
Careful statistical thinking may lead to a different
choice than that guided by superficial statistical thinking
or conventional wisdom. This point was exemplified
when a representative of a manufacturing company
approached the authors with a real problem. The follow-
ing edition of Statistics Roundtable illustrates the use of
careful statistical thinking on actual manufacturing data
that proved to be somewhat counter intuitive.

After this particular organization acquired a second,
smaller company, it realized it had two different meth-
ods (method A and method B) for securing a pulley, fan
or gear onto a steel hub—a common operation. Both the
original organization and its newly acquired company
had a preferred method. The two methods did not dif-
fer substantially in cost, and the acquisition presented

an opportunity to adopt the better method throughout
the organization, standardize production and reduce
inventories. 

Ensure methods are statistically stable
The particular components needed to have a mini-

mum of 50 foot-pounds of torque (holding power)
between the steel hub and the pulley or fan. In other
words, 50 foot-pounds was a lower specification limit
(LSL). The company, trying to incorporate more statisti-
cal thinking and quality orientation into its operations,
asked two quality technicians to devise a test, collect
data and determine which method would be used for
this particular process in the future.

The technicians decided to conduct capability studies
on both processes, including the calculation of the
process index, CPL = (µ - LSL)/3σ.1, 2 Since the items
were relatively inexpensive, they collected a fairly large
sample (52) from each production method to help ensure
sound decisions. Table 1 presents the data collected.

Both technicians were aware that a capability study is
only meaningful and valid when the process being stud-
ied is, in fact, statistically stable. Thus, they constructed
an individuals chart (I) to check the stability of the cen-
ter of the process and a moving range chart (MR) to
check the stability of the variation of the process.3

The measurements taken regarding method B present-
ed some peculiarities. The measurement device used
was a torque wrench and could only be read to the near-
est foot-pound. Thus, the measurements for method B,
since they were so consistent, resulted in only three val-
ues between the control limits for its range chart. 

Several authors have noted that, generally, “If there
are fewer than four values on the range chart below the
upper control limit, the discrimination of the measuring
devices is not adequate.”4 Such lack of discrimination
casts some doubt on the chart’s ability to evaluate statis-
tical stability. 

Faced with practical time constraints, the technicians
used input from engineers and operators and historical
data about method B to help support their conclusions
about its stability. In addition, they expressed a need to
procure a more precise measuring device in order to aid
future analysis. 

Both processes were judged to be statistically stable (in
both mean and variation) so they each undertook a
capability study. 

Capability studies indicate benefits of both methods
Capability studies typically assume the data is normal-

ly distributed, but the measurement device was only
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TABLE 1

Method A Method B

Sample = 52 Sample = 52

143 135 84 83
110 110 84 84
103 100 82 82
125 115 82 83
125 90 83 84
135 121 83 84
108 100 82 83
100 148 82 83
105 160 84 82
115 130 83 83
120 130 84 84
110 100 83 82
100 110 83 81
90 130 84 82
75 106 84 82

112 117 83 83
95 100 83 84
95 110 84 84

125 100 83 83
100 90 83 83
107 140 83 84
107 90 82 83
150 120 83 82
100 100 84 82
115 83 82 83
120 135 83 85



The results of the capability studies are graphically
displayed in Figure 1 (I and MR chart) and Figure 2
(capability study) for method A. Figure 3 (I and MR
chart) and Figure 4 (capability study) offer the capability
studies results for method B.

Method A had a high mean ( A = 112.7 foot-pounds)
with a moderately sized standard deviation (sA = 18
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Method A—Individuals and Moving Range ChartsFIGURE 1
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able to produce five different values for method B (81 to
85 foot-pounds) due to its lack of discrimination. Thus,
while the underlying manufacturing process could be
normal, the measurement device limitations resulted in
categorized data. Tests for normality were performed on
both methods (using Minitab software) and neither dis-
played enough deficiencies to be judged nonnormal.

Capability Analysis for Method AFIGURE 2
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Lower Spec

90 110 130 150 170

Cp * Targ * Mean 112.692 %>USL Exp * PPM>USL Exp *
CPU * USL * Mean + 3s 166.769 Obs * Obs *
CPL 1.16 LSL 50 Mean - 3s 58.615 %<LSL Exp 0.03 PPM<LSL Exp 253
Cpk 1.16 k * s 18.026 Obs 0.00 Obs 0
Cpm * n 52

Method A
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Capability Analysis for Method BFIGURE 4
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Cpm * n 52

Method B

Method B—Individuals and Moving Range ChartsFIGURE 3
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foot-pounds), but it seemed to be capable. That is, the
value of CPLA = 1.16 indicated a reasonably good
process. A CPL of 1 corresponds to a quality level of 3
sigma, therefore, a CPL of 1.16 seems to indicate a slight-
ly better quality level, which was acceptable to the

company.5 This CPL gave rise to an estimated 253 parts
per million nonconforming components (assuming a
normally distributed process). 

Method B had only a moderately high mean ( B = 83
foot-pounds) but a small standard deviation (sB = .84
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n = 40 50 75

CPL = 1.0 .79 .81 .85
1.1 .87 .90 .94
1.2 .96 .98 1.02

A Portion of a CPL TableTABLE 2
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foot-pounds) This gave an extraordinarily large value of
CPLB = 13.12. 

The technicians had hoped to find one process with a
low CPL of .85 or .9 and, thus, eliminate it from further
consideration. Method A had the higher mean (which
they wanted) but Method B had the lower variation
(which they also wanted). Discussion of these results
with supervisors found champions for both methods,
with method A being particularly attractive to many.

Critical element of analysis missing
The technicians decided to consult other quality pro-

fessionals for assistance. These quality professionals
complimented the technicians on the soundness of their
work, but pointed out an often overlooked and certainly
underemphasized point crucial to the analysis. 

Even though most statistical packages print values like
CPL = 1.16, this is not quite accurate. Just as and s are
sample point estimates for µ and σ, so also is the value
computed and provided for the process index given by
( - LSL)/s and thus is actually a point estimate of CPL.

It’s important to note that point estimates are provided
by virtually all statistical packages of all process indices
when such capability studies are done. Precisely written,
the quality practitioners actually had A = CPLA(est) =
( A - LSL)/sA and CPLB = B(est) =( B - LSL)/sB. To
provide a better sense of what values for CPL would be
possible and reasonable, a confidence interval would be
necessary, just as it is for and s.6

While some think such an interval is unnecessary for a
large sample of 52, in fact, all process capability indices’
estimates have much greater variability than typically
associated with . While still overlooked or misunder-
stood in practice, this fact has been pointed out by many,
including Burt Gunter in his series published in Quality
Progress. 7, 8, 9,10 

Complex distributions
The precise distributions for most process indices are

quite complex. The distribution associated with CPL is a
noncentral student’s t statistic, for example, when the
process is normally distributed. Much of the indices’ dis-
tributional work has been compiled and developed in S.
Kotz and N. L. Johnson’s text, Process Capability Indices.11

Fortunately for the practitioner, Chou, Owen and
Borrego have calculated and tabulated 95% lower confi-
dence limits (95% one-sided confidence intervals) for Cp,
CPU, CPL and Cpk. Table 2 offers a portion of one of their
CPL tables.

To understand the use of Table 2, consider an example
of a stable process that gave CPL = 1 from a sample of n
= 40 observations. Table 2 indicates that with 95% confi-
dence, CPL could be .79 or greater in size. Thus, a
misconception that CPL = 1 (when in fact for a sample
size of 40, it is = CPL(est) = 1) could lead to the con-
clusion that the process is at a 3-sigma level of quality
(marginally acceptable for some processes) when in fact
CPL could reasonably be .80, .85 or .90. Almost no one
finds this level of quality acceptable!

ĈPL

ĈPL
ĈPL

The results are weighted and a method is chosen
Returning to the example of method A, doing linear

interpolation (since n = 52 and = CPL(est) = 1.16)
gives the following results from  Table 2: There is a 95%
confidence level that CPL is .9512 or greater in size for
method A. This could reasonably allow (assuming a nor-
mal distribution and CPL = .9512) 2,200 parts per million
nonconforming assemblies for this method. Such a level
of quality would be unacceptable to some companies.

All of this work presupposes a forever statistically sta-
ble process for method A. It is precisely because this
assumption is wildly naive that control charts are neces-
sary to detect when a process becomes statistically
unstable. 

Most control charts have a reasonable probability of
detecting such instability only after a shift of nearly one
standard deviation or more in mean or variation. For
method A, this could result in levels of nonconforming
assemblies of 32,200 parts per million or more before
detection would occur. Again, this level of quality
would be unacceptable for virtually any company.

Method B has none of these pitfalls. In fact, =
13.12 is indicative of very low variation (s = .84 foot
pounds). While Chou, Owen and Borrego’s table does
not list such extraordinarily high process index values,
a conservative, interpolated estimate would comfort-
ably place CPL = 10 or greater with 95% confidence for
method B. Should method B become statistically unsta-
ble, a one-standard deviation shift would only result in
CPL = 9.67. Recalling that CPL = 2 corresponds to a 6-
sigma level of quality and would result in a
nonconforming rate of one per billion, it is clear that
method B would still be providing conforming parts
under circumstances that would be disastrous for
method A.

If management were willing to devote the resources to
either decrease the variation of method A or increase the
mean of method B, such efforts could make method A
the more desired method or even improve method B’s
already preferred status. 

Neither the time nor the nature of the methods would

ĈPL

ĈPL



allow the company to develop either method. A choice
simply had to be made between the two methods as
they currently existed.

The technicians and their supervisors, when apprised
of the issues, appreciated the misunderstanding often
associated with CPL versus = CPL(est) and the
potential problems for method A, even if monitored
with a control chart. All concurred that method B was
the preferred method to reach the levels of quality
desired.
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