortran Language Reference Manual, Volume 2

following statements (where inside SUBR, the variable IRET is assigned the
integer expression alternate return value prior to returning from SUBR):

CALL SUBR (..., IRET)
GO TO (label_list), IRET

The alternate return is an obsolescent feature.

4.4.2 CONTAINS Statement

The CONTAINS statement separates the internal procedures from the
specification and executable parts of the host, and it separates module
procedures from the specification part of the module. It is defined as follows:

contains_stmt is CONTAINS

It is a nonexecutable statement that has the effect of making the execution
sequence bypass everything following the CONTAINS statement up to the END
statement of the program unit. Therefore, if it were executable, the CONTAINS
statement would have the effect of a STOP statement in a main program and a
RETURN statement in a procedure subprogram.

The CONTAINS statement serves only to delimit the procedure part of a
program unit.

4.4.3 ENTRY Statement

Section 4.1.1, page 173, describes procedure entry. A procedure entry is defined
by the appearance of an ENTRY statement in the specification or execution part
of the procedure subprogram.

The ENTRY statement is defined as follows:

entry_stmt is ENTRY entry_name [([dummy_arg_list])] [RESULT (result_name)]

The ENTRY statement can be thought of as providing auxiliary FUNCTION
statements in function subprograms or SUBROUTINE statements in subroutine
subprograms, each defining another procedure. The entry names must be
different from one another and from the original function or subroutine name.

194 007–3693–005

Using Procedures [4]

The following example illustrates a typical way of using the ENTRY statement to
define several procedures in a single subprogram. In this example, the set of
executable statements follows each ENTRY statement and precedes the next one.
The last one is a RETURN statement, which represents the procedure
corresponding to the entry. When the procedure represented by the entry is
called, the procedure is entered and execution proceeds from this point.
Execution continues in the procedure in the normal manner, ignoring any
ENTRY statements subsequently encountered, until a RETURN statement is
executed or the end of the procedure is reached.

SUBROUTINE name_1 (argument_list_1)
. . .

RETURN

ENTRY name_2 (argument_list_2)
. . .! This falls through past the next ENTRY statement

ENTRY name_3 (argument_list_3)
. . .

RETURN

END

Often the computations in these entry bodies are similar, involving the same
data and code.

All of the entries in a subroutine subprogram define subroutine procedures, and
all of the entries in a function subprogram define function procedures. All of
the entries in a function subprogram must be compatible with storage
association. The RESULT option on an ENTRY statement has the same form and
meaning as the RESULT option on a FUNCTION statement.

The following are examples of the ENTRY statement:

ENTRY FAST(CAR, TIRES)

ENTRY LYING(X, Y) RESULT(DOWN)

The following list enumerates rules regarding the ENTRY statement:

1. If an ENTRY statement appears in a function subprogram, the parentheses in
the ENTRY statement surrounding the optional dummy argument list must
be present.

2. An ENTRY statement can appear only in an external or module subprogram;
an internal subprogram must not contain ENTRY statements.

007–3693–005 195

Fortran Language Reference Manual, Volume 2

3. An ENTRY statement must not appear in an executable construct (IF, DO,
CASE, or WHERE constructs) or a nonblock DO loop.

4. An entry name must not be the same as any dummy argument name in the
subprogram.

5. An entry name must not appear in an EXTERNAL statement, INTRINSIC
statement, or procedure interface block in that subprogram.

6. The RESULT option applies only to function entries and thus may appear
only in function subprograms.

7. If result_name is specified, it must not be the same as any entry name, the
function name, or any other result_name. If result_name is specified, the
entry_name must not appear in any specification statements in the
subprogram; it inherits all of its attributes from result_name.

8. The keywords PURE, ELEMENTAL, and RECURSIVE cannot be used in an
ENTRY statement. Instead the presence or absence of these keywords on the
initial SUBROUTINE or FUNCTION statement of the subprogram applies to
each entry in the procedure.

9. If each entry result in a function subprogram has the same type, kind, and
shape as the function result, each of the entries identifies (is an alias for) the
same result variable. In this case there is no restriction on the nature of the
result. For example, the result could be of derived type, either scalar or
array, and could have the POINTER attribute.

If all of the entries in a function subprogram (including the function result)
are not the same type, kind, and shape, then they must all be scalar,
without the POINTER attribute, and must be capable of being equivalenced.
This means they all must be of type character with the same length or any
mix of default integer, default real, default logical, double-precision real, or
default complex. The reason for these rules is that all subprogram entries
are storage associated with the function result.

10. A dummy argument must not appear in an executable statement before the
ENTRY statement specifying that dummy argument. A dummy argument of
the ENTRY statement must not appear in a statement function scalar
expression before the ENTRY statement specifying that dummy argument,
unless it is also a dummy argument of the statement function.

11. An executable statement or statement function depending on a dummy
argument of the procedure that was entered, or upon a local data object
depending on that dummy argument (such as a dynamic local array whose
size depends on the dummy argument), may be executed only if the

196 007–3693–005

Using Procedures [4]

dummy argument appears in the ENTRY statement of the referenced
procedure. In addition, an associated actual argument must be present if
the dummy argument is optional.

For either a function or subroutine subprogram the order, number, types, kind
type parameters, and names of the dummy arguments in an ENTRY statement
may differ from those in the FUNCTION or SUBROUTINE statement or any other
ENTRY statement in that subprogram. Note, however, that all of the entry result
values of a function subprogram must be able to be equivalenced to the
function result value, as described previously in item 9.

The interface to a procedure defined by an ENTRY statement in an external
subprogram can be made explicit in another scoping unit (the calling scoping
unit) by supplying an interface body for it in a procedure interface block. In
this case the ENTRY statement appears as the first statement of the interface
body, but the word ENTRY is replaced by the word FUNCTION or SUBROUTINE,
whichever is appropriate. Such an interface body must include RECURSIVE if
the subprogram is recursive and must correctly specify the dummy argument
attributes and the attributes of the result if it is a function. Entry procedures
defined in module procedures already have explicit interfaces in program units
that use the module.

4.4.4 EXTERNAL Statement

Consider the following program segment in a program unit that contains no
declarations:

. . .

A = X + Y

CALL B(X, Y)

CALL Q(A, B, C)
. . .

It is clear that A is a variable, and B and Q are subroutines. But in this code
fragment, C could be either a variable name or a procedure name. The other
statements in the program may or may not resolve the mystery. In the cases
where they do not, the argument is assumed to be a variable. But when the
programmer wants it to be a procedure name, there must be some way to
specify it. The means for doing this is the EXTERNAL statement, which is
defined as follows:

007–3693–005 197

Fortran Language Reference Manual, Volume 2

external_stmt is EXTERNAL [::] external_name_list

The EXTERNAL statement appears in the program unit in which the procedure
in question is an actual argument; the procedure must be an external procedure
or dummy procedure. Internal procedures, statement functions, and generic
names must not appear as actual arguments. Use association takes care of
module procedures, and intrinsic procedures are handled separately. An
interface block for the external procedure has the same effect (as well as
providing argument checking and other benefits) and, therefore, effectively
replaces the EXTERNAL statement for this purpose.

A name that appears in an EXTERNAL statement must not also appear as a
specific procedure name in an interface block in the same scoping unit. Another
minor use of the EXTERNAL statement is to identify the relevant block data
program unit by specifying the block data name on the EXTERNAL statement.

4.4.5 INTRINSIC Statement

The INTRINSIC statement does for intrinsic procedures what the EXTERNAL
statement does for external procedures (see the preceding section). The
INTRINSIC statement is defined as follows:

intrinsic_stmt is INTRINSIC [::] intrinsic_procedure_name_list

Note that an interface block cannot be provided for an intrinsic procedure
because that would specify a duplicate explicit interface. If the generic intrinsic
procedure is being extended with user-supplied subprograms, however, an
interface block can have a generic name that is the same as a generic intrinsic
procedure name. In a scoping unit, a name can appear both as the name of a
generic intrinsic procedure in an INTRINSIC statement and as the name of a
generic procedure provided that the procedures in the interface and the specific
intrinsic procedures are all functions or are all subroutines.

For example, in the following procedure reference, if the intrinsic function SIN
is intended for the third actual argument, SIN must be declared in an
INTRINSIC statement if it is not otherwise known to be a procedure name in
that scope. (SIN is both a specific and a generic procedure name. It is the
specific name that is involved here.)

CALL Q(A, B, SIN)

198 007–3693–005

Using Procedures [4]

4.5 Pure Procedures

A pure procedure is one that is free from side effects. Such a procedure does not
modify data that is visible outside of the procedure. The procedure does not
alter global variables or variables accessible by host or use association. It does
not perform I/O, and it does not save any variables. It is safe to reference a
pure procedure in parallel processing situations and when there is no explicit
order of evaluation.

The NOSIDEEFFECTS directive has a functionality that approaches the
functionality of the PURE keyword. You can compare the information in this
section to the information on the NOSIDEEFFECTS directive in the CF90
Commands and Directives Reference Manual, and the MIPSpro 7 Fortran 90
Commands and Directives Reference Manual.

ANSI/ISO: The Fortran standard does not describe the NOSIDEFFECTS
directive.

A pure procedure can be any of the following types of procedures:

• A pure intrinsic function or subroutine

• An object defined by a pure subprogram

• A pure user-defined function or subroutine

A user-defined pure subprogram must have the PURE keyword on the
SUBROUTINE or FUNCTION statement.

Several rules govern pure subprograms. Basically, a pure subprogram cannot
contain any operation that could conceivably result in an assignment or pointer
assignment to a common variable or a variable accessed by use or host
association. Nor can a pure subprogram contain any operation that could
conceivably perform any external file I/O or a STOP operation.

The word conceivably is used in the preceding paragraph to indicate that it is not
sufficient for a pure subprogram merely to be side-effect free in practice. For
example, a function that contains an assignment to a global variable in a block
that is not executed in any invocation of the function is, nevertheless, not a pure
function. Functions like this are excluded to facilitate compile-time checks.

4.5.1 Rules for Pure Procedures

For a function to be pure, most dummy arguments must be specified with the
INTENT(IN)attribute in the specification_part. The exception to this is that

007–3693–005 199

Fortran Language Reference Manual, Volume 2

procedure dummy arguments and dummy arguments with the POINTER
attribute cannot be declared as such.

For a subroutine to be pure, you must declare the intents of most dummy
arguments in the specification_part. Dummy arguments for which you do not
need to specify the intent are procedure arguments, alternate return indicators,
and arguments with the POINTER attribute. The constraints for pure
subroutines are similar to the constrains on pure functions, but side effects to
INTENT(OUT), INTENT(INOUT), and pointer dummy arguments are permitted.

The following additional rules apply to subroutines or functions that you
declare to be pure:

• A local variable declared in the specification_part or internal_subprogram_part
of a pure subprogram cannot have the SAVE attribute. Note that when a
variable is initialized in a type_declaration_stmt or a DATA statement, the
SAVE attribute is implied, so initialization in this manner is also disallowed.

• You must declare all dummy arguments that are procedure dummy
arguments to be PURE in the specification_part of a pure subprogram.

• If a procedure that is neither an intrinsic procedure nor a statement function
is used in a context that requires it to be pure, then its interface must be
explicit in the scope of that use. The interface must specify that the
procedure is PURE.

• All internal subprograms in a pure subprogram must be pure.

• Any procedure referenced in a pure subprogram, including one referenced
by a defined operation or assignment, must be pure.

• Pure subprograms cannot contain a PRINT, OPEN, CLOSE, BACKSPACE,
ENDFILE, REWIND, or INQUIRE statement.

• Pure subprograms cannot contain READ or WRITE (including PRINT)
statements that specify an external file unit nor can they contain * as an I/O
unit.

• Pure subprograms cannot contain a STOP or a PAUSE statement.

4.5.2 Using Variables in Pure Procedures

Certain rules apply to variables used in pure subprograms. These rules apply to
the following types of variables:

• Variables in common blocks

200 007–3693–005

Using Procedures [4]

• Variables accessed by host or use association

• Variables that are dummy arguments to a pure function

• Variables that are dummy arguments with INTENT(IN) to a pure subroutine

The following rules apply to both the types of variables described in the
preceding list and to objects that are storage associated with any such variable.
Specifically, these variables and objects cannot be used in the following contexts:

• As the variable of an assignment statement

• As a DO variable or implied-DO variable

• As an input_item in a READ statement from an internal file

• As an internal_file_unit in a WRITE statement

• As an IOSTAT= specifier in an input or output statement with an internal file

• As the pointer_object of a pointer assignment statement

• As the target of a pointer assignment statement

• As the expr of an assignment statement in which the variable is of a derived
type if the derived type has a pointer component at any level of component
selection

• As an allocate_object or stat_variable in an ALLOCATE or DEALLOCATE
statement

• As a pointer_object in a NULLIFY statement

• As an actual argument associated with a dummy argument with
INTENT(OUT) or INTENT(INOUT) or with the POINTER attribute.

4.6 Elemental Procedures

An elemental procedure is an elemental intrinsic procedure or a procedure that
is defined by a user-specified elemental subprogram. A user-defined elemental
subprogram must have the ELEMENTAL keyword on the SUBROUTINE or
FUNCTION statement.

Note: An elemental subprogram is a pure subprogram, and all of the
constraints for pure subprograms also apply to elemental subprograms. See
Section 4.5, page 199, for more information on pure subprograms.

007–3693–005 201

Fortran Language Reference Manual, Volume 2

An elemental subprogram is, by definition, also a pure subprogram, but the
PURE keyword need not be present. The following additional rules apply to
elemental subroutines and functions:

• All dummy arguments must be scalar and cannot have the POINTER
attribute.

• A function must return a scalar result, and the result cannot have the
POINTER attribute.

• A dummy argument, or a subobject of a dummy argument, cannot appear
in a specification_expr except as an argument to the BIT_SIZE(3I), KIND(3I),
or LEN(3I) intrinsic functions, or to one of the numeric inquiry functions.

• A dummy argument cannot be an asterisk (*).

• A dummy argument cannot be a dummy procedure.

Example:

ELEMENTAL REAL FUNCTION F(A)

REAL, INTENT(IN) :: A
REAL(SELECTED_REAL_KIND(PRECISION(A)*2)) :: WORK

...

END FUNCTION F

4.6.1 Elemental Functions

If a generic name or a specific name is used to reference an elemental function,
the shape of the result is the same as the shape of the actual argument with the
greatest rank. If the actual arguments are all scalar, the result is scalar. For
those elemental functions that have more than one argument, all actual
arguments must be conformable. In the array-valued case, the values of the
elements, if any, of the result are the same as would have been obtained if the
scalar-valued function had been applied separately, in any order, to
corresponding elements of each array actual argument.

The following is an example of an elemental reference to the MAX(3I) intrinsic
function. Assume that X and Y are arrays of shape (M,N). The reference is as
follows:

MAX(X, 0.0, Y)

202 007–3693–005

Using Procedures [4]

The preceding statement is an array expression of shape (M,N) whose elements
have the following values:

MAX (X(I, J), 0.0, Y(I, J))

In the preceding example, I has the values 1 to M, and J has the values 1 to N.

4.6.2 Elemental Subroutines

An elemental subroutine is one that has only scalar dummy arguments, but it
may have array actual arguments. In a reference to an elemental subroutine,
one of the following situations must exist:

• All actual arguments must be scalar.

• All actual arguments associated with INTENT(OUT) and INTENT(INOUT)
dummy arguments must be arrays of the same shape and the remaining
actual arguments must be conformable with them. In this case, the values of
the elements, if any, of the results are the same as would be obtained if the
subroutine had been applied separately, in any order, to corresponding
elements of each array actual argument.

In a reference to the intrinsic subroutine MVBITS(3I), the actual arguments
corresponding to the TO and FROM dummy arguments may be the same
variable. Apart from this, the actual arguments in a reference to an elemental
subroutine must satisfy the restrictions of Section 4.7.2.3, page 211.

4.7 Argument Association

When a procedure is referenced, the actual arguments supply the input data to
be used for this execution of the procedure and specify the variables to receive
any output data. Within the procedure, the dummy arguments assume the roles
of these input and output data objects. Thus, during execution of a procedure
reference, the appropriate linkage must be established between the actual
arguments specified in the call and the dummy arguments defined within the
procedure. This linkage is called argument association.

As shown in Figure 10, the fundamental form that a set of actual arguments
takes in a reference is that of a sequence of expressions separated by commas.
The set of names in a procedure definition after the procedure name is a list of
dummy argument names. In each case this is called an argument list (an actual
argument list in the former case and a dummy argument list in the latter case).
The arguments are counted from left to right.

007–3693–005 203

Fortran Language Reference Manual, Volume 2

In Figure 10, the actual arguments are shown as solid boxes because these
represent, or identify, actual data values or locations. The dummy arguments
are shown as dotted boxes to indicate that they do not represent actual data.

CALL name (actual-argument-1, actual-argument-2, ...)

actual-argument-1

dummy-argument-1

actual-argument-2

dummy-argument-2

...

...

SUBROUTINE name (dummy-argument-1, dummy-argument-2, ...)
a10761

Figure 10. Actual and dummy argument lists

The principal argument association mechanism is positional; that is, arguments
are associated according to their positions in the respective actual and dummy
argument lists. The first dummy argument becomes associated with the first
actual argument, the second dummy argument becomes associated with the
second actual argument, and so on. The remainder of this chapter describes the
rules governing this association mechanism and the forms it can take.

4.7.1 Type, Kind, and Rank Matching

An actual argument, being a data object, has the usual set of data object
attributes. These can be determined by the specification part of the calling
program or, if the actual argument is an expression, by the rules governing
expression results. The most important of these attributes, for argument
association purposes, are the data type, kind type parameter, and rank of an
object. This trio of attributes are referred to as the TKR pattern of the object.
Thus, each actual argument, except for alternate returns and procedures as
arguments, has a type, kind, rank (TKR) pattern.

Example 1: Suppose, for example, that an actual argument, ERER, has been
specified by the following statement:

REAL ERER(100)

The TKR pattern of ERER is real, default kind, rank 1.

204 007–3693–005

Using Procedures [4]

Example 2: Assume the following statement:

INTEGER(KIND=SELECTED_INT_KIND(1))(100, 100) IRIR

The TKR pattern of IRIR is integer, nondefault kind, rank 2.

Each dummy argument has a set of attributes just like any other data object,
and this set includes a TKR pattern. The dummy argument attributes are
specified, either explicitly or implicitly, in the procedure definition.

The most fundamental rule of argument association is that the TKR patterns of
an actual argument and its associated dummy argument must be the same.
Note that statement function references conform to these rules, except that
dummy argument attributes are defined in the host.

The set of dummy arguments can be thought of as the procedure socket; that is,
the means by which the procedure gets connected to the rest of the program.
Each dummy argument is one of the holes in this socket. One can think of the
TKR pattern of a dummy argument as determining the shape of that hole in the
socket.

Similarly, the set of actual arguments in a reference to that procedure may be
thought of as a plug that connects with the procedure socket (Figure 11, page
205), with each actual argument representing one prong of the plug. The TKR
pattern of an actual argument determines the shape of that prong. For the
connection to work properly, the shape of each plug prong must match the
shape of the corresponding socket hole.

Actual arguments Dummy arguments
a10762

Figure 11. The plug and socket analogy for actual and dummy arguments

007–3693–005 205

Fortran Language Reference Manual, Volume 2

External procedures and their calling programs are usually compiled separately,
so typically, there is no detection of TKR mismatches at compile time.
Therefore, TKR argument matching is extremely prone to error, and such
mismatches are among the most common and elusive errors in Fortran
applications. Explicit procedure interfaces (see Section 4.8.1, page 225) solve this
problem by enabling automatic detection of TKR argument mismatches.

Associated actual and dummy arguments must have the same data type, the
same kind parameter for that type, and the same rank. This last part means
that if one is a scalar, they both must be scalars; otherwise, they must both be
arrays with the same number of dimensions. (See Section 4.7.2, page 207, for an
exception to this general rule on rank matching.) Alternate returns are a special
case, as are procedures used as arguments.

Argument associations involving arrays and pointers also have some special
considerations; they are treated in Section 4.7.2, page 207, and Section 4.7.3,
page 212, respectively. Scalar data objects without the POINTER attribute are
discussed here. The rule is simple: the associated dummy argument for a scalar
actual argument must be scalar and must have the same data type and kind
type parameter value as the actual argument. The exception to this is explained
in Section 4.7.3, page 212, in which an array element (which is a scalar) may be
passed to a dummy array. Note that array elements, scalar-valued structure
components, and substrings are valid scalar actual arguments. The only slightly
complicated case involves arguments of type character because scalar character
objects have an additional attribute: the character length.

The cleanest situation is when the associated actual and dummy argument
character lengths are the same. This can be achieved by explicitly declaring the
character length in each case, with the length value specified to be the same. In
many cases this is an impossibly severe condition, however, because it prevents
the development of general-purpose procedures (for example, procedures that
can accept character input of any length). Assumed length dummy arguments
alleviate this problem.

Assumed length can be specified only for dummy argument data objects. This
is done by specifying an asterisk (*) for the character length. An
assumed-length dummy argument does not have a length until it becomes
associated with an actual argument. When it becomes associated, its length
becomes the length of the actual argument. In effect, the length of the actual
argument is passed as part of the actual argument and is picked up by the
dummy argument in the course of argument association.

Explicit declared length is permitted for dummy arguments, however, so there
must be rules governing those instances when the lengths of the actual

206 007–3693–005

Using Procedures [4]

argument and its associated dummy argument are different. For scalars, the
rule is straightforward: the lengths of associated actual and dummy character
arguments may be different only if the actual argument length is greater than
the dummy argument length.

For arrays, the rules are somewhat complicated and are described in detail in
Section 4.7.2.1, page 207.

4.7.2 Sequence Association

For array arguments, the fundamental rule in Fortran is that the shapes of an
actual argument and its associated dummy argument must be the same. That
is, they must have the same rank and the same extent (number of elements) in
each dimension; thus, they also are the same size. To make this simple rule
viable and to make passing array sections viable, you can use an assumed-shape
dummy argument. Assumed-shape dummy arguments for arrays are analogous
to assumed-length dummy arguments for character arguments in that
assumed-shape dummy arguments assume their shape attributes from the actual
argument upon association. If you use assumed-shape dummy arguments, you
must ensure that the ranks of the actual and dummy arguments agree as well
as the type and kind; the rest follows automatically, and association is on an
element-by-corresponding-element basis. Thus, again, TKR is the only rule to
observe when using assumed-shape dummy arguments. Assumed-shape
dummy arguments are declared as described in Section 4.7.2.1, page 207.

An array is considered an object in and of itself, as well as a sequence of related
but separate elements. Array argument association mechanisms are geared
towards associating array element sequences rather than associating array
objects. These mechanisms are considerably more complicated than the simple
TKR pattern matches, although they do offer somewhat more functionality.

An analogous need for object association for structures arises as well. The need
arises in order to accommodate the development of external programs that use
structure arguments but do not have access to a module defining the type of
the structure. As with arrays, the method of association is sequence association
that relies on a form of storage layout, like storage association. For more
information on structure sequence association, see Section 4.7.2.4, page 212.

4.7.2.1 Array Element Sequence Association

If a dummy argument is declared as an explicit-shape array or an assumed-size
array, then the ranks of the actual argument and its associated dummy
argument do not have to be the same, although the types and kinds still have to

007–3693–005 207

Fortran Language Reference Manual, Volume 2

match. In this case the actual argument is viewed as defining a sequence of
objects, each an element of the actual array. The order of these objects is the
array element order of the actual array. (Array element order is a linear
sequence of the array elements obtained by varying the first subscript most
rapidly through its range, then the second subscript, and so on.) The number of
objects in this sequence is the size of the actual array.

Similarly, the dummy array is viewed as defining a linear sequence of dummy
array elements, in array element order of the dummy array. The association of
the dummy array and actual array is the association of corresponding elements
in these sequences. To determine associated elements, the two sequences are
superimposed with the initial elements of each corresponding with each other.
This is illustrated in Figure 12, in which a three-dimensional actual array is
associated with a two-dimensional dummy array. In this example, this causes
the actual argument element AA(1,2,2) to become associated with dummy
argument element DA(4,2), for example. The only additional rule that needs
to be observed is that the size of the dummy array cannot exceed the size of the
actual array. An assumed-size dummy array extends to and cuts off at the end
of the actual argument array sequence.

AA1,1,1 AA2,1,1 AA1,2,1 AA2,2,1 AA1,3,1 AA2,3,1 AA1,1,2 AA2,1,2 AA1,2,2 AA2,2,2 AA1,3,2 AA2,3,2

Actual array: REAL AA(2,3,2)

DA1,1 DA2,1 DA3,1 DA4,1 DA5,1 DA1,2 DA2,2 DA3,2 DA4,2 DA5,2

Dummy array: REAL DA(5,2)
a10763

Figure 12. Example of array element sequence association

For character arrays, character length is again an issue, because the array
element length must be specified in this case. The lengths of the actual and
dummy array elements can be different. Here, the actual and dummy
arguments are viewed as sequences of characters. Each array element, in array
element order, contributes a subsequence of characters the size of its length to
the corresponding sequence of characters representing the argument. The
argument association is then on a character-by-corresponding-character basis of
these two character sequences. This can result in array element boundary
crossing between the actual and dummy arguments, as illustrated in Figure 13.
In this case, the size rule is that the number of characters in the dummy array

208 007–3693–005

Using Procedures [4]

cannot exceed the number of characters in the actual array. Using the example
in Figure 13, these rules cause the dummy argument element DA(4) to be
associated with the last character of the actual argument element AA(2,1) and
the first two characters of actual argument element AA(1,2).

AA1,1 AA2,1 AA1,2 AA2,2

DA1 DA2 DA3 DA4 DA5 DA6

Actual array: CHARACTER(5) AA(2,2)

Dummy array: CHARACTER(3) DA(6)
a10764

Figure 13. Array element sequence association for default characters

The provision that the ranks of the actual and dummy argument arrays need
not match in array element sequence association has an interesting
asymmetrical end condition when one is a scalar (effectively a rank of zero).
The case of the actual argument having nonzero rank and the dummy
argument being scalar occurs for elemental references to intrinsic functions. The
reverse, passing a scalar to a dummy array, is allowed in a limited way in array
element sequence association. If the dummy argument meets the conditions for
array element sequence association (that is, it is declared as an explicit-shape or
assumed-size array), the actual argument can be a single array element but
cannot be any other kind of scalar.

In the array element sequence association paradigm, the appearance of an array
element as the actual argument causes the sequence of actual array elements to
begin with this element, rather than the first element of the array, and extend to
the end of the array in array element order. This sequence is then associated
with the full dummy argument sequence. Care must be taken to ensure that the
size of the dummy array is not greater than the size of the array element
sequence from the specified array element on. An element of an assumed-shape
or pointer array cannot be passed to a dummy array.

An actual argument of type character can be a substring of an array element.
The reason is that for character arguments, the array sequence is character

007–3693–005 209

Fortran Language Reference Manual, Volume 2

based rather than array-element based. The substring provides a third way
(together with an array and an array element) to specify the beginning of the
actual argument character sequence. As with the other two, the sequence
extends to the end of the actual array in array element order. Also, as with the
other two, the number of characters in the associated dummy array must not
exceed the number in the specified portion of the actual array. In addition, as in
the array element case, the substring must not be from an element of an
assumed-shape or pointer array.

4.7.2.2 Passing Array Sections

The passing of array sections in procedure references represents an important
part of the array processing facility. Assumed-shape dummy arguments
provide the normal method of passing array sections.

There are three principal ways of forming an array section:

1. An array reference containing a subscript triplet

2. An array reference containing a vector subscript

3. A structure component reference in which a part other than the rightmost is
array valued

An array section can also be passed to an explicit-shape or assumed-size dummy
array. The array arguments of procedures with implicit interfaces are assumed
to be sequence associated with the dummy arguments. In this case the section
must be converted (copied) to a form acceptable for array element sequence
association, and possibly reconverted upon return (for example, if it returns
results from the procedure execution). Such conversion results in performance
inferior to that obtained from using assumed-shape dummy arguments and is
the price of passing array sections to explicit-shape or assumed-size arrays.
(Note that assumed-shape dummy arguments require explicit interfaces.)

To summarize, in the case of assumed-shape dummy arguments, the TKR
association rules apply. Otherwise the array element sequence association rules
apply to the compacted section. One restriction that applies to the use of array
sections as actual arguments, regardless of the nature of the dummy argument,
is that array sections generated by vector subscripts are not definable; they
must not be assigned new values by the procedure. The associated dummy
argument must not have the INTENT(OUT) or the INTENT(INOUT) attribute,
or be treated as if they did have either of these attributes. The reason is that
with vector subscripts the same actual array element could be part of the array
section more than once, and thereby this actual array element becomes
associated with more than one dummy argument element. If such an object

210 007–3693–005

Using Procedures [4]

could be defined, conflicting values could be specified for the same actual array
element.

4.7.2.3 Miscellaneous Argument Association Rules

The following paragraphs contain some miscellaneous rules regarding
argument association.

If the dummy argument is assumed shape, the actual argument must not be an
assumed-size array. An assumed-shape dummy argument requires that
complete shape information about the actual argument be supplied to the
dummy argument. Because the size of an assumed-size array is open ended,
complete shape information is not available for the assumed-size array. Note
that a section of an assumed-size array can be used as an actual argument,
provided such a section is not open ended (that is, the extent of the last
dimension is explicitly specified).

The same data object coming into a procedure through two or more arguments
must not be defined. For example, if A(1:5) is an actual argument and
A(3:9) is another actual argument, then the three elements A(3:5) have come
in through two arguments. In this case none of the three elements A(3:5) can
be defined in the procedure. This restriction need not involve arrays, and
applies to any data object associated to two dummy arguments. If A in the
above example were a character string, the same associations are possible and
the same restrictions apply. Even for a simple scalar this can be the case. If K is
a scalar integer variable, it may appear twice in the actual argument list, but if
it does, it must not become defined as a result of a reference to the procedure.

A data object can be available to a procedure through argument association and
by a different method of association. For example, it might come in as an actual
argument and also be available through use or host association. In this case it
can be defined and referenced only as a dummy argument. It would be illegal
to assign A a value within subroutine S in the following example:

CALL S(A). . .

CONTAINS

SUBROUTINE S(D)

D = 5
. . .

If the dummy argument is an array that has the POINTER attribute, it is
effectively an assumed-shape dummy argument. Therefore the TKR rules apply
to associated actual arguments. (The argument association rules that apply to
pointers is the topic of the next section).

007–3693–005 211

Fortran Language Reference Manual, Volume 2

For generic references, defined operators, or defined assignments in which the
procedure is not elemental, the TKR method is required for all arguments and
operands. Thus, an array element must not be passed to an array dummy
argument under any circumstance. For example, if SQUIRT is a generic
procedure name, then SQUIRT(A(7)) has a scalar actual argument and the
associated dummy argument must be scalar. If the generic procedure allows
both a scalar dummy argument and an array dummy argument, the specific
procedure with the scalar dummy argument is selected.

An array is never passed to an intrinsic procedure if the actual argument is an
array element; only the array element is passed.

4.7.2.4 Structure Sequence Association

If a structure is a dummy argument of an external procedure, the derived type
for the structure must be specified so that it is exactly the same type as that for
the corresponding actual argument. The preferred way to do this is to define a
derived type in a module and access the module through a USE statement, both
for the external procedure and for the program unit referencing it. An
alternative way is to use structure sequence association. This technique avoids
the need for a module but bypasses the error checking available in the compiler.

Two structures are structure sequence associated if one is an actual argument and
the other is the corresponding dummy argument, and the types of the two
structures are equivalent but not the same. Two derived types are equivalent if
the two types have the same name, are sequence types, have no components
that are private or are of a private type, and have components that agree in
order, name, and attributes. Having the same attributes means having the same
or equivalent type.

When a reference to a procedure is made using structure sequence association,
the calling and called program units can assume a consistent storage layout that
causes the structures to be associated correctly. This allows values to be passed
into and out of the procedure from the calling program.

4.7.3 Pointer Association

Generally, a data object may have the POINTER attribute, the TARGET attribute,
or neither of these attributes, but not both. (A structure component that has the
POINTER attribute can effectively also have the TARGET attribute if the
structure has the TARGET attribute.) A dummy argument can be any of these
three, as may an actual argument, but of the nine possible combinations for
associated actual and dummy arguments, two are disallowed and of the

212 007–3693–005

Using Procedures [4]

remaining cases, only the five labeled A through E in Figure 14, page 213, are
distinct (the other two are equivalent to the cases below them in the figure).
AESA is an acronym for Array Element Sequence Association.

Pointers
in calling
program

Actual
argument

Neither

Not
allowed

B C

Not
allowed

D E

TKR

A
TKR
or AESA

TKR
or AESA

TKR
or AESA

TKR
or AESA

TKR
or AESA

TKR
or AESA

Neither

Local and accessible
pointers in procedure

Dummy argument

Pointer Target

Target

Pointer

a10765

GF

Figure 14. Association of objects with POINTER and TARGET attributes

In combination E in Figure 14, neither the actual or dummy argument has
either the POINTER or TARGET attribute; this situation is explained in the
previous two sections. Combinations B, C, and D are similar; they are the cases
in which either the actual or dummy argument, or both, have the TARGET
attribute. As far as argument association is concerned, these cases are very
much like combination E; that is, either TKR or AESA applies.

Because cases B, C, and D in Figure 14 involve arguments with the TARGET
attribute, there may be pointers associated with these targets. In the calling
program, a target object can be used as an actual argument (cases B and C), and
at the time of the call there may be pointers associated with this target. In the
procedure, a dummy argument can have the TARGET attribute (combinations B
and D), which means that during execution of the procedure a pointer,

007–3693–005 213

Fortran Language Reference Manual, Volume 2

including another dummy argument with the POINTER attribute, may become
associated with this TARGET argument.

The rules governing the associated pointers of target arguments are as follows:

1. If the dummy argument does not have the TARGET or POINTER attribute,
any pointers associated with the actual argument do not become associated
with the corresponding dummy argument on invocation of the procedure.
If such a dummy argument is associated with a dummy argument with the
TARGET attribute, whether any pointers associated with the original actual
argument become associated with the dummy argument is processor
dependent.

2. If the dummy argument has the TARGET attribute and is either scalar or an
assumed-shape array, and the corresponding actual argument has the
TARGET attribute but is not an array section with a vector subscript, then
the following conditions exist:

• Any pointers associated with the actual argument become associated
with the corresponding dummy argument on invocation of the
procedure.

• When execution of the procedure completes, any pointers associated
with the dummy argument remain associated with the actual argument.

In the following example, the actual argument is a target and no
vector-valued subscripts are passed:

REAL, POINTER :: PBEST

REAL, TARGET :: B (10000)

CALL BEST (PBEST, B) ! UPON RETURN, PBEST IS

... ! ASSOCIATED WITH THE

... ! ’BEST’ ELEMENT OF B

...

CONTAINS

SUBROUTINE BEST (P, A)

REAL, POINTER :: P
REAL, TARGET :: A (:)

... ! FIND THE ’BEST’ ELEMENT A(I)

P=> A (I)

RETURN

END SUBROUTINE BEST

END

214 007–3693–005

Using Procedures [4]

3. If the dummy argument has the TARGET attribute and is an explicit-shape
array or is an assumed-size array, and the corresponding actual argument
has the TARGET attribute but is not an array section with a vector subscript,
then the following conditions exist:

• On invocation of the procedure, whether any pointers associated with
the actual argument become associated with the corresponding dummy
argument is processor dependent.

• When execution of the procedure completes, the pointer association
status of any pointer that is pointer associated with the dummy
argument is processor dependent.

The previous two bullets indicate that a valid implementation can choose to
pass the address of a copy of the actual argument rather than the address of
the actual argument.

4. If the dummy argument has the TARGET attribute and the corresponding
actual argument does not have the TARGET attribute or is an array section
with a vector subscript, any pointers associated with the dummy argument
become undefined when execution of the procedure completes.

Case A in Figure 14, page 213, illustrates that both the actual argument and the
dummy argument can have the POINTER attribute. When the dummy
argument is a pointer, the procedure interface must be explicit in the calling
program (see Section 4.8.1, page 225), and the associated actual argument must
also be a pointer. In this case the following rules apply:

1. The TKR association rules apply.

2. Upon argument association, the dummy argument acquires the same
pointer association status as the actual argument and becomes pointer
associated with the same target as is the actual argument, if the actual
argument is associated with a target.

3. During procedure execution, the pointer association status of the dummy
argument can change, and any such changes are reflected in the actual
argument.

Cases F and G in Figure 14, page 213, are those in which the actual argument is
a pointer but the dummy argument is not. In this case, the actual argument
must be associated with a target, and it is this target that becomes argument
associated with the dummy argument. Thus, these two cases are equivalent to
cases B and C. In effect, the appearance of a pointer as an actual argument,
without the dummy argument known to be a pointer, is treated as a pointer
reference (a reference to the target). For example, calling programs can pass

007–3693–005 215

Fortran Language Reference Manual, Volume 2

target-associated pointers to procedures, because in reality, the underlying
(pointed to) object is passed.

The two cases in Figure 14, page 213, described as not allowed are illegal because
the actual arguments would be incompatible with (pointer) operations
allowable on the dummy argument.

In case C the procedure interface need not be explicit in the calling program. In
cases A, B, and D, an explicit interface is required.

4.7.4 Argument Keywords

The fundamental pairing of arguments in the actual argument list with those in
the dummy argument list is positional, as shown in Figure 10, page 204, but
Fortran also provides an order-independent way of constructing actual
argument lists. With this option the programmer can explicitly specify in the
call which actual argument is to be associated with a dummy argument rather
than using its position in the actual argument list to determine the pairing. To
do this, the name of the dummy argument, which in this context is referred to
as a keyword, is specified in the actual argument list along with the actual
argument. It takes the following form:

dummy_argument_name = actual_argument

This form can be used for all of the actual arguments in an actual argument list,
and the arguments can be in any order. A reference can use keywords for only
some of the actual arguments. For those actual arguments not having keywords,
the positional mechanism is used to determine the associated dummy
arguments. Positionally associated actual arguments must appear in the actual
argument list before the keyword actual arguments. After the appearance of the
first keyword actual argument (if any) in the actual argument list, all subsequent
actual arguments must use keywords. This is shown in the following examples:

CALL GO(X, HT=40)

CALL TELL(XYLOPHONE, NET=10, QP=PI/6)

Thus, when only some arguments in the actual argument list use keywords, the
first part is positional, with no argument keywords, and the last part uses
keywords. In the keyword portion of the list the order of the arguments is
completely immaterial, and the keyword alone is used to determine which
dummy argument is associated with a given actual argument. Care must be
taken with keyword arguments in each call to make sure that one and only one
actual argument is specified for each required dummy argument and that at
most one actual argument is specified for each dummy argument.

216 007–3693–005

Using Procedures [4]

Keyword actual argument lists can aid readability by decreasing the need to
remember the precise sequence of dummy arguments in dummy argument lists.
This functionality, and the form that it takes, is modeled after keyword
specifiers in I/O statements. The one situation that requires keyword
arguments is when an optional argument not at the end of the argument list is
omitted; keyword arguments constitute the only way to skip such arguments in
an actual argument list.

To use keyword actual arguments, the procedure interface must be explicit in
the scope of the program containing the reference. The compiler can generate
the proper reference in this case because the defined sequence of dummy
argument names (keywords) is known to the calling program. Intrinsic,
internal, and module procedure interfaces are always explicit, so keyword
references can be used with these. An interface block must be provided in the
calling program for an external procedure before keyword references can be
made to it. The price of an interface block comes with an interesting benefit not
available from the automatic explicitness of intrinsic, internal, and module
procedure interfaces — the keywords do not have to be the same as the dummy
argument names in the procedure definition. This ability to tailor the argument
keywords to the application is available only with external procedures.

4.7.5 Optional Arguments

Fortran includes the ability to specify that an argument be optional. An actual
argument need not be supplied for a corresponding optional dummy argument
in a particular reference, even though it is in the list of dummy arguments. In
this case, an optional argument is specified by giving the dummy argument the
OPTIONAL attribute, either in an entity-oriented declaration that includes the
OPTIONAL attribute or by its inclusion in an OPTIONAL statement in the
procedure definition. The OPTIONAL attribute can be specified only for a
dummy argument. Any dummy argument in any procedure can be specified to
be optional.

In a positional argument list, an optional argument at the right-hand end of the
list can be simply omitted from the reference. To omit an argument from the
keyword part of an actual argument list, that dummy argument name is not used
as one of the keywords. Note that the keyword technique must be used to omit
an optional argument that is not at the end of the list, unless all of the
remaining arguments are also being omitted in this reference. This is shown in
the following example:

CALL TELL(1.3, T=F(K))

. . .

007–3693–005 217

Fortran Language Reference Manual, Volume 2

SUBROUTINE TELL (X, N, T)

OPTIONAL N, T
. . .

END

Optional arguments require explicit procedure interfaces.

During execution of a procedure with an optional dummy argument, it is
usually necessary to know in that particular reference if an actual argument has
been supplied for that dummy argument. The PRESENT intrinsic function is
available for that purpose. It is an inquiry function and has one argument, the
name of an optional argument in the procedure. Upon execution it returns a
value of default logical type, depending on whether or not the dummy
argument is associated with an actual argument.

IF (PRESENT(NUM_CHAR)) THEN

! Processing if an actual argument has been

! supplied for optional dummy argument NUM_CHAR

USABLE_NUM_CHAR = NUM_CHAR

ELSE

! Processing if nothing is supplied for NUM_CHAR
USABLE_NUM_CHAR = DEFAULT_NUM_CHAR

END IF

The preceding example illustrates how you can use the PRESENT function to
control the processing in the procedure as is appropriate depending on the
presence or absence of an optional argument. For an optional dummy
argument not present (corresponding actual argument not supplied), the
following rules apply:

• A dummy argument not present must not be referenced or defined. If it is a
type for which default initialization is specified for some component, the
initialization has no effect.

• A dummy procedure not present must not be invoked.

• A dummy argument not present must not be supplied as an actual
argument corresponding to a nonoptional dummy argument, except in a
reference to the PRESENT intrinsic function.

• A dummy argument not present may be supplied as an actual argument
corresponding to an optional dummy argument. In this case, the latter
dummy argument is also considered to be not present.

218 007–3693–005

Using Procedures [4]

• If it is an array, it must not be supplied as an actual argument to an
elemental procedure unless an array of the same rank is supplied as an
actual argument corresponding to a nonoptional dummy argument of that
elemental procedure.

• If it is a pointer, it must not be supplied as an actual argument
corresponding to a nonpointer dummy argument other than as the
argument to the PRESENT(3I) intrinsic function.

4.7.6 Argument Intent

Any dummy argument, except a procedure or pointer, can be given an INTENT
attribute (see the Fortran Language Reference Manual, Volume 1). There are three
possible formats for this attribute:

INTENT(IN)

INTENT(OUT)

INTENT(INOUT)

The INTENT attribute can be specified only for dummy arguments and
indicates something about the intended use of the argument in the procedure.
The use of this attribute enables the compiler to detect uses of the argument
within the procedure that are inconsistent with the intent.

INTENT(IN) specifies that an argument is to be used to input data to the
procedure, is therefore defined upon entry to the procedure, is not to be used to
return results to the calling program, and must not be redefined by the
procedure.

INTENT(OUT) specifies that an argument is to be used to return results to the
calling program and cannot be used to supply input data. A dummy argument
with INTENT(OUT) must not be referenced within the procedure before it is
defined unless it is a type for which default initialization is specified. The
actual argument associated with an INTENT(OUT) dummy must be a definable
data object, that is, a variable.

INTENT(INOUT) specifies that an argument has a defined value upon entry to
the procedure and that this value can be redefined during execution of the
procedure; it can be referenced before being changed. This would be the intent,
for example, of a data object whose value is to be updated by the procedure.
The actual argument associated with an INTENT(INOUT) dummy must be a
definable data object.

007–3693–005 219

Fortran Language Reference Manual, Volume 2

Actual arguments that are array sections with vector-valued subscripts are not
allowed to be associated with dummy arguments having INTENT(OUT) or
INTENT(INOUT); that is, the associated dummy argument must not be defined.

The use of the INTENT attribute for a dummy argument does not require an
explicit interface, because it governs use within the procedure. Making the
interface of a procedure containing an INTENT(OUT) or INTENT(INOUT)
dummy argument explicit in the calling program, although not required, can
nevertheless be useful in detecting possible attempts to use nondefinable data
objects for the associated actual argument.

If the INTENT attribute is not specified for a dummy argument, it can be
referenced only if the actual argument can be referenced. It can be defined only
if the actual argument can be defined.

4.7.7 Resolving References to Generic Procedures

Two or more procedures are generic if they can be referenced with the same
name. With such a reference it must be possible to determine which of the
procedures is being called. That is, a generic reference must be resolved to that
specific procedure in the set of procedures sharing the generic name to which
the call applies. The distinguishing property of the reference that is used for
this resolution is the nature of the actual argument list. The sequence of TKR
patterns in the actual argument in effect selects the appropriate specific
procedure to be called.

The set of specific procedures making up the generic set are restricted such that
any given sequence of actual argument TKR patterns will match only one of the
dummy argument lists of this set. Thus, the requirement of TKR matches in the
argument lists can be used to resolve generic references. The operational rules
follow; for further details see Section 6.1.7, page 282. Considering the dummy
argument lists of any two procedures in the generic set, one of them must have
a required dummy argument that satisfies both of the following conditions:

• It must be in a position in the list at which the other list has no dummy
argument or it has a TKR pattern different from that of the dummy
argument in the same position in the other list.

• It must have a name different from all the dummy argument names in the
other list or it must have a TKR pattern different from that of the dummy
argument with the same name in the other list.

The reason for the second of these rules is the need for unique resolution with
respect to references with keyword arguments, as well as strictly positional

220 007–3693–005

Using Procedures [4]

actual argument lists. Section 4.8.3, page 232, contains an example that
illustrates why just the first rule is not enough.

Because resolution of a generic reference requires matching the actual argument
list with the candidate dummy argument lists from the generic set, clearly the
interfaces of the procedures in the generic set must be explicit in the scoping
unit containing the reference. How this is done and how a procedure is added
to a generic set is described in Section 4.8.3, page 232.

4.7.8 Elemental References to Intrinsic Procedures

As mentioned previously, in certain special cases involving references to
intrinsic procedures, the rule that disallows passing an actual array argument to
a scalar dummy argument is relaxed. Many intrinsic procedures have scalar
dummy arguments, and many of these can be called with array actual
arguments. These are called elemental intrinsic procedures.

Elemental functions are defined to have scalar results as well as scalar dummy
arguments. For an elemental intrinsic function with one argument, calling that
function with an array argument causes the function to be applied to each
element of that array, with each application yielding a corresponding scalar
result value. This collection of result values, one for each element of the actual
argument, is returned to the calling program as the result of the function call in
the form of an array of the same shape as the actual argument. Thus, the
function is applied element-by-element (hence the term elemental reference) to the
actual argument, resulting in an array of the same shape as the argument and
whose element values are the same as if the function had been individually
applied to the corresponding elements of the argument.

The square root function SQRT is an example of an elemental intrinsic function.
Its dummy argument is a scalar, and it returns a scalar result. The following
example shows a typical reference to SQRT:

Y = SQRT(X)

If both X and Y are scalar variables, this would be a normal call to SQRT. Now
assume that X and Y are both one-dimensional arrays with bounds X(1:100)
and Y(1:100). The previous assignment statement is still valid and has a
result equivalent to the following:

DO J = 1, 100

Y(J) = SQRT(X(J))
END DO

007–3693–005 221

Fortran Language Reference Manual, Volume 2

The elemental call to SQRT, however, does not imply the ordering of the
individual computations that is specified by the DO construct.

According to the rules of intrinsic assignment, X and Y must have the same
shape.

An elemental procedure that has more than one dummy argument can still be
called elementally if all of the dummy arguments and the result are scalar and
if the actual arguments are conformable. The exception to this, however, is if
the name of the dummy argument is KIND (which means its value is a kind
type value), its associated actual argument must be scalar. The other actual
arguments can be scalars or arrays, as long as they are conformable, and the
result has the shape of these arrays or a scalar. The KIND actual argument
specifies the kind value for the resulting array.

All of the elemental intrinsic procedures are identified as such in the man pages
for each intrinsic procedure. Many have multiple arguments (including the
single elemental intrinsic subroutine MVBITS) and many have a KIND dummy
argument. In the case of MVBITS there is no function result (one of the
arguments returns the result), but the rule for conformable actual arguments is
the same as for the elemental functions.

4.7.9 Alternate Returns

An alternate return is one of the two kinds of procedure arguments that are not
data objects. The other is a dummy procedure. Alternate returns can appear
only in subroutine argument lists. They are used to specify a return different
than the normal execution upon completion of the subroutine.

There can be any number of alternate returns in a subroutine argument list, and
they can appear at any position in the list. In the dummy argument list each
alternate return is simply an asterisk. For example, the following dummy
argument list for subroutine CALC_2 has two alternate return indicators, in the
second and fifth argument positions:

SUBROUTINE CALC_2(A, *, P, Q, *)

Alternate returns cannot be optional, and the associated actual arguments
cannot have keywords.

An actual argument associated with an alternate return dummy argument must
be an asterisk followed by a label of a branch target in the scope of the calling
program. These actual arguments specify the return points for the

222 007–3693–005

Using Procedures [4]

corresponding alternate returns. For example, the following is a valid reference
to CALC_2:

CALL CALC_2(X, *330, Y, Z, *200)

This assumes that the statements labeled 200 and 330 are branch targets. The
statement having the label 330 is the return point for the first alternate return,
and the statement having the label 200 is the return point for the second
alternate return.

Using an alternate return is done with the extended form of the RETURN
statement, which is defined as follows:

RETURN scalar_int_expr

The scalar integer expression must have an integer value between 1 and the
number of asterisks in the dummy argument list, inclusive. The integer scalar
expression value selects which of the alternate returns, counting from left to
right, is to be utilized. Assuming the preceding example call, the following
results can be expected:

RETURN 2 ! returns to statement 200 in

! the calling program

RETURN (1) ! returns to statement 330

RETURN ! normal return from the call

Alternate returns are an obsolescent feature.

4.7.10 Dummy Procedures

A dummy argument can be a name that is subsequently used in the procedure
as a procedure name. That is, it can appear in an interface block, in an
EXTERNAL or INTRINSIC statement, or as the name of the procedure
referenced in a function or subroutine reference. The associated actual
argument must be the name (without an argument list) of an external, module,
intrinsic, or dummy procedure.

The actual argument must not be the name of an internal procedure or a
statement function.

The actual argument must not be a generic procedure name, unless there is a
specific procedure with the same name; only specific procedures may be passed
in argument lists.

007–3693–005 223

Fortran Language Reference Manual, Volume 2

If the interface of the dummy procedure is explicit, the associated actual
procedure must be consistent with this interface as described in Section 4.8.2.2,
page 232. However, a pure or elemental procedure can be associated with a
dummy procedure that is not pure or elemental.

If the dummy procedure is typed, referenced as a function, or has an explicit
function interface, the actual argument must be a function.

If the dummy procedure is referenced as a subroutine or has an explicit
subroutine interface, the actual argument must be a subroutine.

Dummy procedures can be optional, but must not have the INTENT attribute.
They can occur in either function or subroutine subprograms. The associated
actual argument can be specified by using a keyword.

4.8 Procedure Interfaces

The term procedure interface refers to those properties of a procedure that interact
with or are of direct concern to a calling program in referencing the procedure.
These properties are the names of the procedure and its dummy arguments, the
attributes of the procedure (if it is a function), and the attributes and order of
the dummy arguments. If these properties are all known to the calling program
(that is, known within the scope of the calling program), the procedure interface
is said to be explicit in that scope; otherwise, the interface is implicit in that scope.

An interface block can be used in the specification part of a scoping unit to make
explicit a procedure interface (other than a statement function) that otherwise
would be implicit in that scoping unit. In addition, interface blocks:

• Allow you to give generic properties to procedures, including extending
intrinsic procedures

• Define new user-defined operators and extend the generic properties of
intrinsic operators

• Extend the assignment operation to new data combinations (user-defined
coercions)

• Specify that a procedure is external

The following sections describe the roles of explicit interfaces, situations in
which explicit interfaces are needed, when a procedure definition provides an
explicit interface, and all of the uses of interface blocks.

224 007–3693–005

Using Procedures [4]

4.8.1 Explicit Interfaces

The following situations require explicit interfaces:

1. Optional arguments

2. Array-valued functions

3. Pointer-valued functions

4. Character-valued functions whose lengths are determined dynamically

5. Assumed-shape dummy arguments (needed for efficient passing of array
sections)

6. Dummy arguments with the POINTER or TARGET attribute

7. Keyword actual arguments (which allow for better argument identification
and order independence of the argument list)

8. Generic procedures (calling different procedures with the same name)

9. User-defined operators (which is just an alternate form for calling certain
functions)

10. User-defined assignment (which is just an alternate form for calling certain
subroutines)

11. References to pure procedures

Explicit interfaces are required for items 1 and 7 in this list so that the proper
association between actual and dummy arguments can be established. Recall
that any of the arguments in the dummy argument list can be declared to be
optional and any such argument can be omitted in a reference to the procedure.
Keyword arguments allow actual arguments to occur in any order and are
needed when omitting an optional argument that is not the last in the dummy
argument list. Consider, for example, the following procedure:

SUBROUTINE EX (P, Q, R, S, T)

OPTIONAL Q, R, T

The following calls are all valid:

CALL EX(V, W, X, Y, Z)

CALL EX(V, W, X, Y)

! Last argument omitted

007–3693–005 225

Fortran Language Reference Manual, Volume 2

CALL EX(P=V, Q=W, R=X, S=Y, T=Z)

! Same as first call

CALL EX(P=V, Q=W, R=X, S=Y)

! Same as second call

CALL EX(P=V, S=Y)

! All optional arguments omitted

CALL EX(S=Y, P=V) ! Same as fifth call

CALL EX(R=X, S=Y, P=V, Q=W)

! Same as second call

CALL EX(S=Y, T=Z, Q=W, P=V)

! An optional argument omitted

The last four of these example CALL statements illustrate why explicit interfaces
are needed for optional and keyword arguments. Namely, so that the calling
routine knows the names of the dummy arguments in order that the proper
subroutine reference can be generated.

Items 2 and 4 in the preceding list involve function results whose size (number
of items returned) is determined by the procedure and may be different from
reference to reference. Explicit interfaces convey the necessary information to
the calling routines to process such references correctly.

In item 3, the calling procedure needs to know that there is a layer of
indirection (the pointer) buffering the actual data involved.

Item 5 represents a significant Fortran functionality — one that requires
additional information in the calling program that is provided by an explicit
interface. With discontiguous arrays, additional information must be passed in
the call. You can pass sections of arrays as arguments, which can comprise
array elements discontiguous in storage, and can represent very sparse array
sections. Assumed-shape dummy arrays are provided to accommodate this new
form of array passing. Any array, contiguous or not, can be passed to either
form of dummy argument, assumed-shape or otherwise. For implicit interfaces,
an explicit-shape or assumed-size dummy argument is the default, and,
therefore, assumed-shape arguments require explicit interfaces. Discontiguous
array sections can be passed to explicit-shape or assumed-size dummy
arguments, but in this case the CF90 and MIPSpro 7 Fortran 90 compilers pack
such sections into contiguous temporaries on entry to the procedure and
unpack them on return, incurring performance penalties.

226 007–3693–005

Using Procedures [4]

Dummy arguments with the POINTER or TARGET attribute (item 6) require
explicit interfaces because an actual argument can be a pointer, but what is
passed can be either the pointer itself or the target. Which one is passed
depends upon what the procedure expects, and whether or not the dummy
argument has the POINTER attribute. The explicit interface provides the
required information. The default for implicit interfaces is that the target is
passed.

Generic procedures (item 8) must have explicit interfaces because the calling
routine must be able to disambiguate a generic procedure name; that is, because
generic means two or more procedures with the same name, the calling routine
must have enough information to determine which specific procedure to invoke
for a given reference. An explicit interface provides this information by making
dummy argument attribute information available to the calling routine. The
specific procedure called is the one for which the dummy argument attribute
pattern matches that for the actual arguments. Generic procedures, including
the use of interface blocks for configuring generic names, are discussed in detail
in Section 4.8.3, page 232.

User-defined operators (item 9) represent an alternative way to reference certain
functions. They allow the use of infix operator notation, rather than traditional
function notation for two-argument functions. Thus, for example, A + B can be
used in place of RATIONAL_ADD(A, B) if A and B are of the derived type
representing rational numbers, and the operator + has been extended as the
operator form of RATIONAL_ADD. An example of using a new operator, rather
than extending an intrinsic operator, is P .SMOOTH. 3, where P represents a
matrix of picture elements to be smoothed and 3 is the size of the smoothing
neighborhood. This is alternative syntax for the function reference
PICTURE_SMOOTH(P,3). Such alternative syntax provisions are similar to
generic procedures, and the same sort of interface information is needed to
resolve such references. This topic is treated in detail in Section 4.8.4, page 234.

A third form of generic interface for which explicit interface information is used
to resolve references is that of assignment coercion (user-defined assignment).
This allows a value of one data type to be converted to a corresponding value
of another data type and assigned to an object of the latter type. A simple
example of coercion, intrinsic to Fortran, is K = X + 2.2, where X is of type
real and K is integer. Examples of desirable new coercions might be R = K
where R is of the derived type representing rational numbers and K is an
integer, and P = M2D where P is of the derived type representing a
two-dimensional picture and M2D is a two-dimensional integer array. These last
two effects could also be achieved by subroutine calls, as follows:

007–3693–005 227

Fortran Language Reference Manual, Volume 2

CALL RATINT(R, K)

CALL PXINIT(P, M2D)

These coercion operations are performed by the same subroutines, but these
subroutines can be invoked by the assignment syntax rather than the traditional
subroutine call syntax. This topic is treated in more detail in Section 4.8.5, page
237.

4.8.2 Interface Blocks

A procedure interface block is used to perform the following functions:

1. Make explicit interfaces for external and dummy procedures.

2. Define a generic procedure name, specify the set of procedures to which
that name applies, and make explicit the interfaces of any external
procedures included in the set.

3. Define a new operator symbol or specify the extension of an intrinsic or
already defined operator, identify the function or functions to which it
applies, and make explicit the interfaces of any of those functions that are
external.

4. Define one or more new assignment coercions, identify the subroutine or
subroutines involved, and make explicit the interfaces of any of those
subroutines that are external.

In all of these cases, the purpose of the interface block is to make the necessary
information available to the calling routine so that a procedure reference can be
processed correctly. Therefore, the interface block must either appear in the
specification part of the calling routine or be in a module used by the calling
routine.

Of the previous four items, the first is further described in the following
sections. The others were described in previous sections. In the following
sections, the general form of interface blocks, covering all four of these cases, is
described, followed by a discussion of the simplified form that applies to just
the first case.

4.8.2.1 General Form of Procedure Interface Blocks

An interface block has the following general format:

228 007–3693–005

Using Procedures [4]

INTERFACE [generic_spec]
[interface_body] ...
[MODULE PROCEDURE procedure_name_list] ...
END INTERFACE [generic_spec]

Interface blocks are defined as follows:

interface_block is interface_stmt
[interface_specification] ...
end_interface_stmt

interface_specification is interface_body

or module_procedure_stmt

interface_stmt is INTERFACE [generic_spec]

end_interface_stmt is END INTERFACE

interface_body is function_stmt
[specification_part]
end_function_stmt

or subroutine_stmt
[specification_part]
end_subroutine_stmt

module_procedure_stmt is MODULE PROCEDURE procedure_name_list

generic_spec is generic_name

or OPERATOR (defined_operator)

or ASSIGNMENT (=)

An interface_body specifies the interface for either a function or a subroutine.

The following is the general format of a function interface body:

function_statement
[specification_part]
END [FUNCTION [function_name]]

The following is the general format of a subroutine interface body:

007–3693–005 229

Fortran Language Reference Manual, Volume 2

subroutine_statement
[specification_part]
END [SUBROUTINE [subroutine_name]]

The keyword FUNCTION or SUBROUTINE is optional on an interface body’s END
statement, but use of these keywords is recommended as an aid to program
clarity.

The form without the generic_spec applies to case 1 in the list of four in Section
4.8.2, page 228. The choice of a generic_name for a generic_spec is case 2. The
OPERATOR choice for a generic_spec is case 3. The ASSIGNMENT choice for a
generic_spec is case 4.

The following guidelines apply to interface blocks:

1. If the generic_spec is omitted, the interface block must not contain any
MODULE PROCEDURE statements.

2. In all cases, an interface body must be for an external or dummy procedure.

3. The specification_part of an interface body contains specifications pertaining
only to the dummy arguments and, in the case of functions, the function
result. This means, for example, that an interface body cannot contain an
ENTRY statement, DATA statement, FORMAT statement, or statement function
statement.

4. The attributes of the dummy arguments and function result must be
completely specified in the specification part, and these specifications must
be consistent with those specified in the procedure definition. Note that
dummy argument names may be different, but the attributes must be the
same. Also, the interface can specify a procedure that is not pure if the
procedure is defined to be PURE.

5. Because an interface body describes properties defined in an external scope
rather than in its host’s scope, an interface body comprises its own scoping
unit, separate from any other scoping unit; an interface body does not
inherit anything from its host via host association, such as named constants
nor does it inherit its host’s implicit type rules. For example:

MODULE N

TYPE :: T

INTEGER I

END TYPE

END MODULE
PROGRAM P

230 007–3693–005

Using Procedures [4]

USE N

INTERFACE
SUBROUTINE S(R)

USE N ! NEED THIS STATEMENT TO ACCESS TYPE T.

! IT IS NOT HOST ASSOCIATED.

TYPE (T) :: R

END SUBROUTINE

END INTERFACE
END PROGRAM

An interface body may contain a USE statement and access entities, such as
derived-type definitions, via use association.

6. A procedure name in a MODULE PROCEDURE statement must be the name
of a module procedure either in that module (if the interface block is
contained in a module) or accessible to the program unit containing the
interface block through use association. It must not appear in another
interface with the same generic specifier in the same scoping unit or in an
accessible scoping unit.

7. An interface_body of a pure procedure must specify the intents of all dummy
arguments except POINTER, alternate return, and procedure arguments.

8. An interface block must not contain an ENTRY statement, but an entry
interface can be specified by using the entry name as the function or
subroutine name in an interface body.

9. A procedure must not have more than one explicit specific interface in a
given scoping unit.

10. An interface block must not appear in a block data program unit.

11. An interface body that describes the program unit being compiled can exist
within the program unit.

12. An interface body can be specified within or USE associated with each
program unit being compiled.

ANSI/ISO: The Fortran standard does not allow an interface body for the
program unit being compiled within that program unit.

007–3693–005 231

Fortran Language Reference Manual, Volume 2

4.8.2.2 Explicit Interfaces for External Procedures

The simplest use of an interface block is to make the interface for an external or
dummy procedure explicit. The format of the interface block for this purpose is
as follows:

INTERFACE
interface_body ...
END INTERFACE

Guidelines 2 through 5 and 7 through 9, from Section 4.8.2.1, page 228, apply in
this case. Rule 5 means that IMPLICIT statements, type declarations, and
derived-type definitions in the host do not carry down into an interface body.
Rule 8 means that an interface body for a given external procedure may be
specified at most once in a host program unit. It also means that an interface
body cannot be specified for intrinsic, internal, and module procedures, because
these procedures already have explicit interfaces. This is the reason for the
MODULE PROCEDURE statement’s existence.

The CF90 and MIPSpro 7 Fortran 90 compilers allow you to specify an interface
body for the program unit being compiled.

ANSI/ISO: The Fortran standard does not allow you to specify an interface
body for the program unit being compiled.

4.8.3 Generic Procedures

Fortran programmers are familiar with generic procedures because many of the
intrinsic procedures in Fortran are generic. The following are examples of
generic procedure references:

INT(R)

INT(D)

Assume in the previous example, that R and D are real and double precision
objects, respectively. It looks like there is only one procedure involved here
(INT), but there are really two. There is a specific procedure that accepts a real
argument and another one that accepts a double-precision argument. Because
the purpose of these two procedures is virtually identical, it is desirable to refer
to each of them with the same generic name. The type of the argument is
sufficient to identify which of the specific procedures is involved in a given
reference.

232 007–3693–005

Using Procedures [4]

Thus, generic refers to a set of different procedures with different specific names
that all have the same (generic) name. The mechanism for declaring generic
procedures is the interface block, which in this case has the following format:

INTERFACE generic_name
[interface_body] ...
[MODULE PROCEDURE procedure_name_list] ...
END INTERFACE

Rules and restrictions 2 through 9 in Section 4.8.2.1, page 228, apply in this case.
The generic name in the INTERFACE statement, of course, specifies the generic
name to be used in this procedure. All the procedures being assigned this
generic name are specified in the interface block. This potentially includes both
external procedures and module procedures. In the case of an external
procedure, the procedure is identified by its specific name and its interface
body, thereby making its interface explicit as well as defining a generic name
for it. In the case of a module procedure, only the specific name of the
procedure is given (in order to identify the procedure) because its interface is
already explicit. Note that because of rule 8 an external procedure can be
included in only one generic set in a given procedure. Because the MODULE
PROCEDURE statement does not specify an explicit interface, however, a module
procedure may be included in any number of generic sets.

Note also that internal procedures cannot be given generic names, nor can
statement functions. Similarly, intrinsic procedures cannot be included in an
interface block, but a generic name may be the same as an intrinsic procedure
name, including a generic intrinsic procedure name.

Consider the following example:

INTERFACE INT

MODULE PROCEDURE RATIONAL_TO_INTEGER

END INTERFACE

The generic properties of the INT intrinsic function are extended to include a
user-defined procedure.

The generic name can also be the same as one of the specific names of the
procedures included in the generic set, or the same as any other generic name,
or completely different. The only real requirement is that any procedure
reference involving a generic procedure name be resolvable to one specific
procedure. Thus, for example, the generic name INT cannot be applied to a
user-defined function that has a single real argument, because then a reference

007–3693–005 233

Fortran Language Reference Manual, Volume 2

to INT with a real actual argument would be ambiguous as to whether the
reference was to the corresponding intrinsic function or to the user-defined
function.

The rules for resolving a generic reference involve the number of arguments
and the type, kind type parameter, and rank of each argument. Based upon
these rules, and only these rules, a given procedure reference must be consistent
with precisely one of the specific procedures in the generic set. Consider, for
example, a simple two-argument subroutine G(P, Q) with generic name G,
dummy argument names P and Q, and neither argument optional. A reference
to G, with actual arguments X and Y could take any of the following four forms:

CALL G(X, Y)

CALL G(X, Q=Y)

CALL G(P=X, Q=Y)

CALL G(Q=Y, P=X)

The last three are allowed because the interface to G is explicit and keyword
references can be used when the interface is explicit. What subroutine H could
be added to the generic set with G? The first of the preceding four calls rules
out any two-argument H whose first argument has the same type, kind type
parameter, and rank (TKR) as the P argument of G and whose second argument
has the same TKR as the Q argument of G. The third and fourth of these four
calls rules out any subroutine H of the form H(Q, P), whose first argument is
named Q and has the same TKR as the Q (second) argument of G and whose
second argument is named P and has the same TKR as the P (first) argument of
G. The reason for this last case is that a reference to H in which all the actual
arguments had keywords would look exactly like a call to G, in terms of TKR
patterns; such a reference would not be uniquely resolvable to either a call to G
only or to H only. Any other H could be included in the generic set with G.

Thus, the essence of the generic reference resolution rules is uniqueness with
respect to TKR patterns under both positional or keyword references. The
complete formal rules for this are described in Section 6.1.7, page 282.

A procedure can always be referenced by its specific name. It can also be
referenced by any generic name it might also have been given.

4.8.4 Defined Operators

Just as generic names allow you to give procedures alternative and presumably
better forms of reference, so do defined operators. In this case functions of one
or two nonoptional arguments are involved.

234 007–3693–005

Using Procedures [4]

Often the purpose of a function is to perform some computation (operation) on
the values represented by its arguments and to return the result for
computational use in the calling program. In mathematical tradition, such
operations of one or two arguments are usually expressed as operators in an
expression, with the arguments as the operands. A good example is the
INVERSE function described in Section 3.5.5.4, page 167. The defined operator
provisions of the interface block give you the option of specifying a function
reference with operator syntax.

The format of the interface block for defining a new operator or extending the
generic properties of an existing operator is as follows:

INTERFACE OPERATOR (defined_operator)
[interface_body] ...
[MODULE PROCEDURE procedure_name_list] ...
END INTERFACE

The same rules apply here as in the generic name case. In addition, each
interface body must be for a one- or two-argument function, and each
procedure name in the MODULE PROCEDURE statement must be that of a one-
or two-argument function. The arguments are all required and all must be
specified with INTENT(IN).

The defined operator in the INTERFACE statement specifies the operator that
can be used in the operation form of reference for each of the functions
identified in the interface block. The operation takes the infix (operator between
the arguments) form for two-argument functions and takes the prefix form for
one-argument functions.

Consider the following example:

INTERFACE OPERATOR(+)

FUNCTION INTEGER_PLUS_INTERVAL(X, Y)

USE INTERVAL_ARITHMETIC

TYPE(INTERVAL) :: INTEGER_PLUS_INTERVAL
INTEGER, INTENT(IN) :: X

TYPE(INTERVAL), INTENT(IN) :: Y

END FUNCTION INTEGER_PLUS_INTERVAL

MODULE PROCEDURE RATIONAL_ADD

END INTERFACE

This code extends the + operator to two user-defined functions, an external
function INTEGER_PLUS_INTERVAL that presumably computes an appropriate

007–3693–005 235

Fortran Language Reference Manual, Volume 2

value for the sum of an integer value and something called an interval, and a
module function RATIONAL_ADD that probably computes the sum of two
rational numbers. Both functions now can be called in the form A+B, where A
and B are the two actual arguments.

The following example shows a new operator being defined, rather than
extending an existing operator:

INTERFACE OPERATOR(.INVERSETIMES.)

MODULE PROCEDURE MATRIX_INVERSE_TIMES
END INTERFACE

In this example, the inverse of matrix A can be multiplied by B using the
expression A .INVERSETIMES. B, which produces A-1xB, and in effect solves
the system of linear equations, Ax=B, for x.

Functions with operator interfaces can be referenced with the operator form,
but they also can be referenced through the traditional functional form by using
the specific function name.

The two forms for a defined operator are as follows:

intrinsic_operator

.letter [letter]

Note that these are the same as some of the intrinsic operators and that neither
.TRUE. nor .FALSE. can be chosen as a defined operator. Note also that if an
operator has the same name as a standard intrinsic operator, it must have the
same number of operands as the intrinsic operator; for example, .NOT. must
not be defined as a binary operator. The masking or boolean operators that are
extensions to the Fortran standard can be redefined in an interface. In this case,
your definition overrides the masking operator.

Operator interfaces define a set of generic procedures, with the operator being
the generic name. This is particularly obvious with intrinsic operators, as each
intrinsic operation may be thought of as being performed by a hidden intrinsic
function and the operator interface merely extends the set of functions that
share that operator form. As with the use of generic procedure names, a
function reference through a generic operator must resolve to a unique specific
function. The resolution rules in this case are exactly the same TKR rules used
for the generic name case when the functional form is used (see the previous
section), but are somewhat simpler when the operator syntax is used because

236 007–3693–005

Using Procedures [4]

this syntax does not allow the use of argument keywords. Thus, the argument
TKR pattern must be unique solely on the basis of argument position.

This means, for example, that + cannot be specified in an operator interface for
a function with a scalar integer argument and a scalar real argument because +
already has a meaning for any such TKR pattern. Specifying such an operator
extension would mean that I+R, where I is a scalar integer and R is a scalar
real, would be ambiguous between the intrinsic meaning and the extended
meaning. Therefore, the TKR rules disallow such extensions.

4.8.5 Defined Assignment

The last form of generic procedures is assignment (or conversion) subroutines.
These specify the conversion of data values with one set of TKR attributes into
another set with a different pattern of TKR attributes. Although such
conversions can be performed by ordinary subroutines, it is convenient and
natural to express their use with assignment syntax, and hence defined
assignment extensions. If you want to think of assignment as an operation, then
defined assignment is precisely the same as defined operators, except that there
is only one defined assignment operator symbol (=), and all defined assignment
procedures are two-argument subroutines rather than functions. As with the
other forms of generic procedures, the interface block is used to specify defined
assignments.

The format of the interface block for defining new assignment operations is as
follows:

INTERFACE ASSIGNMENT (=)
[interface_body] ...
[MODULE PROCEDURE procedure_name_list] ...
END INTERFACE

Again, most of the same rules apply here as in the generic name case, except
that each interface body must be for a two-argument external subroutine and
each procedure name in the MODULE PROCEDURE statement must be that of an
accessible two-argument module subroutine. Both arguments are required. The
first argument must have the attribute INTENT(OUT) or INTENT(INOUT); this
is the location for the converted value. The second argument must have the
attribute INTENT(IN); this is the value to be converted.

007–3693–005 237

Fortran Language Reference Manual, Volume 2

The assignment interface specifies that an assignment statement can be used in
place of a traditional subroutine call for the subroutines identified in the
interface block.

Recall that an assignment statement is defined as follows:

variable = expression

The variable would be the first actual argument in a traditional call to the
subroutine and the expression would be the second argument. The variable must
be a variable designator legitimate for the left-hand side of an assignment.

You can use the traditional subroutine call or the assignment syntax.

An example of an assignment interface block is as follows:

INTERFACE ASSIGNMENT(=)

SUBROUTINE ASSIGN_STRING_TO_CHARACTER(C, S)

USE STRING_DATA
CHARACTER(*), INTENT(OUT) :: C

TYPE(STRING), INTENT(IN) :: S

END SUBROUTINE ASSIGN_STRING_TO_CHARACTER

MODULE PROCEDURE RATIONAL_TO_INTEGER

END INTERFACE

This interface block allows ASSIGN_STRING_TO_CHARACTER (which extracts
the character value) to be called in the following form:

C = S

In addition, RATIONAL_TO_INTEGER can be called in the following format:

K = R

Here, R is of derived type RATIONAL and K is an integer. The purpose of
RATIONAL_TO_INTEGER is to convert a value in RATIONAL form into an
integer.

Each intrinsically defined assignment operation may be thought of as being
performed by a hidden intrinsic subroutine. Thus, the assignment symbol is the
generic name of a set of generic subroutines. The assignment interface block
allows you to add user-defined external and module subroutines to that generic
set. Any given assignment must be resolvable to the specific subroutine. Not
surprisingly, when assignment syntax is used, it is the TKR pattern rules

238 007–3693–005

Using Procedures [4]

without the keyword argument complication that are applied to perform this
resolution, exactly as with defined operators.

This means, for example, that an assignment interface cannot be specified for a
subroutine whose first argument is a scalar of type integer and whose second
argument is a scalar of type real. All such coercions have intrinsic meanings,
and thus an assignment interface block of this form would introduce an
unresolvable ambiguity. The TKR rules prevent this from happening.

007–3693–005 239

Intrinsic Procedures [5]

The Fortran standard defines intrinsic procedures, which consist of intrinsic
functions and intrinsic subroutines. The CF90 and MIPSpro 7 Fortran 90
compilers include several more intrinsic procedures as extensions to the
standard.

Intrinsic procedures can be called from any program unit or subprogram.
However, a user-written function or subroutine with the same name as an
intrinsic function or subroutine takes precedence over the intrinsic procedure in
a given scoping unit if one of the following is true:

• Its interface is explicit.

• It is listed in an EXTERNAL statement in that scoping unit.

• It is a statement function.

A module or internal procedure, for example, overrides an intrinsic procedure
with the same name, in the absence of an applicable INTRINSIC statement,
because its interface is explicit. If a module or internal procedure is accessible
by the same name as a name specified on an INTRINSIC statement, it is an
error in a program unit.

This chapter introduces all of the intrinsic procedures supported by the CF90
and MIPSpro 7 Fortran 90 compilers. Each procedure is described in detail on
an online man page. For more information on any of the intrinsic procedures
introduced in this chapter, enter man intrinsic_name at your system prompt.

Note: All intrinsic functions that are defined in the Fortran standard can be
assumed to be pure functions.

5.1 Intrinsic Procedure Terms and Concepts

Intrinsic procedures are predefined by the language. They conform to the
principles and rules for procedures as described in the Fortran Language
Reference Manual, Volume 1. Intrinsic procedures are invoked in the same way as
other procedures and employ the same argument association mechanism. The
intrinsic procedure interfaces, including the argument keywords (dummy
argument names) and argument options, are all described partially in this
section and are described further in the man pages.

The four classes of intrinsic procedures are as follows:

007–3693–005 241

Fortran Language Reference Manual, Volume 2

• Inquiry functions.

• Elemental functions.

• Transformational functions.

• Subroutines. One intrinsic subroutine, MVBITS, is elemental and pure.

The CF90 and MIPSpro 7 Fortran 90 compilers also include the following types
of intrinsic procedures:

• Intrinsic procedures to support IEEE floating-point arithmetic.

• Miscellaneous procedures. All procedures in this group are extensions to the
Fortran standard.

5.1.1 Inquiry Functions

An inquiry function returns information about something. The results of these
functions depend on the properties of the principal argument rather than the
value of this argument. The argument can be undefined.

The Fortran standard inquiry functions are as follows (in the following list, the
numeric model referred to is described in Section 5.3, page 258):

Name Information returned

ALLOCATED Array allocation status

ASSOCIATED Pointer association status or comparison

BIT_SIZE Number of bits in the bit manipulation model

DIGITS Number of significant digits in the numeric model

EPSILON Number that is almost negligible compared to one

HUGE Largest number in the numeric model

KIND Kind type parameter value

LBOUND Lower dimension bounds of an array

LEN Length of a character entity

MAXEXPONENT Maximum exponent in the numeric model

MINEXPONENT Minimum exponent in the numeric model

PRECISION Decimal precision of the numeric model

PRESENT Dummy argument presence

RADIX Base of the numeric model

242 007–3693–005

Intrinsic Procedures [5]

RANGE Decimal exponent range of the numeric model

SHAPE Shape of an array or scalar

SIZE Total number of elements in an array

TINY Smallest positive number in the numeric model

UBOUND Upper dimension bounds of an array

5.1.2 Elemental Functions

Many intrinsic functions, and the MVBITS subroutine, can be referenced
elementally; that is, the intrinsic is called with one or more array arguments
and yields an array result.

The Fortran standard elemental functions are as follows:

Name Information returned or operation

ABS Absolute value

ACHAR Character in given position in ASCII collating
sequence

ACOS Arccosine

ADJUSTL Adjust a string left

ADJUSTR Adjust a string right

AIMAG Imaginary part of a complex number

AINT Truncation to whole number

ANINT Nearest whole number

ASIN Arcsine

ATAN Arctangent

ATAN2 Arctangent of a nonzero complex value

BTEST Bit testing

CEILING Least integer greater than or equal to a given real
number

CHAR Character in given position in the collating
sequence used by this compiler

CMPLX Conversion to complex type

CONJG Conjugate of a complex number

COS Cosine

007–3693–005 243

Fortran Language Reference Manual, Volume 2

COSH Hyperbolic cosine

DBLE Conversion to double-precision real type

DIM Positive difference

DPROD Double-precision real product

EXP Exponential

EXPONENT Exponent part of a numeric model number

FLOOR Greatest integer less than or equal to a given real
number

FRACTION Fraction part of a numeric model number

IACHAR Position of a character in the ASCII collating
sequence

IAND Logical AND

IBCLR Clear a bit

IBITS Bit extraction

IBSET Set a bit

ICHAR Position of a character in the collating sequence
used by the compiler

IEOR Exclusive OR

INDEX Starting position of a substring

INT Conversion to integer type

IOR Inclusive OR

ISHFT Logical shift

ISHFTC Circular shift

LEN_TRIM Length without trailing blank characters

LGE Lexically greater than or equal

LGT Lexically greater than

LLE Lexically less than or equal

LLT Lexically less than

LOG Natural logarithm

LOG10 Common logarithm (base 10)

LOGICAL Convert between objects of type logical with
different kind type parameters

244 007–3693–005

Intrinsic Procedures [5]

MAX Maximum value

MERGE Merge under mask

MIN Minimum value

MOD Remainder function

MODULO Modulo function

NEAREST Nearest different machine-representable number
in given direction

NINT Nearest integer

NOT Logical complement

REAL Conversion to real type

RRSPACING Reciprocal of the relative spacing of numeric
model numbers near given number

SCALE Multiply a real by its base to an integer power

SCAN Scan a string for a character in a set

SET_EXPONENT Set exponent part of a numeric model number

SIGN Transfer of sign

SIN Sine

SINH Hyperbolic sine

SPACING Absolute spacing of numeric model numbers near
a given number

SQRT Square root

TAN Tangent

TANH Hyperbolic tangent

VERIFY Verify the set of characters in a string

5.1.3 Transformational Functions

Transformational procedures have either a dummy argument that is array
valued (for example, the SUM function) or an actual argument that is array
valued without causing an elemental interpretation (for example, the SHAPE
function). A transformational function transforms an array actual argument into
a scalar result or another array, rather than applying the operation
element-by-element.

The Fortran standard transformational functions are as follows:

007–3693–005 245

Fortran Language Reference Manual, Volume 2

Name Information returned or operation

ALL True if all values are true

ANY True if any value is true

COUNT Number of true elements in an array

CSHIFT Circular shift

DOT_PRODUCT Dot product of two rank one arrays

EOSHIFT End-off shift

MATMUL Matrix multiplication

MAXLOC Location of a maximum value in an array

MAXVAL Maximum value in an array

MINLOC Location of a minimum value in an array

MINVAL Minimum value in an array

NULL Return a disassociated pointer

PACK Pack an array into an array of rank one

PRODUCT Product of array elements

REPEAT Repeated concatenation

RESHAPE Reshape an array

SELECTED_INT_KIND Integer kind type parameter, given range

SELECTED_REAL_KIND Real kind type parameter, given range

SPREAD Replicates array by adding a dimension

SUM Sum of array elements

TRANSFER Treat first argument as if of type of second
argument

TRANSPOSE Transpose an array of rank two

TRIM Remove trailing blank characters

UNPACK Unpack an array of rank one into an array under
a mask

5.1.4 Subroutines

An intrinsic subroutine is referenced by the CALL statement that uses its name
explicitly. The name of an intrinsic subroutine cannot be used as an actual
argument. MVBITS is an elemental subroutine.

246 007–3693–005

Intrinsic Procedures [5]

The Fortran standard intrinsic subroutines are as follows:

Name Purpose

CPU_TIME Returns the processor time

DATE_AND_TIME Obtains date and time

MVBITS Copies bits from one bit manipulation model
integer to another

RANDOM_NUMBER Returns pseudorandom number

RANDOM_SEED Initializes or restarts the pseudorandom number
generator

SYSTEM_CLOCK Obtains data from the system clock

5.1.5 Intrinsic Procedures to Support IEEE Floating-point Arithmetic (EXTENSION)

The intrinsic procedures described in this section support the IEEE Standard for
Binary Floating-point Arithmetic.

Note: The intrinsic procedures to support IEEE floating-point arithmetic are
supported on all UNICOS/mk and IRIX platforms. They are supported on
UNICOS platforms when running on CRAY T90 systems that support IEEE
floating-point arithmetic. See the man pages for each routine for more
implementation information.

The IEEE intrinsic procedures allow you to obtain, alter, and restore the
floating-point status flags. For example, they allow a procedure to save the
current floating-point state as a single word on entry to a procedure and to
restore the floating-point state before returning to the caller.

The IEEE intrinsic procedures are as follows:

Name Information returned or
operation

CLEAR_IEEE_EXCEPTION Clears floating-point
exception indicator

DISABLE_IEEE_INTERRUPT Disables floating-point
interrupt

ENABLE_IEEE_INTERRUPT Enables floating-point
interrupt

007–3693–005 247

Fortran Language Reference Manual, Volume 2

GET_IEEE_EXCEPTIONS Retrieves flags that represent
the current floating-point
exception status

GET_IEEE_INTERRUPTS Retrieves flags that represent
the current floating-point
interrupt status

GET_IEEE_ROUNDING_MODE Returns current floating-point
rounding mode

GET_IEEE_STATUS Retrieves flags that represent
the current floating-point
status

IEEE_BINARY_SCALE Returns y multiplied by 2n

IEEE_CLASS Returns the class to which x
belongs

IEEE_COPY_SIGN Returns x with the sign of y

IEEE_EXPONENT Returns the unbiased
exponent of x

IEEE_FINITE Tests for x being greater than
negative infinity and less
than positive infinity

IEEE_IS_NAN Tests for x being a NaN

IEEE_INT Converts x to an integral
value according to the
rounding mode in effect

IEEE_NEXT_AFTER Returns the next
representable neighbor of x in
the direction toward y

IEEE_REAL Converts x to a real value
according to the rounding
mode in effect

IEEE_REMAINDER Returns the remainder of the
operation x/y

IEEE_UNORDERED Tests for x or y being a NaN

248 007–3693–005

Intrinsic Procedures [5]

INT_MULT_UPPER Multiplies unsigned integers
and returns the uppermost
bits

SET_IEEE_EXCEPTION Sets floating-point exception
indicator

SET_IEEE_EXCEPTIONS Restores the floating-point
status

SET_IEEE_INTERRUPTS Restores floating-point
interrupt status

SET_IEEE_ROUNDING_MODE Restores floating-point
rounding mode

SET_IEEE_STATUS Restores floating-point status
before

TEST_IEEE_EXCEPTION Returns the state of a
floating-point exception

TEST_IEEE_INTERRUPT Returns the state of a
floating-point interrupt

For more information on how Silicon Graphics has implemented the IEEE
Standard for Binary Floating-point Arithmetic, see Migrating to the CRAY T90
Series IEEE Floating Point.

5.1.5.1 Using Named Constants

A number of the procedures named in Section 5.1.5, page 247, use named
constants. On systems that support IEEE floating-point arithmetic, the named
constants are provided in module FTN_IEEE_DEFINITIONS. To use this
module, include the following statement in your program:

USE FTN_IEEE_DEFINITIONS

The FTN_IEEE_DEFINITIONS module must be used if you want to use named
constants to pass values to IEEE intrinsic procedures or to interpret return
values. The named constants should always be used as arguments to the
appropriate procedures, as opposed to using hard-coded values, because the
values represented by the named constants might not be the same on all
architectures. Silicon Graphics reserves the right to change the values
represented by the named constants.

The named constants are available to you if the scoping unit from which they
are referenced (or a parent scoping unit) has used the module

007–3693–005 249

Fortran Language Reference Manual, Volume 2

FTN_IEEE_DEFINITIONS. The following paragraphs describe the named
constants that are available to you and the systems upon which they are
supported.

The following named constants allow you to access floating-point exception
flags:

• IEEE_XPTN_CRI_INVALID_OPND (supported only on CRAY T90 systems
that support IEEE floating-point arithmetic)

• IEEE_XPTN_INEXACT_RESULT

• IEEE_XPTN_UNDERFLOW

• IEEE_XPTN_OVERFLOW

• IEEE_XPTN_DIV_BY_ZERO

• IEEE_XPTN_INVALID_OPR

• IEEE_XPTN_ALL

The following named constants allow you to access floating-point interrupt
flags:

• IEEE_NTPT_CRI_INVALID_OPND (supported only on CRAY T90 systems
that support IEEE floating-point arithmetic)

• IEEE_NTPT_INEXACT_RESULT

• IEEE_NTPT_UNDERFLOW

• IEEE_NTPT_OVERFLOW

• IEEE_NTPT_DIV_BY_ZERO

• IEEE_NTPT_INVALID_OPR

• IEEE_NTPT_ALL

The following named constants allow you to access the floating-point rounding
mode:

• IEEE_RM_NEAREST

• IEEE_RM_POS_INFINITY

• IEEE_RM_ZERO

• IEEE_RM_NEG_INFINITY

250 007–3693–005

Intrinsic Procedures [5]

The following named constants allow you to determine the class of a
floating-point value:

• IEEE_CLASS_SIGNALING_NAN

• IEEE_CLASS_QUIET_NAN

• IEEE_CLASS_NEG_INFINITY

• IEEE_CLASS_NEG_NORM_NONZERO

• IEEE_CLASS_NEG_DENORM

• IEEE_CLASS_NEG_ZERO

• IEEE_CLASS_POS_ZERO

• IEEE_CLASS_POS_DENORM

• IEEE_CLASS_POS_NORM_NONZERO

• IEEE_CLASS_POS_INFINITY

5.1.5.2 Renaming Intrinsic Procedures

Some of the IEEE intrinsic procedure names are long. This was done to avoid
creating names that might be identical to names that already exist in user
programs. If, however, an IEEE intrinsic procedure name conflicts with an
existing user identifier, you can use the Fortran renaming capabilities to provide
your own local name by following these steps:

1. Create a module that contains an INTRINSIC statement for each intrinsic
procedure you wish to rename.

2. Reference this module name in a USE statement in a context in which you
want to reference the intrinsic procedure. Use a rename clause on the USE
statement for the intrinsic procedures you want to rename.

For example, to rename IEEE_IS_NAN to IS_NAN:

MODULE MY_NAMES

INTRINSIC IEEE_IS_NAN

END MODULE

PROGRAM MAIN

USE MY_NAMES, IS_NAN => IEEE_IS_NAN
...

! REFERENCES TO IS_NAN HERE

007–3693–005 251

Fortran Language Reference Manual, Volume 2

! ARE ACTUALLY TO IEEE_IS_NAN

....
END PROGRAM

5.1.6 Miscellaneous Procedures (EXTENSION)

The CF90 and MIPSpro 7 Fortran 90 compilers implement many intrinsic
procedures that are extension to the Fortran standard. Consult the man page for
each intrinsic to determine whether individual intrinsics are elemental, inquiry,
transformational, or are an intrinsic subroutine.

Not all of the miscellaneous procedures are implemented on all platforms. See
the man pages for each routine for more implementation information.

The following functions are extensions to the Fortran standard:

Name Information returned or
operation

ACOSD Accepts cosine, returns
degrees.

ADD_AND_FETCH, AND_AND_FETCH,
NAND_AND_FETCH, OR_AND_FETCH,
SUB_AND_FETCH, XOR_AND_FETCH

Performs full barrier
operations with the second
argument on the first
arguments and returns the
new value of the second
argument.

ASIND Accepts sine, returns degrees.

ATAND Accepts tangent, returns
degrees.

ATAN2D Accepts tangent numerator
and denominator, returns
degrees.

CLOC Obtains the address of a
character entity.

COMPARE_AND_SWAP Compares arguments. If they
are equal, the value of the
third argument is stored into
the first and the return value

252 007–3693–005

Intrinsic Procedures [5]

is TRUE. Otherwise, the
return value is FALSE.

COSD Accepts degrees as argument,
returns cosine.

COT Returns cotangent.

CVMGM Test for minus (negative).

CVMGN Test for nonzero.

CVMGP Test for positive (or zero).

CVMGZ Test for zero.

CVMGT Test for TRUE.

DSHIFTL Shifts double word left.

DSHIFTR Shifts double word right.

DSM_CHUNKSIZE Returns the chunk size
(ignoring partial chunks) in
the given dimension for each
of BLOCK, CYCLIC, and
asterisk (*) distributions.

DSM_DISTRIBUTION_BLOCK Returns 0 (FALSE) or 1
(TRUE) for a query on
whether or not the specified
dimension has a BLOCK
distribution.

DSM_DISTRIBUTION_CYCLIC Returns 0 (FALSE) or 1
(TRUE) for a query on
whether or not the specified
dimension has a CYCLIC
distribution.

DSM_DISTRIBUTION_STAR Returns 0 (FALSE) or 1
(TRUE) for a query on
whether or not the specified
dimension has an asterisk (*)
distribution.

DSM_ISDISTRIBUTED Returns 0 (FALSE) or 1
(TRUE) for a query on
whether or not array is
distributed (regular or
reshaped) or not.

007–3693–005 253

Fortran Language Reference Manual, Volume 2

DSM_ISRESHAPED Returns 0 (FALSE) or 1
(TRUE) for a query on
whether or not array is
reshaped or not.

DSM_NUMCHUNKS Returns the number of
chunks (including partial
chunks) in the given dim for
each of BLOCK, CYCLIC, and
asterisk (*) distributions.

DSM_NUMTHREADS Returns the number of
threads in the specified
dimension of a distributed
array.

DSM_REM_CHUNKSIZE Returns the remaining chunk
size from index to the end of
the current chunk, inclusive
of each end point. Essentially
it is the distance from index to
the end of that contiguous
block, inclusive.

DSM_THIS_CHUNKSIZE Returns the chunk size for
the chunk containing the
specified index for each of
BLOCK, CYCLIC, and asterisk
(*). This value may be
different from
DSM_CHUNKSIZE due to edge
effects that can lead to a
partial chunk.

DSM_THIS_STARTINGINDEX Returns the starting index
value of the chunk containing
the supplied index.

DSM_THIS_THREADNUM Returns the thread number
for the chunk containing the
given index value for each of
BLOCK, CYCLIC, and asterisk
(*) distributions.

EQV Performs logical equivalence.

254 007–3693–005

Intrinsic Procedures [5]

FCD Constructs a character pointer
in Fortran Character
Descriptor (FCD) format.

FETCH_AND_ADD, FETCH_AND_AND,
FETCH_AND_NAND, FETCH_AND_OR,
FETCH_AND_SUB, FETCH_AND_XOR

Performs full barrier
operations with the second
argument on the first
arguments and returns the
old value of the first
argument.

FREE Deallocates memory.

GETPOS Obtains file position.

IBCHNG Reverses the value of a
specified bit in an integer.

IDATE Return date or time in
numerical form.

IMAG Returns imaginary part of a
complex number.

IRTC Returns clock register
contents.

ISHA Performs an arithmetic shift.

ISHC Rotates an integer left or
right.

ISHL Performs a logical shift.

ISNAN Tests for NaNs.

LEADZ Counts number of leading 0
bits.

LENGTH Returns the number of words
successfully transferred.

LOC Returns address of a variable.

LOCK_TEST_AND_SET Performs lock-acquire
operations.

LOCK_RELEASE Performs lock-release
operations.

007–3693–005 255

Fortran Language Reference Manual, Volume 2

LOG2_IMAGES Returns the base 2 logarithm
of the number of excecuting
images.

LONG Returns an
INTEGER(KIND=4) value.

LSHIFT Performs a left shift with zero
fill.

M@CLR Clears BML bit.

M@LD Loads transposed bit matrix.

M@LDMX Loads bit matrix and
multiplies.

M@MX Multiplies bit matrix.

M@UL Unloads bit matrix.

MALLOC Allocates memory on the
heap.

MY_PE Returns the number of the
processing element (PE) that
is executing.

MEMORY_BARRIER Blocks memory loads and
stores until processes finish.

NUMARG Returns the number of
arguments in a function or
subprogram call.

NUM_IMAGES Returns the number of
images that are executing.

POPCNT Counts number of set bits.

POPPAR Computes bit population
parity.

REM_IMAGES Returns
MOD(NUM_IMAGES(),
2**LOG2_IMAGES()).

REMOTE_WRITE_BARRIER Blocks processor until remote
writes have finished.

RSHIFT Performs a right shift with
zero fill.

256 007–3693–005

Intrinsic Procedures [5]

SHIFTA Performs an arithmetic shift.

SHORT Returns an
INTEGER(KIND=2) value.

SIND Accepts degrees, returns sine.

SYNC_IMAGES Synchronizes images.

SYNCHRONIZE Performs full barrier atomic
synchronization.

TAND Accepts degrees, returns
tangent.

THIS_IMAGE Returns an image number.

UNIT Performs I/O functions.

WRITE_MEMORY_BARRIER Blocks processor until remote
writes have finished.

5.2 Argument Keywords

Intrinsic procedure references can use keyword arguments, as described in
Section 4.7.4, page 216. A number of Fortran intrinsic procedure arguments are
optional. Using keywords allows you to omit corresponding actual arguments.
In the following example, the keyword form shown is used because the
optional first argument SIZE is omitted:

CALL RANDOM_SEED(PUT=SEED_VALUE)

If you are using argument keywords, the position at which the first argument
keyword appears determines whether others in the call must also appear in
keyword form. If an argument keyword is used, any other required arguments
to the right of that argument must also appear in keyword form.

The following examples show correct use of actual arguments:

CALL DOT_PRODUCT(VECTOR_A=ARRAY1, VECTOR_B=ARRAY2)

CALL DOT_PRODUCT(ARRAY1, VECTOR_B=ARRAY2)

CALL DOT_PRODUCT(ARRAY1, ARRAY2)

The following examples show incorrect use of actual arguments:

CALL DOT_PRODUCT(VECTOR_A=ARRAY1, ARRAY2)

CALL DOT_PRODUCT(ARRAY2)

007–3693–005 257

Fortran Language Reference Manual, Volume 2

Intrinsic procedure keywords (dummy argument names) have been made as
consistent as possible, including using the same name in different intrinsic
procedures for dummy arguments that play a corresponding or identical role.
These include DIM, MASK, KIND, and BACK.

• DIM is used, mostly in the array reduction functions and in some of the
other array functions, to specify the array dimension involved. DIM must be
a scalar integer value and usually is optional.

• MASK is used, mostly, in the array functions, to mask out elements of an
array that are not to be involved in the operation. For example, in the
function SUM, any element of the array that is not to be included in the sum
of the elements can be excluded by using an appropriate mask. The MASK
must be a logical array with the same shape as the array it is masking; it
usually is an optional argument.

• KIND is an argument that is used mainly in the transfer and conversion
functions to specify the kind type parameter of the function result. The
KIND actual argument must be a scalar integer initialization expression, even
in elemental references; it usually is optional.

• BACK is an optional logical argument used in several of the intrinsic
functions to specify reverse order (backward) processing. For example, if
BACK=.TRUE. in the INDEX function, then the search is performed
beginning from the right end of the string rather than the left end.

5.3 Representation Models

Some intrinsic functions compute values in relationship to how data is
represented. These values are based upon and determined by the underlying
representation model. There are three such models:

• The bit model

• The integer number system model

• The real number system model

These models, and the corresponding functions that return values related to the
models, allow development of robust and portable code. For example, by
obtaining information about the spacing of real numbers, you can control the
convergence of a numerical algorithm so that the code achieves maximum
accuracy while attaining convergence.

258 007–3693–005

Intrinsic Procedures [5]

The models themselves apply to the CF90 and MIPSpro 7 Fortran 90 compilers
running on any platform. The values that go into these models, however, are
platform-specific. Please see the models(3I) man page information on how
these models apply to the various platforms that the CF90 and MIPSpro 7
Fortran 90 compilers support.

5.4 Intrinsic Procedure Summary

This section summarizes the syntax of each intrinsic procedure. These tables are
meant to supplement, not replace, the intrinsic procedure man pages. For more
information on any of the intrinsics listed in these tables, enter man
intrinsic_name at your system prompt.

Some intrinsic functions have both generic and specific names. The intrinsic
functions that have specific names can be called with those names as well as
with the generic names. To pass an intrinsic procedure as an actual argument,
however, you must use the specific name. The following table shows the
specific intrinsic procedure names available in the CF90 and MIPSpro 7 Fortran
90 compilers. Some of the specific intrinsic names are the same as the generic
names.

The argument names shown are the keywords for keyword argument calls. All
of the optional arguments are enclosed in brackets ([]).

The following table shows the intrinsic procedures that the CF90 and MIPSpro
7 Fortran 90 compilers support both as part of the Fortran standard and as
extensions to the standard. If the procedure has both a generic and a specific
name, the generic name is shown first, and the specific names are listed
underneath.

007–3693–005 259

Fortran Language Reference Manual, Volume 2

Table 17. CF90 and MIPSpro 7 Fortran 90 intrinsic procedures

Procedure name Arguments

ABS
ABS
DABS
QABS
IABS
IIABS
JIABS
KIABS
CABS
CQABS
CDABS

([A=]a)
([A=]a)
([A=]a)
([A=]a)
([A=]a)
([A=]a)
([A=]a)
([A=]a)
([A=]a)
([A=]a)
([A=]a)

ACHAR ([I=]i)

ACOS
ACOS
DACOS
QACOS

([X=]x)
([X=]x)
([X=]x)
([X=]x)

ACOSD
ACOSD
DACOSD
QACOSD

([X=]x)
([X=]x)
([X=]x)
([X=]x)

ADD_AND_FETCH ([I=]i, [J=]j)

ADJUSTL ([STRING=]string)

ADJUSTR ([STRING=]string)

AIMAG, IMAG
AIMAG
DIMAG
QIMAG

([Z=]z)
([Z=]z)
([Z=]z)
([Z=]z)

AINT
AINT
DINT
QINT

([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])

ALL ([MASK=]mask [,[DIM=]dim])

ALLOCATED ([ARRAY=]array)

260 007–3693–005

Intrinsic Procedures [5]

Procedure name Arguments

AND ([I=]i, [J=]j)

AND_AND_FETCH ([I=]i, [J=]j)

ANINT
ANINT
DNINT
QNINT

([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])

ANY ([MASK=]mask [,[DIM=]dim])

ASIN
ASIN
DASIN
QASIN

([X=]x)
([X=]x)
([X=]x)
([X=]x)

ASIND
ASIND
DASIND
QASIND

([X=]x)
([X=]x)
([X=]x)
([X=]x)

ASSOCIATED ([POINTER=]pointer [,[TARGET=]target])

ATAN
ATAN
DATAN
QATAN

([X=]x)
([X=]x)
([X=]x)
([X=]x)

ATAND
ATAND
DATAND
QATAND

([X=]x)
([X=]x)
([X=]x)
([X=]x)

ATAN2
ATAN2
DATAN2
QATAN2

([Y=]y, [X=]x)
([Y=]y, [X=]x)
([Y=]y, [X=]x)
([Y=]y, [X=]x)

ATAN2D
ATAN2D
DATAN2D
QATAN2D

([Y=]y, [X=]x)
([Y=]y, [X=]x)
([Y=]y, [X=]x)
([Y=]y, [X=]x)

BIT_SIZE ([I=]i)

007–3693–005 261

Fortran Language Reference Manual, Volume 2

Procedure name Arguments

BTEST
BTEST
BITEST
BJTEST
BKTEST

([I=]i, [POS=]pos)
([I=]i, [POS=]pos)
([I=]i, [POS=]pos)
([I=]i, [POS=]pos)
([I=]i, [POS=]pos)

CEILING ([A=]a [,[KIND=]kind])

CHAR ([I=]i [,[KIND=]kind])

CLEAR_IEEE_EXCEPTION ([EXCEPTION=]exception)

CLOC ([C=]c)

CLOCK ()

CMPLX
DCMPLX
QCMPLX

([X=]x [,[Y=]y] [,[KIND=]kind])
([X=]x [,[Y=]y] [,[KIND=]kind])
([X=]x [,[Y=]y] [,[KIND=]kind])

COMPARE_AND_SWAP ([I=]i, [J=]j)

COMPL ([I=]i)

CONJG
CONJG
DCONJG
QCONJG

([Z=]z)
([Z=]z)
([Z=]z)
([Z=]z)

COS
COS
DCOS
QCOS
CCOS
CDCOS

([X=]x)
([X=]x)
([X=]x)
([X=]x)
([X=]x)
([X=]x)

COSD
COSD
DCOSD
QCOSD

([X=]x)
([X=]x)
([X=]x)
([X=]x)

COSH
COSH
DCOSH
QCOSH

([X=]x)
([X=]x)
([X=]x)
([X=]x)

262 007–3693–005

Intrinsic Procedures [5]

Procedure name Arguments

COT
COT
DCOT
QCOT

([X=]x)
([X=]x)
([X=]x)
([X=]x)

COUNT ([MASK=]mask [,[DIM=]dim])

CPU_TIME ([TIME=]time)

CSHIFT ([ARRAY=]array, [SHIFT=]shift [,[DIM=]dim])

CSMG ([I=]i, [J=]j, [K=]k)

CVMGM ([I=]i, [J=]j, [K=]k)

CVMGN ([I=]i, [J=]j, [K=]k)

CVMGP ([I=]i, [J=]j, [K=]k)

CVMGT ([I=]i, [J=]j, [K=]k)

CVMGZ ([I=]i, [J=]j, [K=]k)

DATE, JDATE ()

DATE_AND_TIME ([[DATE=]date] [,[TIME=]time] [,[ZONE=]zone] [,[VALUES=]values])

DBLE
DFLOAT
DFLOATI
DFLOATJ
DFLOATK
QFLOAT
QFLOATI
QFLOATJ
QFLOATK

([A=]a)
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])

DIGITS ([X=]x)

DIM
DIM
DDIM
QDIM
IDIM
IIDIM
JIDIM
KIDIM

([X=]x, [Y=]y)
([X=]x, [Y=]y)
([X=]x, [Y=]y)
([X=]x, [Y=]y)
([X=]x, [Y=]y)
([X=]x, [Y=]y)
([X=]x, [Y=]y)
([X=]x, [Y=]y)

DISABLE_IEEE_INTERRUPT ([INTERRUPT=]interrupt)

007–3693–005 263

Fortran Language Reference Manual, Volume 2

Procedure name Arguments

DOT_PRODUCT ([VECTOR_A=]vector_a, [VECTOR_B=]vector_b)

DPROD
QPROD

([X=]x, [Y=]y)
([X=]x, [Y=]y)

DSHIFTL ([I=]i, [J=]j, [K=]k)

DSHIFTR ([I=]i, [J=]j, [K=]k)

DSM_CHUNKSIZE ([ARRAY=]array, [DIM=]dim)

DSM_DISTRIBUTION_BLOCK ([ARRAY=]array, [DIM=]dim)

DSM_DISTRIBUTION_CYCLIC ([ARRAY=]array, [DIM=]dim)

DSM_DISTRIBUTION_STAR ([ARRAY=]array, [DIM=]dim)

DSM_ISDISTRIBUTED ([ARRAY=]array)

DSM_ISRESHAPED ([ARRAY=]array)

DSM_NUMCHUNKS ([ARRAY=]array, [DIM=]dim)

DSM_NUMTHREADS ([ARRAY=]array, [DIM=]dim)

DSM_REM_CHUNKSIZE ([ARRAY=]array, [DIM=]dim, [INDEX=]index)

DSM_THIS_CHUNKSIZE ([ARRAY=]array, [DIM=]dim, [INDEX=]index)

DSM_THIS_STARTINGINDEX ([ARRAY=]array, [DIM=]dim, [INDEX=]index)

DSM_THIS_THREADNUM ([ARRAY=]array, [DIM=]dim, [INDEX=]index)

ENABLE_IEEE_INTERRUPT ([INTERRUPT=]interrupt)

EOSHIFT ([ARRAY=]array, [SHIFT=]shift [,[BOUNDARY=]bound] [,[DIM=]dim])

EPSILON ([X=]x)

EQV ([I=]i, [J=]j)

EXP
EXP
DEXP
QEXP
CEXP
CDEXP
CQDEXP

([X=]x)
([X=]x)
([X=]x)
([X=]x)
([X=]x)
([X=]x)
([X=]x)

EXPONENT ([X=]x)

FCD ([I=]i, [J=]j)

264 007–3693–005

Intrinsic Procedures [5]

Procedure name Arguments

FETCH_AND_ADD ([I=]i, [J=]j)

FETCH_AND_AND ([I=]i, [J=]j)

FETCH_AND_NAND ([I=]i, [J=]j)

FETCH_AND_OR ([I=]i, [J=]j)

FETCH_AND_SUB ([I=]i, [J=]j)

FETCH_AND_XOR ([I=]i, [J=]j)

FLOOR ([A=]a [,[KIND=]kind])

FRACTION ([X=]x)

FREE ([P=]iptr)

GET_IEEE_EXCEPTIONS ([STATUS=]status)

GET_IEEE_INTERRUPTS ([STATUS=]status)

GET_IEEE_ROUNDING_MODE ([ROUNDING_MODE=]rounding_mode)

GET_IEEE_STATUS ([STATUS=]status)

GETPOS ([I=]i)

HUGE ([X=]x)

IACHAR ([C=]c)

IAND
IIAND
JIAND
KIAND

([I=]i, [J=]j)
([I=]i, [J=]j)
([I=]i, [J=]j)
([I=]i, [J=]j)

IBCHNG
IIBCHNG
JIBCHNG
KIBCHNG

([I=]i, [POS=]pos)
([I=]i, [POS=]pos)
([I=]i, [POS=]pos)
([I=]i, [POS=]pos)

IBCLR
IIBCLR
JIBCLR
KIBCLR

([I=]i, [POS=]pos)
([I=]i, [POS=]pos)
([I=]i, [POS=]pos)
([I=]i, [POS=]pos)

IBITS
IIBITS
JIBITS
KIBITS

([I=]i, [POS=]pos, [LEN=]len)
([I=]i, [POS=]pos, [LEN=]len)
([I=]i, [POS=]pos, [LEN=]len)
([I=]i, [POS=]pos, [LEN=]len)

007–3693–005 265

Fortran Language Reference Manual, Volume 2

Procedure name Arguments

IBSET
IIBSET
JIBSET
KIBSET

([I=]i, [POS=]pos)
([I=]i, [POS=]pos)
([I=]i, [POS=]pos)
([I=]i, [POS=]pos)

ICHAR ([C=]c)

IDATE ([IMON=]imon, [IDAY=]iday, [IYEAR=]iyear)

IEEE_BINARY_SCALE ([Y=]y, [N=]n)

IEEE_CLASS ([X=]x)

IEEE_COPY_SIGN ([X=]x, [Y=]y)

IEEE_EXPONENT ([X=]x [,[Y=]y])

IEEE_FINITE ([X=]x)

IEEE_INT ([X=]x [,[Y=]y])

IEEE_IS_NAN ([X=]x)

IEEE_NEXT_AFTER ([X=]x, [Y=]y)

IEEE_REAL ([X=]x [,[Y=]y])

IEEE_REMAINDER ([X=]x, [Y=]y)

IEEE_UNORDERED ([X=]x, [Y=]y)

IEOR
IIEOR
JIEOR
KIEOR

([I=]i, [J=]j)
([I=]i, [J=]j)
([I=]i, [J=]j)
([I=]i, [J=]j)

INDEX ([STRING=]string, [SUBSTRING=]substring [,[BACK=]back])

266 007–3693–005

Intrinsic Procedures [5]

Procedure name Arguments

INT
IDINT
IQINT
IINT
JIINT
IIDINT
JIDINT
IIQINT
JIQINT
KIQINT
IFIX
IIFIX
JFIX

([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])

INT_MULT_UPPER ([I=]i, [J=]j)

INT24 ([I=]i)

IOR
IIOR
JIOR
KIOR

([I=]i, [J=]j)
([I=]i, [J=]j)
([I=]i, [J=]j)
([I=]i, [J=]j)

IRTC ()

ISHA
IISHA
JISHA
KISHA

([I=]i, [SHFT=]shift)
([I=]i, [SHFT=]shift)
([I=]i, [SHFT=]shift)
([I=]i, [SHFT=]shift)

ISHC
IISHC
JISHC
KISHC

([I=]i, [SHIFT=]shift)
([I=]i, [SHIFT=]shift)
([I=]i, [SHIFT=]shift)
([I=]i, [SHIFT=]shift)

ISHL
IISHL
JISHL
KISHL

([I=]i, [SHIFT=]shift)
([I=]i, [SHIFT=]shift)
([I=]i, [SHIFT=]shift)
([I=]i, [SHIFT=]shift)

ISHFT
IISHFT
JISHFT
KISHFT

([I=]i, [SHIFT=]shift)
([I=]i, [SHIFT=]shift)
([I=]i, [SHIFT=]shift)
([I=]i, [SHIFT=]shift)

007–3693–005 267

Fortran Language Reference Manual, Volume 2

Procedure name Arguments

ISHFTC
IISHFTC
JISHFTC
KISHFTC

([I=]i, [SHIFT=]shift [,[SIZE=]size])
([I=]i, [SHIFT=]shift [,[SIZE=]size])
([I=]i, [SHIFT=]shift [,[SIZE=]size])
([I=]i, [SHIFT=]shift [,[SIZE=]size])

ISNAN ([X=]x)

KIND ([X=]x)

LBOUND ([ARRAY=]array [,[DIM=]dim])

LEADZ ([I=]i)

LEN ([STRING=]string)

LEN_TRIM ([STRING=]string)

LENGTH ([I=]i)

LGE ([STRING_A=]string_a, [STRING_B=]string_b)

LGT ([STRING_A=]string_a, [STRING_B=]string_b)

LLE ([STRING_A=]string_a, [STRING_B=]string_b)

LLT ([STRING_A=]string_a, [STRING_B=]string_b)

LOC ([I=]i)

LOCK_RELEASE ([I=]i)

LOCK_TEST_AND_SET ([I=]i, [J=]j)

LOG
ALOG
DLOG
QLOG
CLOG
CDLOG

([X=]x)
([X=]x)
([X=]x)
([X=]x)
([X=]x)
([X=]x)

LOG2_IMAGES ()

LOG10
ALOG10
DLOG10
QLOG10

([X=]x)
([X=]x)
([X=]x)
([X=]x)

LOGICAL ([L=]l [,[KIND=]kind])

LONG ([A=]a)

LSHIFT ([I=]i, [SHIFT=]shift)

268 007–3693–005

Intrinsic Procedures [5]

Procedure name Arguments

M@CLR ()

M@LD ([X=]x)

M@LDMX ([X=]x, [Y=]y)

M@MX ([X=]x [,[Y=]y])

M@UL ()

MALLOC ([N=]nbytes)

MASK ([I=]i)

MATMUL ([MATRIX_A=]matrix_a, [MATRIX_B=]matrix_b)

MAX
MAX0
AMAX1
DMAX1
QMAX1
MAX1
AMAX0

([A1=]a1, [A2=]a2 [,[A3=]a3]...)
([A1=]a1, [A2=]a2 [,[A3=]a3]...)
([A1=]a1, [A2=]a2 [,[A3=]a3]...)
([A1=]a1, [A2=]a2 [,[A3=]a3]...)
([A1=]a1, [A2=]a2 [,[A3=]a3]...)
([A1=]a1, [A2=]a2 [,[A3=]a3]...)
([A1=]a1, [A2=]a2 [,[A3=]a3]...)

MAXEXPONENT ([X=]x)

MAXLOC ([ARRAY=]array [,[DIM=]dim] [,[MASK=]mask])

MAXVAL ([ARRAY=]array [,[DIM=]dim] [,[MASK=]mask])

MEMORY_BARRIER ()

MERGE ([TSOURCE=]tsource, [FSOURCE=]fsource, [MASK=]mask)

MIN
MIN0
AMIN1
DMIN1
QMIN1
MIN1
AMIN0

([A1=]a1, [A2=]a2 [,[A3=]a3]...)
([A1=]a1, [A2=]a2 [,[A3=]a3]...)
([A1=]a1, [A2=]a2 [,[A3=]a3]...)
([A1=]a1, [A2=]a2 [,[A3=]a3]...)
([A1=]a1, [A2=]a2 [,[A3=]a3]...)
([A1=]a1, [A2=]a2 [,[A3=]a3]...)
([A1=]a1, [A2=]a2 [,[A3=]a3]...)

MINEXPONENT ([X=]x)

MINLOC ([ARRAY=]array [,[DIM=]dim] [,[MASK=]mask])

MINVAL ([ARRAY=]array [,[DIM=]dim] [,[MASK=]mask])

007–3693–005 269

Fortran Language Reference Manual, Volume 2

Procedure name Arguments

MOD
MOD
AMOD
DMOD
IMOD
JMOD
KMOD
QMOD

([A=]a, [P=]p)
([A=]a, [P=]p)
([A=]a, [P=]p)
([A=]a, [P=]p)
([A=]a, [P=]p)
([A=]a, [P=]p)
([A=]a, [P=]p)
([A=]a, [P=]p)

MODULO ([A=]a, [P=]p)

MVBITS ([FROM=]from, [FROMPOS=]frompos, [LEN=]len, [TO=]to, [TOPOS=]topos)

MY_PE ()

NAND_AND_FETCH ([I=]i, [J=]j)

NEAREST ([X=]x, [S=]s)

NEQV ([I=]i, [J=]j)

NINT
NINT
IDNINT
IQNINT

([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])

NOT
INOT
JNOT
KNOT

([I=]i)
([I=]i)
([I=]i)
([I=]i)

NULL ([[MOLD=]mold])

NUMARG ()

NUM_IMAGES ()

OR ([I=]i, [J=]j)

OR_AND_FETCH ([I=]i, [J=]j)

PACK ([ARRAY=]array, [MASK=]mask [,[VECTOR=]vector])

POPCNT ([I=]i)

POPPAR ([I=]i)

PRECISION ([X=]x)

PRESENT ([A=]a)

270 007–3693–005

Intrinsic Procedures [5]

Procedure name Arguments

PRODUCT ([ARRAY=]array [,[DIM=]dim] [,[MASK=]mask])

RADIX ([X=]x)

RANDOM_NUMBER ([HARVEST=]harvest)

RANDOM_SEED ([[SIZE=]size] [,[PUT=]put] [,[GET=]get])

RANF
RANGET
RANSET

()

([I=]i)
([I=]i)

RANGE ([X=]x)

REAL
DREAL
QREAL
FLOAT
FLOATI
FLOATJ
FLOATK
SNGL

([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])
([A=]a [,[KIND=]kind])

REM_IMAGES ()

REMOTE_WRITE_BARRIER ()

REPEAT ([STRING=]string, [NCOPIES=]ncopies)

RESHAPE ([SOURCE=]source, [SHAPE=]shape [,[PAD=]pad] [,[ORDER=]order])

RRSPACING ([X=]x)

RSHIFT ([I=]i, [NEGATIVE_SHIFT=]negative_shift)

RTC ()

SCALE ([X=]x, [I=]i)

SCAN ([STRING=]string, [SET=]set [,[BACK=]back])

SELECTED_INT_KIND ([R=]r)

SELECTED_REAL_KIND ([[P=]p] [,[R=]r])

SET_EXPONENT ([X=]x, [I=]i)

SET_IEEE_EXCEPTION ([EXCEPTION=]exception)

SET_IEEE_EXCEPTIONS ([STATUS=]status)

SET_IEEE_INTERRUPTS ([STATUS=]status)

007–3693–005 271

Fortran Language Reference Manual, Volume 2

Procedure name Arguments

SET_IEEE_ROUNDING_MODE ([ROUNDING_MODE=]rounding_mode)

SET_IEEE_STATUS ([STATUS=]status)

SHAPE ([STATUS=]status)

SHIFT ([I=]i, [J=]j)

SHIFTA ([I=]i, [J=]j)

SHIFTL ([I=]i, [J=]j)

SHIFTR ([I=]i, [J=]j)

SHORT ([A=]a)

SIGN
ISIGN
DSIGN
IISIGN
JISIGN
KISIGN
QSIGN

([A=]a, [B=]b)
([A=]a, [B=]b)
([A=]a, [B=]b)
([A=]a, [B=]b)
([A=]a, [B=]b)
([A=]a, [B=]b)
([A=]a, [B=]b)

SIN
SIN
DSIN
QSIN
CSIN
CDSIN
CQSIN

([X=]x)
([X=]x)
([X=]x)
([X=]x)
([X=]x)
([X=]x)
([X=]x)

SIND
SIND
DSIND
QSIND

([X=]x)
([X=]x)
([X=]x)
([X=]x)

SINH
SINH
DSINH
QSINH

([X=]x)
([X=]x)
([X=]x)
([X=]x)

SIZE ([ARRAY=]array [,[DIM=]dim])

SPACING ([X=]x)

SPREAD ([SOURCE=]source, [DIM=]dim, [NCOPIES=]ncopies)

272 007–3693–005

Intrinsic Procedures [5]

Procedure name Arguments

SQRT
SQRT
DSQRT
QSQRT
CSQRT
CDSQRT
CQSQRT

([X=]x)
([X=]x)
([X=]x)
([X=]x)
([X=]x)
([X=]x)
([X=]x)

SUB_AND_FETCH ([I=]i, [J=]j)

SUM ([ARRAY=]array [,[DIM=]dim] [,[MASK=]mask])

SYNC_IMAGES ([IMAGE=]image)

SYNCHRONIZE ()

SYSTEM_CLOCK ([[COUNT=]count] [,[COUNT_RATE=]count_rate] [,[COUNT_MAX=]count_max])

TAN
TAN
DTAN
QTAN

([X=]x)
([X=]x)
([X=]x)
([X=]x)

TAND
TAND
DTAND
QTAND

([X=]x)
([X=]x)
([X=]x)
([X=]x)

TANH
TANH
DTANH
QTANH

([X=]x)
([X=]x)
([X=]x)
([X=]x)

TEST_IEEE_EXCEPTION ([EXCEPTION=]exception)

TEST_IEEE_INTERRUPT ([INTERRUPT=]interrupt)

THIS_IMAGE ([[ARRAY=]array [,[DIM=]dim]])

TINY ([X=]x)

TRANSFER ([SOURCE=]source, [MOLD=]mold [,[SIZE=]size])

TRANSPOSE ([MATRIX=]matrix)

TRIM ([STRING=]string)

UBOUND ([ARRAY=]array [,[DIM=]dim])

UNIT ([I=]i)

007–3693–005 273

Fortran Language Reference Manual, Volume 2

Procedure name Arguments

UNPACK ([VECTOR=]vector, [MASK=]mask, [FIELD=]field)

VERIFY ([STRING=]string, [SET=]set [,[BACK=]back])

XOR ([I=]i, [J=]j)

XOR_AND_FETCH ([I=]i, [J=]j)

WRITE_MEMORY_BARRIER ()

5.5 Man Pages

The Intrinsic Procedures Reference Manual, contains copies of the man pages that
describe the CF90 and MIPSpro 7 Fortran 90 intrinsic procedures. That manual
also contains copies of the UNICOS and UNICOS/mk math library routine man
pages. On IRIX systems, the underlying math library differs from that on
UNICOS and UNICOS/mk systems.

These man pages can be accessed online through the man(1) command.

Note: Many intrinsic procedures have both a vector and a scalar version. If a
vector version of an intrinsic procedure exists, and the intrinsic is called
within a vectorizable loop, the compiler uses the vector version of the
intrinsic. For information on which intrinsic procedures vectorize, see
intro_intrin(3I).

274 007–3693–005

Scope, Association, and Definition [6]

Scope, association, and definition (value assignment) provide the
communication pathways between the different parts of the program. These
topics were not presented completely in previous chapters because a
comprehensive and thorough understanding of the entire language is needed to
fully assimilate these topics. Fortunately, all of the detailed rules and conditions
presented in this chapter usually are not necessary in order to construct pieces
of Fortran programs. If simple programming disciplines are followed, many of
the subtle issues and concerns related to scope, association, and definition can
be avoided in writing correct programs. However, there are some situations in
which it is necessary to know all the details, particularly when modifying or
maintaining programs, or looking for subtle bugs.

The concept of scope is introduced in the Fortran Language Reference Manual,
Volume 1. Scope specifies that part of a program in which a particular entity is
known and accessible. The spectrum of scope varies from an entire program
(global), to individual program units (local), to construct definitions, to
statements or parts of statements.

To both communicate data between program units and limit and control
accessibility of data, the language defines the concept of association, which
relates local objects within and between program units. The association methods
were introduced in previous sections and include association through arguments
(argument association), association through storage (storage association),
association through modules (use association), association through hosts (host
association), and association through name aliases (pointer association).

After objects are associated, there can be multiple ways to define values for
them. For example, assignment statements and input statements define objects
directly by name, which can also cause associated items to become defined. In
some cases, such associated object values can be unpredictable or unreliable.
For example, if a real object is equivalenced (storage associated) with an integer
object, defining the real object with a valid real value causes the integer object
to acquire a meaningless value. This meaningless value is called an undefined
value. In certain cases, such as for the integer object in the preceding example,
certain values are considered to be undefined; references to undefined values
do not conform to the standard.

Thus, the three topics — scope, association, and definition — are related. Scope
specifies the part of a program where an entity is known and accessible.
Association is the pathway along which entities in the same or different scopes

007–3693–005 275

Fortran Language Reference Manual, Volume 2

communicate. Definition, and its opposite, undefinition, characterize the ways
in which variables are defined and become undefined indirectly as a
consequence of being associated with other objects.

6.1 Scope

Named entities such as variables, constants, procedures, constructs, block data
subprograms, modules, and namelist groups, have scope. Other (unnamed)
entities that have scope are operator symbols, the assignment symbol, labels,
and input/output (I/O) unit numbers.

The scope of an entity is that part of a Fortran program in which that entity has
a given meaning and can be used, defined, or referenced by its designator. The
scope of an entity might be as large as the whole executable program or as small
as part of a Fortran statement. Entities that can be used with the same meaning
throughout the executable program are said to be global entities and have a
global scope. An example of a global entity is an external procedure name.

Entities that can be used only within the smaller context of a subprogram are
said to be local entities and have a local scope. An example of a local entity is a
statement label. An even smaller context for scope might be a Fortran statement
(or part of one); entities valid for only this context are said to be statement
entities, such as the dummy arguments in a statement function. If the scope is a
construct, the entity is called a construct entity.

A scoping unit can contain other scoping units. A scoping unit surrounded by
another scoping unit may or may not inherit properties from the surrounding
scope. For example, internal procedures, module procedures, and derived-type
definitions inherit implicit typing rules from the surrounding scope. An
interface body, on the other hand, is an example of a scope that is
nonoverlapping, as opposed to nested. An interface body in a subprogram
causes a hole in the subprogram scoping unit that is filled with the scoping unit
of the interface body. This means that an interface body, for example, does not
inherit implicit typing rules from the surrounding scope.

A scoping unit is one of the following:

• A derived-type definition

• A procedure interface body, excluding any derived-type definitions and
procedure interface bodies contained within it

• A program unit or subprogram, excluding derived-type definitions,
procedure interface bodies, and subprograms contained within it

276 007–3693–005

Scope, Association, and Definition [6]

To visualize the concept of scope and scoping units, consider Figure 15. The
outer rectangle defines the boundary of the pieces of an executable Fortran
program; it is not a scoping unit, but it could be said to represent global scope.
Within the executable program four other rectangles depict program units. One
is the main program, two others are external subprogram units, and the fourth
one is a module program unit.

Main program
.
.
.

External procedure A
.
.
.

CONTAINS

Internal procedure B
.
.
.

Internal procedure C
.
.
.

.

.

.

Fortran program

External procedure D

CONTAINS

Module procedure F
.
.
.

Module procedure G
.
.
.

Interface body.

Module E
Derived-type
definition

..
...

...

...

a10766

Figure 15. Scoping units

All four of these program unit rectangles represent scoping units, excluding any
rectangles within them. The main program in this example encloses no
rectangle and so is an integral scoping unit without holes. External subprogram
A has two internal procedures within it, and therefore procedure A’s scoping
unit is this rectangle, excluding internal procedures B and C. External
subprogram D has an interface body in it and no internal procedures. Its

007–3693–005 277

Fortran Language Reference Manual, Volume 2

scoping unit is procedure D, excluding the interface bodies in the interface
block. Module E has a derived-type definition and two module procedures
within it. Its scoping unit is similarly the module program unit, excluding the
derived-type definition and the module procedures.

In addition, the interface bodies within the interface block, the derived-type
definition, and each of the internal and module procedures are scoping units. In
this example, these latter scoping units have no holes, as they do not
themselves contain internal procedures, module procedures, interface bodies, or
derived-type definitions, although they could in general.

6.1.1 Scope of Names

A name has one of the following scopes:

• A global scope, which is the scope of an executable program (for example, an
external function name)

• A local scope, which is the scope of a scoping unit (for example, an array
name in a subroutine subprogram)

• A statement scope, which is the scope of a Fortran statement (for example, a
statement function argument) or a part of a Fortran statement (for example,
an implied-DO variable in a DATA statement)

6.1.1.1 Names As Global Entities

The name of a main program, an external procedure, a module, a block data
program unit, or a common block has global scope. No two program unit
names can have the same name; that is, a module cannot have the same name
as an external subroutine. The CF90 and MIPSpro 7 Fortran 90 compilers,
however, allow a common block to have the same name as a program unit.

ANSI/ISO: The Fortran standard does not allow two global entities to have
the same name.

6.1.1.2 Names As Local Entities

There are three classes of names that have local scope:

• Names of variables, constants, control constructs, statement functions,
internal procedures, module procedures, dummy procedures, intrinsic
procedures, user-defined generic procedures, derived types, and namelist
groups.

278 007–3693–005

Scope, Association, and Definition [6]

• Names of the components of a derived type. There is a separate class of
names for each derived type, which means that two different derived types
can have the same component names.

• Names of argument keywords. There is a separate class of names for each
procedure with an explicit interface, which means that two different
procedures can have the same argument keyword names.

A global entity name cannot be used to identify a local entity, except that a local
entity can have the same name as a common block.

A nongeneric local name is unique within a scoping unit and within a name
class; that is, it identifies exactly one entity. That name can also be used to
identify a different object in a different scoping unit or a different object in a
different class in the same scoping unit. When that name or a different name is
used in other scoping units, it usually represents a different entity but may
represent the same entity because of association.

A generic local name can be used for two or more different procedures in that
scoping unit.

A local name can be used for another local entity in a different class in that
scoping unit. For example, a structure component of type logical can have the
same name as a local integer variable.

Components of a derived type have the scope of the derived-type definition,
and when used in a qualified structure reference have the scope of the structure
reference itself.

Argument keywords are local entities, and are in a separate class for each
procedure with an explicit interface. This means that an argument keyword
used for one procedure can be used as an argument keyword for another
procedure, as a local variable or procedure name, and as a component name of
a derived type.

If a common block name is the same as the name of a local entity, the name is
the local entity except where it appears to identify the common block.
Uniqueness of the reference is determined by the context of the name. For
example, a name enclosed in slashes in a SAVE statement is a common block
name rather than the name of a local variable of the same name.

The name of an intrinsic procedure can be used as a local entity provided the
intrinsic procedure itself is not used in that scoping unit. For example, if the
scoping unit uses the name SIN as a local variable name, the intrinsic function
SIN may not be used in the same program unit.

007–3693–005 279

Fortran Language Reference Manual, Volume 2

For each function and function entry that does not have a result variable, there
is a local variable within the function subprogram scoping unit whose name is
the same as the function or entry name. This local variable is used to define the
value of the function or entry name within the function subprogram.

For each internal or module procedure, the name of the procedure is also a name
local to the host scoping unit. Similarly, for any entry name used in a module
procedure, the name of the entry is also a name local to the host scoping unit.

6.1.1.3 Names As Statement and Construct Entities

The name of a dummy argument in a statement function statement, or a DO
variable in an implied-DO list of a DATA statement or array constructor, has a
scope that is the statement or part of the statement. Such a name can be used
elsewhere as a variable name or common block name without a name conflict
and refers to a different entity when so used.

ANSI/ISO: The Fortran standard states that the variable whose name is
duplicated by the statement entity must be a scalar variable.

The name of a dummy argument used in a statement function statement has
the scope of the statement. The type and type parameters of the name are
determined by the declarations in the containing scoping unit.

The DO variable in an array constructor or an implied-DO loop in a DATA
statement has the scope of that part of the statement in which it appears. The
type, which must be integer, and type parameters of the name are determined
by the declarations in the containing scoping unit.

The name of a variable that appears in an index_name of a FORALL statement or
FORALL construct has the scope of the statement or construct. It must be a
scalar variable that has the type and type parameters that it would have if it
were the name of a variable in the scoping unit that includes the FORALL. It
must be of type integer and have no other attributes.

If the name of a global or local entity that is accessible to the scoping unit of a
FORALL statement or FORALL construct is the same as the index_name, the name
is interpreted within the scope of the FORALL statement or FORALL construct as
that of the index_name. Elsewhere in the scoping unit, the name is interpreted as
that of the global or local entity.

The scope of the DO variable in these implied-DO lists is part of a statement,
whereas the scope of the DO variable in a DO construct is local to the scoping
unit containing the DO construct. Similarly, the DO variable of an implied-DO in
an I/O item list has the scope of the program unit containing the I/O statement.

280 007–3693–005

Scope, Association, and Definition [6]

6.1.2 Scope of Labels

A label is a local entity. No two statements in the same scoping unit can have
the same label, but the same label can be used in different scoping units.

6.1.3 Scope of Input/output (I/O) Units

External I/O unit numbers are global entities and have global scope. Within an
executable program, a unit number refers to the same I/O unit wherever it
appears in a unit number context in an I/O statement.

6.1.4 Scope of Operators

Intrinsic operators have global scope; the scope of a defined operator is local to
a scoping unit. An operator symbol can refer to both an intrinsic operator and a
defined operator. For example, the operator symbol (+) can be both global (its
intrinsic meaning) and local (its defined meaning). Operators can be generic;
that is, two or more operators can be designated by the same operator symbol.
The types, kind parameter values, and the ranks of the operands distinguish
which operator is used.

6.1.5 Scope of Assignment

Intrinsic assignment has global scope; defined assignment has the scope of a
scoping unit. The assignment symbol (=) always has global meanings and may,
like operator symbols, also have local meanings. Assignment is generic; many
assignment operations are designated by the same operator symbol. The types,
kind parameter values, and the ranks of the entities on the left and right sides
of the equal sign distinguish which assignment is used.

6.1.6 Unambiguous Procedure References

A procedure reference is unambiguous if the procedure name in the reference is
a specific procedure name that is not the same as any generic procedure name
in that scoping unit. This is the case in references to the following items:

• Internal procedures

• Module and external procedures not appearing in an interface block with a
generic specification in that scoping unit or available through use or host
association

007–3693–005 281

Fortran Language Reference Manual, Volume 2

• Nongeneric specific names of intrinsic functions

• Statement functions

• Dummy procedures

Procedure references that involve generic procedure names can be
unambiguous under certain circumstances. Specific names of external and
intrinsic procedures are global; all other specific procedure names are local.

It is possible to have two procedures with the same generic name. Within the
same scoping unit, the procedures must both be subroutines or must both be
functions. In addition, one of the following must also be true of their dummy
argument lists:

• One of them must have more nonoptional dummy arguments of a particular
data type, kind type parameter, and rank than the other has dummy
arguments (including optional dummy arguments) of that data type, kind
type parameter, and rank.

• At least one of them must have both of the following:

– A nonoptional dummy argument that corresponds by position in the
argument list to a dummy argument that is not present in the other,
present with a different type, present with a different kind type
parameter, or present with a different rank.

– A nonoptional dummy argument that corresponds by argument keyword
to a dummy argument that is not present in the other, present with a
different kind type parameter, or present with a different rank.

In addition, the dummy argument that disambiguates by position must be
either the same as or occur earlier in the argument list than the one that
disambiguates by keyword.

These rules apply regardless of whether the generic names are intrinsic, defined
by interface blocks with generic specifications, or both. They also apply to
generic operator and assignment symbols. Generic names of intrinsic functions
are global, and defined generic names are local.

6.1.7 Resolving Procedure References

A procedure reference is involved in the following situations:

1. Executing a CALL statement

282 007–3693–005

Scope, Association, and Definition [6]

2. Executing a defined assignment statement

3. Evaluating a defined operation

4. Evaluating an expression containing a function reference

In case 2, a generic name (the assignment symbol, =) is involved, and there must
be an interface block with an ASSIGNMENT generic specification in the scoping
unit or available through use or host association that identifies a specific
external or module subroutine that defines this assignment. Section 4.7.7, page
220, Section 4.8.5, page 237, and Section 6.1.6, page 281, contain information
that can help determine the specific subroutines involved in the reference.

In case 3, a generic name (the operator symbol) is involved, and there must be
an interface block with an OPERATOR generic specification in the scoping unit
or available through use or host association that identifies a specific external or
module function that defines this operation. Section 4.7.7, page 220, Section
4.8.4, page 234, and Section 6.1.6, page 281, contain information that can help
determine the specific function involved in the reference.

In cases 1 and 4, the following sequence of rules can be used to resolve the
reference (that is, determine which specific procedure is involved in the
reference). The first of these rules that applies, taken in order, resolves the
reference.

1. If the procedure name in the reference is a dummy argument in that
scoping unit, then the dummy argument is a dummy procedure and the
reference is to that dummy procedure. Thus, the procedure invoked by the
reference is the procedure supplied as the associated actual argument.

2. If the procedure name appears in an EXTERNAL statement or interface body
in that scoping unit, the reference is to an external procedure with that
name.

3. If the procedure name is that of an accessible internal procedure, module
subprogram, or statement function, the reference is to that internal
procedure or statement function.

4. If the procedure name is specified as a generic name in an interface block in
that scoping unit or in an interface block made accessible by use or host
association, and the reference is consistent with one of the specific interfaces
for that generic name, the reference is to that specific procedure. Section 4.7,
page 203, contains information that can help determine the specific
procedure invoked (there will be at most one such procedure).

007–3693–005 283

Fortran Language Reference Manual, Volume 2

5. If the reference is consistant with an elemental reference to one of the
specific interfaces of a generic interface that has that name and either is in
the scoping unit in which the reference appears or is made accessible by a
USE statement in the scoping unit, the reference is to the specific elemental
procedure in that interface block that provides the interface.

6. If the procedure name appears in an INTRINSIC statement or is USE
associated from a module that has the INTRINSIC attribute declared for it,
the reference is to the corresponding specific intrinsic procedure in that
scoping unit.

7. If the procedure name is accessible through use association, the reference is
to that specific procedure. Note that it is possible, because of the renaming
facility, for the procedure name in the reference to be different from that in
the module.

8. If the scoping unit of the reference has a host scoping unit, and if
application in the host of the preceding six rules resolves the reference, then
the reference is so resolved.

9. The reference is to the corresponding specific intrinsic procedure if the
following are true:

• The procedure name is either the specific or generic name of an intrinsic
procedure.

• The actual arguments match the characteristics of a particular intrinsic
procedure.

10. If the procedure name is not a generic name, the reference is to an external
procedure with that name.

11. Otherwise the reference cannot be resolved and is not standard conforming.

6.2 Association

Fortran uses the concept of scoping so that the same name can be used for
different things in different parts of a program. This is desirable so that
programmers do not have to worry about conflicting uses of a name.

However, there are times when just the opposite is desired: the programmer
wants different names in the same or different parts of a program to refer to the
same entity. For example, there may be a need to have one data value that can
be examined and modified by all of the procedures of a program. In general,

284 007–3693–005

Scope, Association, and Definition [6]

particularly with external program units, the names used will be different in the
different parts of the program, but they can be the same.

The association mechanism is used to indicate that local names in different
scoping units or different local names in the same scoping unit refer to the
same entity. The forms of association are as follows:

• Name association, which involves the use of names, always in different
scoping units, to establish an association.

• Pointer association, which allows dynamic association of names within a
scoping unit and is essentially an aliasing mechanism.

• Storage association, which involves the use of storage sequences to establish
an association between data objects. The association can be between two
objects in the same scoping unit (EQUIVALENCE) or in different scoping
units (COMMON).

• Sequence association, which is a combination of name association and
storage association. It applies to the association of actual arguments and
array, character, and sequence structure dummy arguments using storage
sequence association. It associates names in different scoping units.

Figure 16 and Figure 17, page 287, illustrate the various kinds of association in
an executable program.

007–3693–005 285

Fortran Language Reference Manual, Volume 2

External program unit
(main program or procedure subprogram)

COMMON /A/...
REAL,POINTER :: P(:)
REAL,TARGET :: R(10)
EQUIVALENCE(..., ...)

...
P=>R pointer association
CALL S(... actual arguments ...)

...

Executable program

Storage association Storage and sequence association

External program S(... dummy arguments ...)
COMMON /A/. . .
REAL X
CALL B(... actual arguments ...)
CONTAINS

SUBROUTINE B(... dummy arguments ...)
...

X=X+1 name (host) association
...

Host association
Storage and sequence
association

storage association

a10767

Figure 16. Associations between two nonmodule scoping units

286 007–3693–005

Scope, Association, and Definition [6]

External program unit
(main program or procedure subprogram)

USE M
COMMON /A/...
TYPE(T) S1

...
Y =...
CALL IP(...)
CALL MP(...)
...

Executable program

MODULE M
COMMON/A/...
TYPE T

...
END TYPE T
REAL Y

SUBROUTINE IP(...)
...

SUBROUTINE MP(...)
...

U
se

 a
ss

oc
ia

tio
n

S
to

ra
ge

 a
ss

oc
ia

tio
n

U
se

 a
ss

oc
ia

tio
n

IP
 h

os
t a

ss
oc

ia
te

d;
ar

gu
m

en
ts

 s
to

ra
ge

 a
nd

se
qu

en
ce

 a
ss

oc
ia

te
d

M
P

 u
se

 a
ss

oc
ia

te
d;

ar
gu

m
en

ts
 s

to
ra

ge
 a

nd
se

qu
en

ce
 a

ss
oc

ia
te

d
a10768

Figure 17. Associations between a module scoping unit and a nonmodule
scoping unit

6.2.1 Name Association

Name association permits access to the same entity (either data or a procedure)
from different scoping units by the same or a different name. There are three
forms of name association: argument, use, and host.

6.2.1.1 Argument Association

Argument association is explained in detail in Section 4.7, page 203. It
establishes a correspondence between the actual argument in the scoping unit

007–3693–005 287

Fortran Language Reference Manual, Volume 2

containing the procedure reference and the dummy argument in the scoping
unit defining the procedure. An actual argument can be the name of a variable
or procedure, or it can be an expression. The dummy argument name is used in
the procedure definition to refer to the actual argument, whether it is a name or
an expression. When the program returns from the procedure, the actual and
dummy arguments become disassociated.

6.2.1.2 Use Association

Use association causes an association between entities in the scoping unit of a
module and the scoping unit containing a USE statement referring to the
module. It provides access to entities specified in the module. The default
situation is that all public entities in the module are accessed by the name used
in the module, but entities can be renamed selectively in the USE statement and
excluded with the ONLY option. Use association is explained in Section 3.5.4.5,
page 164.

If renaming occurs by a USE statement, the type, type parameters, and other
attributes of the local name are those of the module entity. No respecification
can occur in the scoping unit containing the USE statement, other than another
module adding the PRIVATE attribute.

When an entity is renamed by a USE statement, the original name in the
module can be used as a local name for a different entity in the scoping unit
containing the USE statement. There would be no name conflict.

The PUBLIC and PRIVATE access specifications are determined in the module
referenced in the USE statement. The PUBLIC attribute can be overridden by
the referencing scoping unit if the referencing scoping unit is a module (see the
example in Section 3.5.4.5, page 164, for an exception to this).

6.2.1.3 Host Association

Host association causes an association between entities in a host scoping unit
and the scoping unit of an internal procedure, module procedure, or
derived-type definition. The basic idea of host association is that entities in the
host (for example, host variables) are also available in any procedures or
derived-type definitions within the host. As with default use association, such
entities are known by the same name in the internal or module procedure or
derived-type definition as they are known in the host. There is no mechanism
for renaming entities, but the association of names between the host and the
contained scoping unit can be replaced by the local declaration of an entity with
that name; such a declaration blocks access to the entity of the same name in
the host scoping unit.

288 007–3693–005

Scope, Association, and Definition [6]

The program unit containing an internal procedure is called the host of the
internal procedure. The program unit (which must be a module) that contains a
module procedure is called the host of the module procedure. As shown in
Figure 18, page 289, an important property of internal and module procedures
is that the data environment of the host is available to the procedure. When
data in the host are available within the contained procedure, they are said to
be accessible by host association. Because the internal (or module) procedure also
has a local data environment, rules are needed to determine whether a given
reference inside that procedure identifies a host entity or one local to the
procedure.

An interface body cannot access named entities by host association. An
interface body can access entities by USE association.

Host (or containing) program unit

Host entities known in
both the host and the
contained procedure

Entities local to the
contained procedure and
known only in the
contained procedure

Host entities
known only in
the host and not
the contained
procedure

a10756

Figure 18. Host association

In a language in which the attributes of all entities must be declared explicitly,
local declarations typically override host declarations. The host declarations
that are not overridden are available in the contained procedure.
Fundamentally these are the rules used in Fortran, and this situation can be
simulated by using IMPLICIT NONE in both the host and the contained
procedure. IMPLICIT NONE forces explicit declaration of all entities.

007–3693–005 289

Fortran Language Reference Manual, Volume 2

However, Fortran allows implicit declarations (the use of an entity name in the
execution part without an explicit declaration of that name in the specification
part). Suppose the variable TOTAL is referenced in an internal procedure, and
neither the internal procedure nor its host explicitly declares TOTAL. Is TOTAL a
host or local entity? Or, suppose that TOTAL is used in two internal procedures
in the same host, without declaration anywhere. Are they (or it) the same
TOTAL? The possibilities are shown in Figure 19, page 290.

Host

Internal-1

TOTAL = Y+X

Internal-2

TOTAL = Y+Z

Host

Internal-1

TOTAL = Y+X

Internal-2

TOTAL = Y+Z

(a) a single host TOTAL (b) two local TOTALs
a10757

TOTAL

TOTAL TOTALTOTAL

Figure 19. Is there one TOTAL in the host or two local TOTALs?

The answer to both of these questions is case (b) in Figure 19, unless TOTAL is
also referenced in the host, in which case (a) applies. If TOTAL is referenced in
the host, it becomes declared implicitly there and is therefore a host entity. In
this case, any internal procedure use of TOTAL accesses the host entity. The
situation is the same (TOTAL is a host entity) if it is declared but not referenced
in the host and not declared in the internal procedure. If TOTAL is declared in
the internal procedure, then case (b) applies (TOTAL is local) regardless of
whether TOTAL is declared or referenced in the host.

Implicit declarations are governed by the implicit typing rules and the use of
the IMPLICIT statement. The rules governing implicit typing in hosts and
contained procedures are given in the Fortran Language Reference Manual, Volume
1, and the rules governing host association are given in Section 6.2.1.3, page
288. These rules are combined and summarized in the following paragraphs.

290 007–3693–005

Scope, Association, and Definition [6]

A name is local if it is declared explicitly in the contained procedure, regardless
of any declarations in the host. A dummy argument in a contained procedure is
an explicit local declaration, even though the name can be implicitly typed. A
dummy argument, if not explicitly typed, is typed according to the implicit
typing rules of the contained procedure.

An entity not declared explicitly in a contained procedure is nevertheless local
(via implicit declaration) if and only if it is neither explicitly nor implicitly
declared in the host.

If it is not local, based on the previous paragraphs, the entity is host associated.

The default implicit rules (the implicit typing rules in the absence of IMPLICIT
statements) in a contained procedure are the implicit typing rules of the host, as
established by the default implicit rules in the host and modified by any
IMPLICIT statements in the host.

IMPLICIT statements in the contained procedure, if any, modify the implicit
typing rules inherited from the host. Note that these modified rules apply to
implicitly typed dummy arguments of the contained procedure.

The following is a summary of the implicit typing rules:

host implicit
typing rules

= host default
implicit rules

+ host IMPLICIT statements

contained
procedure
typing rules

= host implicit
typing rules

+ contained procedure
IMPLICIT statements

In the expression X = A+B+P+Q+Y in the following program example, the
operands in the expression are declared in different scoping units (see Figure
20, page 293):

PROGRAM HOST

USE GLOBAL_DATA ! Accesses integer X and real Y.
IMPLICIT LOGICAL (E-J)

! implicit typing: A-D real

! E-J logical

! K-N integer

! O-Z real
REAL A, B

. . .

007–3693–005 291

Fortran Language Reference Manual, Volume 2

READ *, P ! This reference declares P

! implicitly here.
. . .

CALL CALC(Z) ! This reference also implicitly

. . . ! declares Z here.

CONTAINS

. . .

! X declared explicitly in internal procedure CALC.
SUBROUTINE CALC(X)

IMPLICIT REAL(G-I)

! implicit typing: A-D real

! E-F logical

! G-I real
! J logical

! K-N integer

! O-Z real

REAL B

. . .
X = A + B + P + Q + Y

! In subroutine CALC (all are type real):

! X is local (dummy argument)

! A is host associated

! B is local (explicitly declared)

! P is host associated
! Q is local (implicitly declared)

! Y host associated with Y in HOST,

! and that Y is use associated (from the module)

. . .

END SUBROUTINE CALC
. . .

END PROGRAM HOST

292 007–3693–005

Scope, Association, and Definition [6]

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Real Integer Real

Default implicit in host

IMPLICIT LOGICAL (E-J) ... in host ...

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Real Logical Real
Implicit typing in host
and default implicit in
contained procedure

Integer

IMPLICIT REAL (G-I) ... in contained procedure ...

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Real Real

Implicit typing rules in
contained procedure

Integer
Logical

Real
Logical

a10758

Figure 20. How the mapping of implicit typing progresses from host to contained procedure

A particularly interesting case of the host associated implicit rules is when the
host has IMPLICIT NONE. With IMPLICIT NONE, no other implicit statements
are allowed in that scoping unit, and explicit typing is required for all data
objects in the host. IMPLICIT NONE is therefore the default in the contained
procedure, although this can be modified by IMPLICIT statements in the
contained procedure. This can result in some of the letters having implicit types
in the contained procedure and some not. For example, suppose that the host
has IMPLICIT NONE and the contained procedure has the following IMPLICIT
statements:

IMPLICIT COMPLEX (C, Z)

IMPLICIT LOGICAL (J-L)

Data objects in the contained procedure with names starting with C or Z may be
declared implicitly of type complex; data objects with names starting with J, K,
or L may be declared implicitly of type logical. IMPLICIT NONE continues to
apply to letters A-B, D-I, and M-Y, and data object names beginning with these
letters must be explicitly declared.

007–3693–005 293

Fortran Language Reference Manual, Volume 2

6.2.2 Pointer Association

A pointer is a variable with the POINTER attribute. During program execution,
the pointer variable is undefined, disassociated, or associated with a scalar or
an array data object or function result. The association of pointers is dynamic
throughout a program; that is, the association can be changed as needed during
execution. Pointers are initially undefined unless they are initialized, either
explicitly or implicitly. A pointer can be initialized to have an association status
of disassociated.

Pointers can be associated in one of the following ways:

• By pointer assignment, pointers are associated with other pointers or with
scalar or array data objects that have the TARGET attribute

• By execution of an ALLOCATE statement, pointers are associated with
previously unnamed space

Associated pointers can become disassociated or undefined. Disassociated
pointers can become associated or undefined. Undefined pointers can become
associated.

Associated pointers become disassociated when one of the following occurs:

• The association is nullified (NULLIFY statement).

• The pointer is deallocated (DEALLOCATE statement).

• The pointer is assigned to a disassociated pointer.

• The pointer becomes an ultimate component of an object of a type for which
default initialization is specified for the component and one of the following
conditions occurs or is present:

– A function with this object as its result is invoked.

– A procedure with this object as an INTENT(OUT) dummy argument is
invoked.

– A procedure with this object as an automatic object is invoked.

– A procedure with this object as a local object that is not accessed by USE
or host association is invoked.

– This object is allocated.

The following events cause the association status of pointers to become
undefined:

294 007–3693–005

Scope, Association, and Definition [6]

• The pointer is pointer-associated to a target that has an undefined
association status.

• The target of the pointer is deallocated by a means other than through the
pointer.

• The execution of a RETURN or END statement causes the pointer’s target to
become undefined.

• The execution of a RETURN or END statement in a subprogram in which the
pointer was either declared or accessed. In the case of an access, the pointer
becomes undefined under the following circumstances:

– It is a pointer with the SAVE attribute.

– It is a pointer in blank common.

– It is a pointer in a named common block that appears in at least one
other scoping unit that is currently executing.

– It is a pointer in the scoping unit of a module, and the module is also
accessed by another scoping unit that is currently executing.

– The pointer is accessed by host association.

– It is a pointer that is the return value of a function that has been declared
to have the POINTER attribute.

6.2.3 Storage Association

Storage association is the provision that two or more variables can share the
same memory space. This allows the same value to be referenced by more than
one name, achieving an effect similar to that of name association and pointer
association. Consider the following simple example:

EQUIVALENCE (X, Y)

Variables X and Y share the same memory location; changing the value of either
one affects the value of the other.

The effects of EQUIVALENCE and COMMON statements can be complicated
because of partially overlapping variables and storage association between
different data types. The concept of storage association is used to describe these
effects.

007–3693–005 295

Fortran Language Reference Manual, Volume 2

6.2.3.1 Storage Units and Storage Sequence

A storage unit corresponds to a particular part of memory that holds a single
value. Thus, memory may be thought of as a sequence of storage units, each
possibly holding a value. A storage unit can be a numeric storage unit, a
character storage unit, or an unspecified storage unit.

A sequence of any number of consecutive storage units is a storage sequence. A
storage sequence has a size, which is the number of storage units in the
sequence.

6.2.3.2 Fortran Data and Storage Units

This section describes some of the relationships between Fortran data and
storage units.

All of the following data objects are nonpointer values unless explicitly
specified otherwise:

• A scalar data object of type default integer, default real, or default logical
occupies one numeric storage unit. Default complex and double-precision
real values occupy two, consecutive, numeric storage units.

• A single character occupies one character storage unit.

• All other values, that is, pointers and all values with nondefault kinds,
occupy unspecified storage units. An unspecified storage unit is treated as a
different object for each of these types of values. For example, a storage unit
for a pointer to a default integer occupies an unspecified storage unit that is
different than the unspecified storage unit for an integer of nondefault type.

Composite objects occupy storage sequences, depending on their form, as
follows:

• A scalar character object of length len has len consecutive character storage
units.

• An array occupies a storage sequence consisting of one storage unit of the
appropriate sort for each element of the array in array element order.

• A scalar of a sequence derived type occupies a storage sequence consisting
of storage units corresponding to the components of the structure, in the
order they occur in the derived-type definition. Recall that to be a sequence
type, the derived type must contain the SEQUENCE statement.

296 007–3693–005

Scope, Association, and Definition [6]

• Each common block has a storage sequence as described in the Fortran
Language Reference Manual, Volume 1.

• Each ENTRY statement in a function subprogram has a storage sequence as
described in Section 4.4.3, page 194.

• EQUIVALENCE statements create storage sequences from the storage units of
the objects making up the equivalence lists.

Two objects that occupy the same storage sequence are storage associated. Two
objects that occupy parts of the same storage sequence are partially storage
associated.

A storage unit must not be explicitly initialized more than once in a program.
Explicit initialization overrides default initialization, and default initialization
for an object of derived type overrides default initialization for a component of
the object. Default initialization can be specified for a storage unit that is
storage associated if the objects or subobjects that supply the default
initialization are of the same type and type parameters and if they supply the
same value for the storage unit.

6.2.3.3 Partial Association

Partial association applies to character data and other composite objects in
COMMON or EQUIVALENCE statements. When such objects only partially overlap
in storage, they are then said to be partially associated. For example, two
character strings are partially associated if substrings of each share the same
storage but the entire strings do not.

6.2.3.4 Examples

This section contains examples of storage sequences of various sorts and
illustrations of how equivalencing causes association of storage sequences and
the data objects in them.

Example 1: This is a simple example involving numeric storage units. Consider
the following code fragment:

COMPLEX :: C
REAL :: X(0:5)

EQUIVALENCE (C, X(3))

The storage sequence occupied by C consists of two numeric storage units, one
for the real part and one for the imaginary part.

007–3693–005 297

Fortran Language Reference Manual, Volume 2

The storage sequence occupied by X consists of six numeric storage units, one
for each element of the array.

The EQUIVALENCE statement indicates that X(3) and the real part of C occupy
the same storage unit, creating the following association (items above and
below each other are storage associated):

X(0) X(1) X(2) X(3) X(4) X(5)

Cr Ci

a10769

Figure 21. Example 1

Example 2: The following example deals with character data. Consider this
code fragment:

CHARACTER A(2,2)*2, B(2)*3, C*5

EQUIVALENCE (A(2,1)(1:1), B(1)(2:3), C(3:5))

A, B, and C occupy character storage sequences of size 8, 6, and 5 respectively,
and the EQUIVALENCE statement sets up the following associations:

A(1,1)(1:1) A(1,1)(2:2) A(2,1)(1:1) A(2,1)(2:2) A(1,2)(1:1) A(1,2)(2:2) A(2,2)(1:1) A(2,2)(2:2)

B(1)(1:1) B(1)(2:2) B(1)(3:3) B(2)(1:1) B(2)(2:2) B(2)(3:3)

C(1:1) C(2:2) C(3:3) C(4:4) C(5:5)

a10770

Figure 22. Example 2

6.2.4 Sequence Association

Sequence association is a special form of argument association that applies to
character, array, and sequence structure arguments. For more information on
sequence association, see Section 4.7.2, page 207.

298 007–3693–005

Scope, Association, and Definition [6]

6.3 Definition Status

The value of a variable can be used safely when that value is well-defined and
predictable. There are a number of things that can cause the value of a variable
to become ill-defined or unpredictable during the course of program execution.
Informally, defined is the term given to a variable whose value is well-defined
and predictable. Undefined is the term given to a variable whose value is
ill-defined or unpredictable.

Using undefined values does not conform to the standard. Unfortunately, either
the compiler cannot always check for undefined conditions or it might be too
costly to do so. It is your responsibility to avoid using undefined values.

During execution of a program, variables are said to be defined or undefined. If a
variable is defined, it has a value established during some statement execution
(or event) in the program. If a variable is undefined, it is considered to not have
a value. Variables are initially undefined except for initial values specified in
DATA statements and type statements, components of variables that are of a
type for which default initialization is specified, and objects of zero size.
(Zero-sized arrays and zero-length character strings are always defined). As
execution proceeds, other events may cause a variable to become defined or
undefined. Undefined variables must not be referenced in a context in which
the value of the variable is used.

6.3.1 Definition Status of Subobjects

An array element or array section is part of an array. A substring is part of a
character variable. A component is part of a structure. An object of type
complex consists of two parts, its real and imaginary parts. All parts of an
object must be defined for the object to be defined. If any part of an object is
undefined, that object is undefined. Zero-sized arrays and zero-length character
strings are always defined.

6.3.2 Events That Affect Definition Status of Variables

Assignment defines the value of the variable on the left of the equal sign.
Similarly, reading input establishes values for variables in the input list. Certain
specifier variables are defined when a statement such as the INQUIRE statement
is executed.

Returning from a procedure causes all unsaved local variables to become
undefined. Deallocation and disassociation during program execution causes
variables to become undefined. In addition, the process of defining an entity

007–3693–005 299

Fortran Language Reference Manual, Volume 2

can cause certain associated or partially associated entities to become
undefined. Lists of events that cause variables to be defined and undefined are
provided in the following sections.

6.3.3 Events That Cause Variables to Become Defined

Variables become defined when the following events occur:

• Execution of an intrinsic assignment statement other than a masked array
assignment statement or FORALL assignment statement causes the variable
that precedes the equal sign to become defined. Execution of a defined
assignment statement can cause all or part of the variable that precedes the
equal sign to become defined.

• Execution of a masked array assignment statement or FORALL assignment
statement can cause some or all of the array elements in the assignment
statement to become defined

• As execution of an input statement proceeds, each variable that is assigned a
value from the input file becomes defined at the time that data is transferred
to it. Execution of a WRITE statement whose unit specifier identifies an
internal file causes each record that is written to become defined.

• Execution of a DO statement causes the DO variable, if any, to become defined.

• Beginning execution of the action specified by an implied-DO list in an
input/output (I/O) statement causes the implied-DO variable to become
defined.

• A reference to a procedure causes a dummy argument data object to become
defined if the associated actual argument is defined with a value that is not
a statement label. If only a subobject of an actual argument is defined, only
the corresponding subobject of the associated dummy argument is defined.

• Execution of an I/O statement containing an IOSTAT= specifier causes the
specified integer variable to become defined.

• Execution of a READ statement containing a SIZE= specifier causes the
specified integer variable to become defined.

• Execution of an INQUIRE statement causes any variable that is assigned a
value during the execution of the statement to become defined if no error
condition exists.

• When a character storage unit becomes defined, all associated character
storage units become defined.

300 007–3693–005

Scope, Association, and Definition [6]

• When a numeric storage unit becomes defined, all associated numeric
storage units of the same type become defined.

• When an unspecified storage unit becomes defined, all associated
unspecified storage units become defined.

• When a default complex entity becomes defined, all partially associated
default real entities become defined.

• When both parts of a default complex entity become defined as a result of
partially associated default real or default complex entities becoming
defined, the default complex entity becomes defined.

• When all components of a numeric sequence structure or character sequence
structure become defined as a result of partially associated objects becoming
defined, the structure becomes defined.

• Execution of an ALLOCATE or DEALLOCATE statement with a STAT= specifier
causes the variable specified by the STAT= specifier to become defined.

• Execution of a pointer assignment statement that associates a pointer with a
target that is defined causes the pointer to become defined.

• Allocation of a zero-sized array causes the array to be defined.

• Allocation of an object of a derived type, in which default initialization is
specified for any nonpointer direct component, causes that component to
become defined.

• Invocation of a procedure that contains a nonsaved local object causes the
components of the object to become defined if all of the following conditions
are present:

– The local object is not a dummy argument.

– The local object is not accessed by USE or host association.

– The local object has neither the ALLOCATABLE nor the POINTER attribute.

– The local object is of a derived type in which default initialization is
specified for its direct components.

• Invocation of a procedure that has an INTENT(OUT) dummy argument of a
derived type that specifies default initialization for a nonpointer direct
component causes that component of the dummy argument to become
defined.

007–3693–005 301

Fortran Language Reference Manual, Volume 2

• Invocation of a nonpointer function of a derived type in which default
initialization is specified for a nonpointer direct component causes that
component of the function result to become defined.

• In a FORALL construct, the index_name becomes defined when the
index_name value set is evaluated.

6.3.4 Events That Cause Variables to Become Undefined

Variables become undefined when the following events occur:

• When a variable of a given type becomes defined, all associated variables of
different type become undefined. However, when a variable of type default
real is partially associated with a variable of type default complex, the
complex variable does not become undefined when the real variable
becomes defined, and the real variable does not become undefined when the
complex variable becomes defined. When a variable of type default complex
is partially associated with another variable of type default complex,
definition of one does not cause the other to become undefined.

• If the evaluation of a function can cause an argument of the function or a
variable in a module or in a common block to become defined, and if a
reference to the function appears in an expression in which the value of the
function is not needed to determine the value of the expression, the
argument or variable becomes undefined when the expression is evaluated.

• The execution of a RETURN statement or an END statement within a
subprogram causes all variables local to its scoping unit or local to the
current instance of its scoping unit for a recursive invocation to become
undefined, except for the following:

– Variables with the SAVE attribute

– Variables in blank common

– Variables in a named common block

ANSI/ISO: The Fortran standard specifies that a variable in a named
common block retains its value (remains defined) only if the common
block also appears in at least one other scoping unit that is making
either a direct or indirect reference to the current subprogram. The
CF90 and MIPSpro 7 Fortran 90 compilers retain the value regardless
of whether the common block also appears in any other currently
active scoping unit.

302 007–3693–005

Scope, Association, and Definition [6]

– Variables accessed from the host scoping unit

– Variables accessed from a module that also is accessed in at least one
other scoping unit that is making either a direct or indirect reference to
the module

– Variables in a named common block that are initially defined and that
have not been subsequently defined or redefined

• When an error condition or end-of-file condition occurs during execution of
an input statement, all of the variables specified by the input list or namelist
group of the statement become undefined.

• When an error or end-of-file condition occurs during execution of an I/O
statement that includes implied-DO loops, all of the implied-DO variables
become undefined.

• Execution of a defined assignment statement can leave all or part of the
variable that precedes the equal sign undefined.

• Execution of a direct access input statement that specifies a record that has
not been written previously causes all of the variables specified by the input
list of the statement to become undefined.

• Execution of an INQUIRE statement can cause the NAME=, RECL=, and
NEXTREC= variables to become undefined.

• When a character storage unit becomes undefined, all associated character
storage units become undefined.

• When a numeric storage unit becomes undefined, all associated numeric
storage units become undefined unless the undefinition is a result of
defining an associated numeric storage unit of different type.

• When an entity of double-precision real type becomes undefined, all totally
associated entities of double-precision real type become undefined.

• When an unspecified storage unit becomes undefined, all associated
unspecified storage units become undefined.

• A reference to a procedure causes part of a dummy argument to become
undefined if the corresponding part of the actual argument is defined with a
value that is a statement label.

• When an allocatable array is deallocated, it becomes undefined. Successful
execution of an ALLOCATE statement for which default initialization has not
been specified creates an array that is undefined.

007–3693–005 303

Fortran Language Reference Manual, Volume 2

• Execution of an INQUIRE statement causes all inquire specifier variables to
become undefined if an error condition exists, except for the variable in the
IOSTAT= specifier, if any.

• When a procedure is invoked, variables become undefined under the
following circumstances:

– An optional dummy argument that is not associated with an actual
argument is undefined

– A dummy argument with INTENT(OUT) is undefined

– An actual argument associated with a dummy argument with
INTENT(OUT) becomes undefined unless it is a type for which default
initialization is specified

– A subobject of a dummy argument is undefined if the corresponding
subobject of the actual argument is undefined

– The result variable of a function is undefined unless it is a type for which
default initialization is specified

• When the association status of a pointer becomes undefined or
disassociated, the pointer becomes undefined.

• When the execution of a FORALL construct is complete, the index_name
becomes undefined.

304 007–3693–005

Glossary

argument keyword

The name of a dummy (or formal) argument. This name is used in the
subprogram definition; it also may be used when the subprogram is invoked to
associate an actual argument with a dummy argument. Using argument
keywords allows the actual arguments to appear in any order. The Fortran 90
standard specifies argument keywords for all intrinsic procedures. Argument
keywords for user-supplied external procedures may be specified in a
procedure interface block.

array

(1) A data structure that contains a series of related data items arranged in rows
and columns for convenient access. The C shell and the awk(1) command can
store and process arrays. (2) In Fortran 90, an object with the DIMENSION
attribute. It is a set of scalar data, all of the same type and type parameters.
The rank of an array is at least 1, and at most 7. Arrays may be used as
expression operands, procedure arguments, and function results, and they may
appear in input/output (I/O) lists.

association

An association permits an entity to be referenced by different names in a scoping
unit or by the same or different names in different scoping units. Several kinds
of association exist. The principal kinds of association are pointer association,
argument association, host association, use association, and storage association.

automatic variable

A variable that is not a dummy argument but whose declaration depends on a
nonconstant expression (array bounds and/or character length).

Autotasking

A trademarked process of Cray Research that automatically divides a program
into individual tasks and organizes them to make the most efficient use of the
computer hardware.

007–3693–005 305

Fortran Language Reference Manual, Volume 2

bottom loading

An optimization technique used on some scalar loops in which operands are
prefetched during each loop iteration for use in the next iteration. The operand
is available as soon as the first loop instruction executes. A prefetch is
performed even during the final loop iteration, before the loop’s final jump test
has been performed.

cache

In a processing unit, a high-speed buffer storage that is continually updated to
contain recently accessed contents of main storage. Its purpose is to reduce
access time. In disk subsystems, a method the channel buffers use to buffer disk
data during transfer between the devices and memory.

cache line

On Cray MPP systems, a cache line consists of four quad words, which is the
maximum size of a hardware message.

CIV

A constant increment variable is a variable that is incremented only by a loop
invariant value (for example, in a loop with index J, the statement J = J + K, in
which K can be equal to 0, J is a CIV).

constant

A data object whose value cannot be changed. A named entity with the
PARAMETER attribute is called a named constant. A constant without a name is
called a literal constant.

construct

A sequence of statements that starts with a SELECT CASE, DO, IF, or WHERE
statement and ends with the corresponding terminal statement.

control construct

An action statement that can change the normal execution sequence (such as a
GO TO, STOP, or RETURN statement) or a CASE, DO, or IF construct.

306 007–3693–005

Glossary

critical region

On Cray MPP systems, a synchronization mechanism that enforces serial access
to a piece of code. Only one PE may execute in a critical region at a time.

data entity

A data object, the result of the evaluation of an expression, or the result of the
execution of a function reference (also called the function result). A data entity
always has a type.

data object

A constant, a variable, or a part of a constant or variable.

declaration

A nonexecutable statement that specifies the attributes of a data object (for
example, it may be used to specify the type of a variable or function result or
the shape of an array).

definition

This term is used in two ways. (1) A data object is said to be defined when it
has a valid or predictable value; otherwise, it is undefined. It may be given a
valid value by execution of statements such as assignment or input. Under
certain circumstances, it may subsequently become undefined. (2) Procedures
and derived types are said to be defined when their descriptions have been
supplied by the programmer and are available in a program unit.

derived type

A type that is not intrinsic (a user-defined type); it requires a type definition to
name the type and specify its components. The components may be of intrinsic
or user-defined types. An object of derived type is called a structure. For each
derived type, a structure constructor is available to specify values. Operations
on objects of derived type must be defined by a function with an interface and
the generic specifier OPERATOR. Assignment for derived type objects is defined
intrinsically, but it may be redefined by a subroutine with the ASSIGNMENT
generic specifier. Data objects of derived type may be used as procedure
arguments and function results, and they may appear in input/output (I/O)
lists.

007–3693–005 307

Fortran Language Reference Manual, Volume 2

designator

Sometimes it is convenient to reference only part of an object, such as an
element or section of an array, a substring of a character string, or a component
of a structure. This requires the use of the name of the object followed by a
selector that selects a part of the object. A name followed by a selector is called
a designator.

entity

(1) In Open Systems Interconnection (OSI) terminology, a layered protocol
machine. An entity in a layer performs the functions of the layer in one
computer system, accessing the layer entity below and providing services to the
layer entity above at local service access points. (2) In Fortran 90, a general
term used to refer to any Fortran 90 concept (for example, a program unit, a
common block, a variable, an expression value, a constant, a statement label, a
construct, an operator, an interface block, a derived type, an input/output (I/O)
unit, a name list group, and so on).

executable construct

A statement (such as a GO TO statement) or a construct (such as a DO or CASE
construct).

expression

A set of operands, which may be function invocations, and operators that
produce a value.

extent

A structure that defines a starting block and number of blocks for an element of
file data.

function

Usually a type of operating-system-related function written outside a program
and called in to do a specific function. Smaller and more limited in capability
than a utility. In a programming language, a function is usually defined as a
closed subroutine that performs some defined task and returns with an answer,
or identifiable return value.

The word "function" has a more specific meaning in Fortran than it has in C. In
C, it is refers to any called code; in Fortran, it refers to a subprogram that
returns a value.

308 007–3693–005

Glossary

generic specifier

An optional component of the INTERFACE statement. It can take the form of an
identifier, an OPERATOR (defined_operator) clause, or an ASSIGNMENT (=)
clause.

heap

A section of memory within the user job area that provides a capability for
dynamic allocation. See the HEAP directive in SR-0066.

inlining

The process of replacing a user subroutine or function call with the definition
itself. This saves subprogram call overhead and may allow better optimization
of the inlined code. If all calls within a loop are inlined, the loop becomes a
candidate for vectorization and/or tasking.

intrinsic

Anything that the language defines is intrinsic. There are intrinsic data types,
procedures, and operators. You may use these freely in any scoping unit.
Fortran programmers may define types, procedures, and operators; these
entities are not intrinsic.

local

(1) A type of scope in which variables are accessible only to a particular part of
a program (usually one module). (2) The system initiating the request for
service. This term is relative to the perspective of the user.

multitasking

(1) The parallel execution of two or more parts of a program on different CPUs;
these parts share an area of memory. (2) A method in multiuser systems that
incorporates multiple interconnected CPUs; these CPUs run their programs
simultaneously (in parallel) and shares resources such as memory, storage
devices, and printers. This term can often be used interchangeably with
parallel processing.

name

A term that identifies many different entities of a program such as a program
unit, a variable, a common block, a construct, a formal argument of a

007–3693–005 309

Fortran Language Reference Manual, Volume 2

subprogram (dummy argument), or a user-defined type (derived type). A name
may be associated with a specific constant (named constant).

operator

(1) A symbolic expression that indicates the action to be performed in an
expression; operator types include arithmetic, relational, and logical. (2) In
Fortran 90, an operator indicates a computation that involves one or two
operands. Fortran 90 defines several intrinsic operators (for example, +, -, *, /, **
are numeric operators, and .NOT., .AND., and .OR. are logical operators). Users
also may define operators for use with operands of intrinsic or derived types.

overindexing

The nonstandard practice of referencing an array with a subscript not contained
between the declared lower and upper bounds of the corresponding dimension
for that array. This practice sometimes, but not necessarily, leads to referencing
a storage location outside of the entire array.

parallel processing

Processing in which multiple processors work on a single application
simultaneously.

pointer

(1) A data item that consists of the address of a desired item. (2) A symbol that
moves around a computer screen under the control of the user.

procedure

(1) A named sequence of control statements and/or data that is saved in a
library for processing at a later time, when a calling statement activates it; it
provides the capability to replace values within the procedure. (2) In Fortran 90,
procedure is defined by a sequence of statements that expresses a computation
that may be invoked as a subroutine or function during program execution. It
may be an intrinsic procedure, an external procedure, an internal procedure, a
module procedure, a dummy procedure, or a statement function. If a
subprogram contains an ENTRY statement, it defines more than one procedure.

procedure interface

In Fortran 90, a sequence of statements that specifies the name and
characteristics of one or more procedures, the name and attributes of each

310 007–3693–005

Glossary

dummy argument, and the generic specifier by which it may be referenced if
any. See generic specifier.

In FORTRAN 77 and Fortran 90, a generic function is one whose output
value data type is determined by the data type of its input arguments. In
FORTRAN 77, the only generic functions allowed are those that the standard
defines. In Fortran 90, programmers may construct their own generic function
by creating "generic interface," which is like a regular procedure interface,
except that it has a "generic specifier" (the name of the generic function) after
the keyword INTERFACE.

reduction loop

A loop that contains at least one statement that reduces an array to a scalar
value by doing a cumulative operation on many of the array elements. This
involves including the result of the previous iteration in the expression of the
current iteration.

reference

A data object reference is the appearance of a name, designator, or associated
pointer in an executable statement that requires the value of the object. A
procedure reference is the appearance of the procedure name, operator symbol,
or assignment symbol in an executable program that requires execution of the
procedure. A module reference is the appearance of the module name in a USE
statement.

scalar

(1) In Fortran 90, a single object of any intrinsic or derived type. A structure is
scalar even if it has a component that is an array. The rank of a scalar is 0. (2)
A nonvectorized, single numerical value that represents one aspect of a physical
quantity and may be represented on a scale as a point. This term often refers to
a floating-point or integer computation that is not vectorized; more generally, it
also refers to logical and conditional (jump) computation.

scope

The region of a program in which a variable is defined and can be referenced.

scoping unit

Part of a program in which a name has a fixed meaning. A program unit or
subprogram generally defines a scoping unit. Type definitions and procedure

007–3693–005 311

Fortran Language Reference Manual, Volume 2

interface bodies also constitute scoping units. Scoping units do not overlap,
although one scoping unit may contain another in the sense that it surrounds it.
If a scoping unit contains another scoping unit, the outer scoping unit is
referred to as the host scoping unit of the inner scoping unit.

search loop

A loop that can be exited by means of an IF statement.

sequence

A set ordered by a one-to-one correspondence with the numbers 1, 2, through
n. The number of elements in the sequence is n. A sequence may be empty, in
which case, it contains no elements.

shared

Accessible by multiple parts of a program. Shared is a type of scope.

shell variable

A name representing a string value. Variables that are usually set only on a
command line are called parameters (positional parameters and keyword
parameters). Other variables are simply names to which a user (user-defined
variables) or the shell itself may assign string values. The shell has predefined
shell variables (for example, HOME). Variables are referenced by prefixing the
variable name by a $ (for example, $HOME).

software pipelining

Software pipelining is a compiler code generation technique in which
operations from various loop iterations are overlapped in order to exploit
instruction-level parallelism, increase instruction issue rate, and better hide
memory and instruction latency. As an optimization technique, software
pipelining is similar to bottom loading, but it includes additional, and more
efficient, scheduling optimizations.

Cray compilers perform safe bottom loading by default. Under these
conditions, code generated for a loop contains operations and stores associated
with the present loop iteration and contains loads associated with the next loop
iteration. Loads for the first iteration are generated in the loop preamble.

When software pipelining is performed, code generated for the loop contains
loads, operations, and stores associated with various iterations of the loop.
Loads and operations for first iterations are generated in the preamble to the

312 007–3693–005

Glossary

loop. Operations and stores for last iterations of loop are generated in the
postamble to the loop.

statement keyword

A keyword that is part of the syntax of a statement. Each statement, other than
an assignment statement and a statement function definition, begins with a
statement keyword. Examples of these keywords are IF, READ, and INTEGER.
Statement keywords are not reserved words; you may use them as names to
identify program elements.

stripmining

A single-processor optimization technique in which arrays, and the program
loops that reference them, are split into optimally-sized blocks, termed strips.
The original loop is transformed into two nested loops. The inner loop
references all data elements within a single strip, and the outer loop selects the
strip to be addressed in the inner loop. This technique is often performed by
the compiler to maximize the usage of cache memory or as part of vector code
generation.

structure

A language construct that declares a collection of one or more variables
grouped together under one name for convenient handling. In C and C++, a
structure is defined with the struct keyword. In Fortran 90, a derived type is
defined first and various structures of that type are subsequently declared.

subobject

Parts of a data object may be referenced and defined separately from other
parts of the object. Portions of arrays are array elements and array sections.
Portions of character strings are substrings. Portions of structures are structure
components. Subobjects are referenced by designators and are considered to be
data objects themselves.

subroutine

A series of instructions that accomplishes a specific task for many other routines.
(A subsection of a user-written program of varying size and, therefore, function.
It is written within the program. It is not a subsection of a routine.) It differs
from a main routine in that one of its parameters must specify the location to
which to return in the main program after the function has been accomplished.

007–3693–005 313

Fortran Language Reference Manual, Volume 2

TKR

An acronym that represents attributes for argument association. It represents
the data type, kind type parameter, and rank of the argument.

type parameter

Two type parameters exist for intrinsic types: kind and length. The kind type
parameter KIND indicates the decimal range for the integer type, the decimal
precision and exponent range for the real and complex types, and the machine
representation method for the character and logical types. The length type
parameter LEN indicates the length of a character string.

variable

(1) A name that represents a string value. Variables that usually are set only on
a command line are called parameters. Other variables are simply names to
which the user or the shell may assign string values. (2) In Fortran 90, data
object whose value can be defined and redefined. A variable may be a scalar or
an array. (3) In the shell command language, a named parameter. See also
shell variable.

314 007–3693–005

Index

A

ABS intrinsic procedure, 260
Access

direct, 30, 31, 33
sequential, 24, 26, 28

ACCESS=
on INQUIRE statement, 65
on OPEN statement, 53

ACHAR intrinsic procedure, 260
ACOS intrinsic procedure, 260
ACOSD intrinsic procedure, 260
ACTION=

on INQUIRE statement, 65
on OPEN statement, 54

Actual arguments, 176
ADD_AND_FETCH intrinsic procedure, 260
ADJUSTL intrinsic procedure, 260
ADJUSTR intrinsic procedure, 260
ADVANCE=

control specifier, 16
AESA, 213
AIMAG intrinsic procedure, 260
AINT intrinsic procedure, 260
ALL intrinsic procedure, 260
ALLOCATED intrinsic procedure, 260
ALOG intrinsic procedure, 268
ALOG10 intrinsic procedure, 268
Alternate return, 176, 222
AMAX0 intrinsic procedure, 269
AMAX1 intrinsic procedure, 269
AMIN0 intrinsic procedure, 269
AMIN1 intrinsic procedure, 269
AMOD intrinsic procedure, 270
AND intrinsic procedure, 261
AND_AND_FETCH intrinsic procedure, 261
ANINT intrinsic procedure, 261
ANY intrinsic procedure, 261
Argument

actual, 176, 257
association, 177, 203, 287
assumed-shape, 226
dummy, 176
intent, 219
keywords, 216, 257
list, 216
optional, 217

Array
association, 207
contiguous, 226
discontiguous, 227
element sequence association, 207
sections, 210

Array Element Sequence Association, 213
ASIN intrinsic procedure, 261
ASIND intrinsic procedure, 261
Assignment

defined, 183, 237
ASSOCIATED intrinsic procedure, 261
Association

argument, 203
array, 207
host, 178, 289
name, 285, 287
overview, 284
pointer, 212, 285, 294
sequence, 285, 298
storage, 285, 295
use, 178

ATAN intrinsic procedure, 261
ATAN2 intrinsic procedure, 261
ATAN2D intrinsic procedure, 261
ATAND intrinsic procedure, 261

007–3693–005 315

Fortran Language Reference Manual, Volume 2

B

BACKSPACE statement, 77
BIT_SIZE intrinsic procedure, 261
BITEST intrinsic procedure, 262
BJTEST intrinsic procedure, 262
BKTEST intrinsic procedure, 262
Blank

characters
in format descriptors, 90
in numeric fields, 124

padding, 18, 21, 25, 29, 32, 40, 48, 58
BLANK=

on INQUIRE statement, 66
on OPEN statement, 54

Block data
initialization, 145
program unit, 145, 171

block data program unit, 171
BMM intrinsic procedures, 269
BTEST intrinsic procedure, 262
BUFFER IN/ BUFFER OUT statements, 41

C

CABS intrinsic procedure, 260
CCOS intrinsic procedure, 262
CDBS intrinsic procedure, 260
CDCOS intrinsic procedure, 262
CDEXP intrinsic procedure, 264
CDLOG intrinsic procedure, 268
CDSIN intrinsic procedure, 272
CDSQRT intrinsic procedure, 273
CEILING intrinsic procedure, 262
CEXP intrinsic procedure, 264
CHAR intrinsic procedure, 262
Character

edit descriptors, 93
editing, 116
string editing, 125

CLEAR_IEEE_EXCEPTION intrinsic
procedure, 262

CLOC intrinsic procedure, 262
CLOCK intrinsic procedure, 262
CLOG intrinsic procedure, 268
CLOSE statement, 60
CMPLX intrinsic procedure, 262
Colon editing, 122
Comma

characters
in format descriptors, 90

Common
blocks

in a module, 166
COMPARE_AND_SWAP intrinsic procedure, 262
Compilation

of program units, 170
COMPL intrinsic procedure, 262
Complex

editing, 112
CONJG intrinsic procedure, 262
Connecting a file to a unit, 50
CONTAINS statement, 151, 194
Control

edit descriptors, 92, 119
specifiers for I/O, 13

COS intrinsic procedure, 262
COSD intrinsic procedure, 262
COSH intrinsic procedure, 262
COT intrinsic procedure, 263
COUNT intrinsic procedure, 263
CPU_TIME intrinsic procedure, 263
CQABS intrinsic procedure, 260
CQEXP intrinsic procedure, 264
CQSIN intrinsic procedure, 272
CQSQRT intrinsic procedure, 273
CSHIFT intrinsic procedure, 263
CSIN intrinsic procedure, 272
CSMG intrinsic procedure, 263
CSQRT intrinsic procedure, 273
CVMGM intrinsic procedure, 263
CVMGN intrinsic procedure, 263
CVMGP intrinsic procedure, 263
CVMGT intrinsic procedure, 263

316 007–3693–005

Index

CVMGZ intrinsic procedure, 263

D

DABS intrinsic procedure, 260
DACOS intrinsic procedure, 260
DACOSD intrinsic procedure, 260
DASIN intrinsic procedure, 261
DASIND intrinsic procedure, 261
Data

edit descriptors, 90
transfer

advancing, 24
direct, 31, 33
execution model, 46
formatted, 24, 28, 31
internal files, 38
list-directed, 34
namelist, 36
nonadvancing, 28
overview, 94
sequential, 24, 26, 28
statements, 1, 12, 45
unformatted, 26, 33

DATAN intrinsic procedure, 261
DATAN2 intrinsic procedure, 261
DATAN2D intrinsic procedure, 261
DATAND intrinsic procedure, 261
DATE intrinsic procedure, 263
DATE_AND_TIME intrinsic procedure, 263
DBLE intrinsic procedure, 263
DCMPLX intrinsic procedure, 262
DCONJG intrinsic procedure, 262
DCOS intrinsic procedure, 262
DCOSD intrinsic procedure, 262
DCOSH intrinsic procedure, 262
DCOT intrinsic procedure, 263
DDIM intrinsic procedure, 263
Defined

assignment, 237
operators, 234

Definition status, 299

DELIM=
in namelist editing, 142
on INQUIRE statement, 66
on OPEN statement, 55

DEXP intrinsic procedure, 264
DFLOAT intrinsic procedure, 263
DFLOATI intrinsic procedure, 263
DFLOATJ intrinsic procedure, 263
DFLOATK intrinsic procedure, 263
DIGITS intrinsic procedure, 263
DIM intrinsic procedure, 263
DIMAG intrinsic procedure, 260
DINT intrinsic procedure, 260
Direct access, 10, 30
DIRECT=

on INQUIRE statement, 67
DISABLE_IEEE_INTERRUPT intrinsic

procedure, 263
DLOG intrinsic procedure, 268
DLOG10 intrinsic procedure, 268
DMAX1 intrinsic procedure, 269
DMIN1 intrinsic procedure, 269
DMOD intrinsic procedure, 270
DNINT intrinsic procedure, 261
DOT_PRODUCT intrinsic procedure, 264
DPROD intrinsic procedure, 264
DREAL intrinsic procedure, 271
DSHIFTL intrinsic procedure, 264
DSHIFTR intrinsic procedure, 264
DSIGN intrinsic procedure, 272
DSIN intrinsic procedure, 272
DSIND intrinsic procedure, 272
DSINH intrinsic procedure, 272
DSM_CHUNKSIZE intrinsic procedure, 264
DSM_DISTRIBUTION_BLOCK intrinsic

procedure, 264
DSM_DISTRIBUTION_CYCLIC intrinsic

procedure, 264
DSM_DISTRIBUTION_STAR intrinsic

procedure, 264
DSM_ISDISTRIBUTED intrinsic procedure, 264
DSM_ISRESHAPED ntrinsic procedure, 264

007–3693–005 317

Fortran Language Reference Manual, Volume 2

DSM_NUMCHUNKS intrinsic procedure, 264
DSM_NUMTHREADS intrinsic procedure, 264
DSM_REM_CHUNKSIZE intrinsic procedure, 264
DSM_THIS_CHUNKSIZE intrinsic

procedure, 264
DSM_THIS_STARTINGINDEX intrinsic

procedure, 264
DSM_THIS_THREADNUM intrinsic

procedure, 264
DSQRT intrinsic procedure, 273
DTAN intrinsic procedure, 273
DTAND intrinsic procedure, 273
DTANH intrinsic procedure, 273
Dummy

arguments, 176
procedures, 177, 223

E

Edit descriptors
character, 93
control, 92
data, 90

Editing
blank, 124
character, 116
character strings, 125
colon, 122
complex, 112
integer, 101
logical, 115
numeric, 99
position, 119
real, 104
sign, 123
slash, 121

ELEMENTAL
keyword, 179, 185
procedures, 201

Elemental references, 221
ENABLE_IEEE_INTERRUPT intrinsic

procedure, 264

END statement, 147
End-of-file record, 4
END=

control specifier, 17
ENDFILE statement, 79
ENTRY statement, 194
EOR=

control specifier, 17
EOSHIFT intrinsic procedure, 264
EPSILON intrinsic procedure, 264
EQV intrinsic procedure, 264
ERR=

control specifier, 18
on CLOSE statement, 61
on file positioning statements, 81
on INQUIRE statement, 67
on OPEN statement, 55

Error conditions
in I/O, 47

Execution
model for data transfer statements, 45
part, of a main program, 150

EXIST=
on INQUIRE statement, 68

EXP intrinsic procedure, 264
Explicit

formatting, 87
interface, 178, 224, 225, 232

EXPONENT intrinsic procedure, 264
External

function
subprogram unit, 145

procedures, 153
subprograms, 153
subroutine

subprogram unit, 145
EXTERNAL statement, 197

F

FCD intrinsic procedure, 264

318 007–3693–005

Index

FETCH_AND_ADD intrinsic procedure, 265
FETCH_AND_AND intrinsic procedure, 265
FETCH_AND_NAND intrinsic procedure, 265
FETCH_AND_OR intrinsic procedure, 265
FETCH_AND_SUB intrinsic procedure, 265
FETCH_AND_XOR intrinsic procedure, 265
FILE=

on INQUIRE statement, 68
on OPEN statement, 56

Files
access methods, 9
as a data storage, 2
connection, inquiry, and positioning

statements, 1
creation, 6
differing types, 4
existence of, 6
external, 5
inquiry, 62
internal, 6, 38
positioning, 7, 46, 99
reading and writing, 1

FLOAT intrinsic procedure, 271
FLOATI intrinsic procedure, 271
FLOATJ intrinsic procedure, 271
FLOATK intrinsic procedure, 271
FLOOR intrinsic procedure, 265
FMT=

control specifier, 15
FORM=

on INQUIRE statement, 68
on OPEN statement, 57

Format
specifications, 89
specifier

definition, 13
format specification that is empty, 95
FORMAT statement, 87
Formatted

data, 2
records

printing, 41
FORMATTED=

on INQUIRE statement, 69
Formatting

explicit, 87
list-directed, 34, 126
namelist, 36, 133

FRACTION intrinsic procedure, 265
FREE intrinsic procedure, 265
Function

definition, 173
reference, 236
subprograms, 185

FUNCTION statement, 185

G

Generic procedures, 220, 232
GET_IEEE_EXCEPTIONS intrinsic procedure, 265
GET_IEEE_INTERRUPTS intrinsic procedure, 265
GET_IEEE_ROUNDING_MODE intrinsic

procedure, 265
GET_IEEE_STATUS intrinsic procedure, 265
GETPOS intrinsic procedure, 265
Global data, 166

H

Host association, 178, 288, 289
HUGE intrinsic procedure, 265

I

I/O, 1
advancing, 8, 24
character conversion, 24
control specifiers, 13
direct access, 31, 33
editing, 83
error conditions, 47
formatted, 24, 28, 31, 94

007–3693–005 319

Fortran Language Reference Manual, Volume 2

item list, 21
list-directed, 34, 126
namelist, 36
nonadvancing, 8, 28
partial record, 28
sequential access, 24, 26
stream, 28
unformatted, 26, 33
units, 10

IABS intrinsic procedure, 260
IACHAR intrinsic procedure, 265
IAND intrinsic procedure, 265
IBCHNG intrinsic procedure, 265
IBCLR intrinsic procedure, 265
IBITS intrinsic procedure, 265
IBSET intrinsic procedure, 266
ICHAR intrinsic procedure, 266
IDATE intrinsic procedure, 266
IDIM intrinsic procedure, 263
IDINT intrinsic procedure, 267
IDNINT intrinsic procedure, 270
IEEE named constants, 249
IEEE_BINARY_SCALE intrinsic procedure, 266
IEEE_CLASS intrinsic procedure, 266
IEEE_COPY_SIGN intrinsic procedure, 266
IEEE_EXPONENT intrinsic procedure, 266
IEEE_FINITE intrinsic procedure, 266
IEEE_INT intrinsic procedure, 266
IEEE_IS_NAN intrinsic procedure, 266
IEEE_NEXT_AFTER intrinsic procedure, 266
IEEE_REAL intrinsic procedure, 266
IEEE_REMAINDER intrinsic procedure, 266
IEEE_UNORDERED intrinsic procedure, 266
IEOR intrinsic procedure, 266
IFIX intrinsic procedure, 267
IIABS intrinsic procedure, 260
IIAND intrinsic procedure, 265
IIBCHNG intrinsic procedure, 265
IIBCLR intrinsic procedure, 265
IIBITS intrinsic procedure, 265
IIBSET intrinsic procedure, 266
IIDIM intrinsic procedure, 263
IIDINT intrinsic procedure, 267

IIEOR intrinsic procedure, 266
IIFIX intrinsic procedure, 267
IINT intrinsic procedure, 267
IIOR intrinsic procedure, 267
IIQINT intrinsic procedure, 267
IISHA intrinsic procedure, 267
IISHC intrinsic procedure, 267
IISHFT intrinsic procedure, 267
IISHFTC intrinsic procedure, 268
IISHL intrinsic procedure, 267
IISIGN intrinsic procedure, 272
IMAG intrinsic procedure, 260
IMOD intrinsic procedure, 270
Implicit

interface, 178, 224
INDEX intrinsic procedure, 266
Initial point

definition, 7
INOT intrinsic procedure, 270
Input

list directed, 128
Input/output, 1
INQUIRE statement, 63
Inquiries on files, 62
INT intrinsic procedure, 267
INT24 intrinsic procedure, 267
INT_MULT_UPPER intrinsic procedure, 267
Integer

editing, 101
Intent

argument, 219
Interface

block
overview, 228

explicit, 217, 225
procedure, 224

INTERFACE statement, 228
Internal

files
data transfer, 38

procedures, 151
Intrinsic

320 007–3693–005

Index

function, 241
procedure

additional CF90 procedures, 252
elemental functions, 243
IEEE intrinsics, 247
inquiry functions, 242
overview, 241
subroutines, 246
transformational functions, 245

procedures
elemental, 221

subroutine, 241
INTRINSIC statement, 198
IOR intrinsic procedure, 267
IOSTAT=

control specifier, 19
on CLOSE statement, 62
on file positioning statements, 80
on INQUIRE statement, 69
on OPEN statement, 57

IQINT intrinsic procedure, 267
IQNINT intrinsic procedure, 270
IRTC intrinsic procedure, 267
ISHA intrinsic procedure, 267
ISHC intrinsic procedure, 267
ISHFT intrinsic procedure, 267
ISHFTC intrinsic procedure, 268
ISHL intrinsic procedure, 267
ISIGN intrinsic procedure, 272
ISNAN intrinsic procedure, 268

J

JDATE intrinsic procedure, 263
JIABS intrinsic procedure, 260
JIAND intrinsic procedure, 265
JIBCHNG intrinsic procedure, 265
JIBCLR intrinsic procedure, 265
JIBITS intrinsic procedure, 265
JIBSET intrinsic procedure, 266
JIDIM intrinsic procedure, 263
JIDINT intrinsic procedure, 267

JIEOR intrinsic procedure, 266
JIFIX intrinsic procedure, 267
JIINT intrinsic procedure, 267
JIOR intrinsic procedure, 267
JIQINT intrinsic procedure, 267
JISHA intrinsic procedure, 267
JISHC intrinsic procedure, 267
JISHFT intrinsic procedure, 267
JISHFTC intrinsic procedure, 268
JISHL intrinsic procedure, 267
JISIGN intrinsic procedure, 272
JMOD intrinsic procedure, 270
JNOT intrinsic procedure, 270

K

Keywords, 216, 257
KIABS intrinsic procedure, 260
KIAND intrinsic procedure, 265
KIBCHNG intrinsic procedure, 265
KIBCLR intrinsic procedure, 265
KIBITS intrinsic procedure, 265
KIBSET intrinsic procedure, 266
KIDIM intrinsic procedure, 263
KIEOR intrinsic procedure, 266
KIND intrinsic procedure, 268
KIOR intrinsic procedure, 267
KIQINT intrinsic procedure, 267
KISHA intrinsic procedure, 267
KISHC intrinsic procedure, 267
KISHFT intrinsic procedure, 267
KISHFTC intrinsic procedure, 268
KISHL intrinsic procedure, 267
KISIGN intrinsic procedure, 272
KMOD intrinsic procedure, 270
KNOT intrinsic procedure, 270

L

LBOUND intrinsic procedure, 268

007–3693–005 321

Fortran Language Reference Manual, Volume 2

LEADZ intrinsic procedure, 268
LEN intrinsic procedure, 268
LEN_TRIM intrinsic procedure, 268
LENGTH intrinsic procedure, 268
LGE intrinsic procedure, 268
LGT intrinsic procedure, 268
List-directed

data
transfer, 34

formatting, 126
input, 128
output, 130

LLE intrinsic procedure, 268
LLT intrinsic procedure, 268
LOC intrinsic procedure, 268
LOCK_RELEASE intrinsic procedure, 268
LOCK_TEST_AND_SET intrinsic procedure, 268
LOG intrinsic procedure, 268
LOG10 intrinsic procedure, 268
LOG2_IMAGES intrinsic procedure, 268
Logical

editing, 115
LOGICAL intrinsic procedure, 268
LONG intrinsic procedure, 268
LSHIFT intrinsic procedure, 268

M

M@CLR intrinsic procedure, 269
M@LD intrinsic procedure, 269
M@LDMX intrinsic procedure, 269
M@MX intrinsic procedure, 269
M@UL intrinsic procedure, 269
Main program

overview, 146
unit, 145

MALLOC intrinsic procedure, 269
MASK intrinsic procedure, 269
MATMUL intrinsic procedure, 269
MAX intrinsic procedure, 269
MAX0 intrinsic procedure, 269
MAX1 intrinsic procedure, 269

MAXEXPONENT intrinsic procedure, 269
MAXLOC intrinsic procedure, 269
MAXVAL intrinsic procedure, 269
MEMORY_BARRIER intrinsic procedure, 269
MERGE intrinsic procedure, 269
MIN intrinsic procedure, 269
MIN0 intrinsic procedure, 269
MIN1 intrinsic procedure, 269
MINEXPONENT intrinsic procedure, 269
MINLOC intrinsic procedure, 269
MINVAL intrinsic procedure, 269
MOD intrinsic procedure, 270
Module

as a program unit, 145
program unit, 155
subprogram, 158

MODULE PROCEDURE statement, 228
MODULE statement, 155
MODULO intrinsic procedure, 270
MVBITS intrinsic procedure, 270
MY_PE intrinsic procedure, 270

N

NAME=
on INQUIRE statement, 70

Named constants, 249
NAMED=

on INQUIRE statement, 70
Namelist

data
transfer, 36

formatting, 133
input, 134
output, 140

NAMELIST statement, 36
NAND_AND_FETCH intrinsic procedure, 270
NEAREST intrinsic procedure, 270
NEQV intrinsic procedure, 270
NEXTREC=

on INQUIRE statement, 70

322 007–3693–005

Index

NINT intrinsic procedure, 270
NML=

control specifier, 16
NOT intrinsic procedure, 270
NULL intrinsic procedure, 270
NUM_IMAGES intrinsic procedure, 270
NUMARG intrinsic procedure, 270
NUMBER=

on INQUIRE statement, 71
Numeric editing, 99

O

OPEN statement, 50
OPENED=

on INQUIRE statement, 71
Operators

defined, 234
Optional

arguments, 217
OR intrinsic procedure, 270
OR_AND_FETCH intrinsic procedure, 270
Output

list-directed, 130

P

PACK intrinsic procedure, 270
PAD=

on INQUIRE statement, 71
on OPEN statement, 57

Parentheses
in I/O editing, 95

Pointer
association, 212

POPCNT intrinsic procedure, 270
POPPAR intrinsic procedure, 270
Position editing, 119
POSITION=

on INQUIRE statement, 71
on OPEN statement, 58

PRECISION intrinsic procedure, 270
Preconnected file units, 12
PRESENT intrinsic procedure, 270
PRINT statement, 12
Printing

formatted records, 41
Procedure

dummy, 177, 223
elemental

definition, 174
external, 153, 174
generic, 220, 232
interface, 224
internal, 151, 175
intrinsic, 174
module, 175
overview, 173

PRODUCT intrinsic procedure, 271
Program

units
overview, 145

PROGRAM statement, 147
program unit, 171
PURE

keyword, 179, 185
procedures, 199

Q

QABS intrinsic procedure, 260
QACOS intrinsic procedure, 260
QACOSD intrinsic procedure, 260
QASIN intrinsic procedure, 261
QASIND intrinsic procedure, 261
QATAN intrinsic procedure, 261
QATAN2 intrinsic procedure, 261
QATAN2D intrinsic procedure, 261
QATAND intrinsic procedure, 261
QCMPLX intrinsic procedure, 262
QCONJG intrinsic procedure, 262
QCOS intrinsic procedure, 262

007–3693–005 323

Fortran Language Reference Manual, Volume 2

QCOSD intrinsic procedure, 262
QCOSH intrinsic procedure, 262
QCOT intrinsic procedure, 263
QDIM intrinsic procedure, 263
QEXP intrinsic procedure, 264
QFLOAT intrinsic procedure, 263
QFLOATI intrinsic procedure, 263
QFLOATJ intrinsic procedure, 263
QFLOATK intrinsic procedure, 263
QIMAG intrinsic procedure, 260
QINT intrinsic procedure, 260
QLOG intrinsic procedure, 268
QLOG10 intrinsic procedure, 268
QMAX1 intrinsic procedure, 269
QMIN1 intrinsic procedure, 269
QMOD intrinsic procedure, 270
QNINT intrinsic procedure, 261
QPROD intrinsic procedure, 264
QREAL intrinsic procedure, 271
QSIGN intrinsic procedure, 272
QSIN intrinsic procedure, 272
QSIND intrinsic procedure, 272
QSINH intrinsic procedure, 272
QSQRT intrinsic procedure, 273
QTAN intrinsic procedure, 273
QTAND intrinsic procedure, 273
QTANH intrinsic procedure, 273

R

RADIX intrinsic procedure, 271
RANDOM_NUMBER intrinsic procedure, 271
RANDOM_SEED intrinsic procedure, 271
RANF intrinsic procedure, 271
RANGE intrinsic procedure, 271
RANGET intrinsic procedure, 271
RANSET intrinsic procedure, 271
READ statement, 12
READ=

on INQUIRE statement, 72
Reading a file, 1
READWRITE=

on INQUIRE statement, 72
Real

editing, 104
REAL intrinsic procedure, 271
REC=

control specifier, 20
RECL=

on INQUIRE statement, 73
on OPEN statement, 59

Records
as a data storage, 2

Recursion, 177
REM_IMAGES intrinsic procedure, 271
REMOTE_WRITE_BARRIER intrinsic

procedure, 271
REPEAT intrinsic procedure, 271
Representation models, 258
RESHAPE intrinsic procedure, 271
RESULT clause, 188
Return

alternate, 189, 222
RETURN statement, 193
REWIND statement, 78
RRSPACING intrinsic procedure, 271
RSHIFT intrinsic procedure, 271
RTC intrinsic procedure, 271

S

Scale factors, 123
SCALE intrinsic procedure, 271
SCAN intrinsic procedure, 271
Scope

overview, 276
Scoping unit, 277
SELECTED_INT_KIND intrinsic procedure, 271
SELECTED_REAL_KIND intrinsic procedure, 271
Sequential access, 9
SEQUENTIAL=

on INQUIRE statement, 73
SET_EXPONENT intrinsic procedure, 271

324 007–3693–005

Index

SET_IEEE_EXCEPTION intrinsic procedure, 271
SET_IEEE_EXCEPTIONS intrinsic procedure, 271
SET_IEEE_INTERRUPTS intrinsic procedure, 271
SET_IEEE_ROUNDING_MODE intrinsic

procedure, 272
SET_IEEE_STATUS intrinsic procedure, 272
SHAPE intrinsic procedure, 272
SHIFT intrinsic procedure, 272
SHIFTA intrinsic procedure, 272
SHIFTL intrinsic procedure, 272
SHIFTR intrinsic procedure, 272
SHORT intrinsic procedure, 272
Sign editing, 123
SIGN intrinsic procedure, 272
SIN intrinsic procedure, 272
SIND intrinsic procedure, 272
SINH intrinsic procedure, 272
SIZE intrinsic procedure, 272
SIZE=

control specifier, 20
Slash editing, 121
SNGL intrinsic procedure, 271
SPACING intrinsic procedure, 272
Specification

part, of a main program, 148
SPREAD intrinsic procedure, 272
SQRT intrinsic procedure, 273
Statement

function, 175
function statement, 191

STATUS=
on CLOSE statement, 62
on OPEN statement, 59

SUB_AND_FETCH intrinsic procedure, 273
Subprogram

external, 153
module, 158

SUBROUTINE statement, 179
Subroutines, 179
SUM intrinsic procedure, 273
SYNC_IMAGES intrinsic procedure, 273
SYNCHRONIZE intrinsic procedure, 273
SYSTEM_CLOCK intrinsic procedure, 273

T

TAN intrinsic procedure, 273
TAND intrinsic procedure, 273
TANH intrinsic procedure, 273
Terminal point

definition, 7
TEST_IEEE_EXCEPTION intrinsic procedure, 273
TEST_IEEE_INTERRUPT intrinsic procedure, 273
THIS_IMAGE intrinsic procedure, 273
TINY intrinsic procedure, 273
TKR, 204
TRANSFER intrinsic procedure, 273
TRANSPOSE intrinsic procedure, 273
TRIM intrinsic procedure, 273
Type, Kind, and Rank, 204

U

UBOUND intrinsic prodecure, 273
Unformatted data, 3
UNFORMATTED=

on INQUIRE statement, 74
Unit

I/O, 10
UNIT intrinsic procedure, 273
UNIT=

control specifier, 14
on CLOSE statement, 61
on file positioning statements, 80
on INQUIRE statement, 65
on OPEN statement, 53

UNPACK intrinsic procedure, 274
Use

association, 288
Use association, 159, 164, 178
USE statement, 160

007–3693–005 325

Fortran Language Reference Manual, Volume 2

V

VERIFY intrinsic procedure, 274

W

WRITE statement, 12
WRITE=

on INQUIRE statement, 74
WRITE_MEMORY_BARRIER intrinsic

procedure, 274
Writing a file, 1

X

XOR intrinsic procedure, 274
XOR_AND_FETCH intrinsic procedure, 274

Z

Zero-sized array, 98

326 007–3693–005

