"An intuitive algebraic approach for solving Linear Programming problems"

Source: Zionts [1974] (or many others).

$$
\begin{align*}
& {[\max] z=0,56 x_{1}+0,42 x_{2}} \\
& \text { s.to } \quad x_{1}+2 x_{2} \leq 240 \\
& 1,5 x_{1}+x_{2} \leq 180 \\
& x_{1} \leq 110 \\
& {[\max] z=0,56 x_{1}+0,42 x_{2}+0 x_{3}+0 x_{4}+0 x_{5}} \\
& x_{1}+2 x_{2}+\left\{x_{3}\right\}=240 \\
& 1,5 x_{1}+x_{2}+\left\{x_{4}\right\} \quad=180 \\
& x_{1}+\left\{x_{5}\right\}=110
\end{align*}
$$

This has (always) an obvious, sure solution. Let

$$
x_{1}, x_{2}=0
$$

Then

$$
\begin{align*}
& {\left[\begin{array}{l}
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
240 \\
180 \\
110
\end{array}\right]} \\
& z=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
240 \\
180 \\
110
\end{array}\right]=0
\end{align*}
$$

Is this optimal ? How to improve ?
There does not appear (Dantzig) to be a systematic way of setting all the nonbasic variables simultaneously to optimal values -hence, an iterative ${ }^{2}$ method.

Choose the variable that increases the objective function most per unit (this choice is arbitrary), in the example, x_{1}, because its coefficient $(0,56)$ is the largest.

According to the constraints, x_{1} can be increased till:

B

$$
\begin{align*}
x_{1} & =240 \\
1,5 x_{1} & =180 \\
x_{1} & =110
\end{aligned} \rightarrow \begin{aligned}
& x_{1}=240 \\
& x_{1}=120 \\
& x_{1}
\end{align*}=110
$$

The third equation (why ?) in $\{2\}$ leads to $x_{1}=110$ and $x_{5}=0$. The variable x_{1} will be the entering variable and x_{5} the leaving variable:

[^0]C

$$
x_{1}=110-x_{5}
$$

Substituting for x_{1} everywhere (except in its own constraint), we have

$$
\begin{align*}
& {[\max] z=0,56\left(110-x_{5}\right)+0,42 x_{2}} \\
& \left(110-x_{5}\right)+2 x_{2}+x_{3}=240 \\
& \begin{array}{cl}
1,5\left(110-x_{5}\right)+x_{2}+x_{4} & =180 \\
x_{1} & +x_{5}=110
\end{array} \\
& {[\max] z=\quad 0,42 x_{2} \quad-0,56 x_{5}+61,6} \\
& +2 x_{2}+\left\{x_{3}\right\} \quad-x_{5}=130 \\
& x_{2}+\left\{x_{4}\right\}-1,5 x_{5}=15 \\
& \left\{x_{1}\right\} \\
& +x_{5}=110
\end{align*}
$$

A
which is of course equivalent to Eq. $\{2\}$.
We now have a new (equivalent) LP problem, to be treated as the original was. The process can continue iteratively.

$$
\left[\begin{array}{l}
x_{1} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
110 \\
130 \\
15
\end{array}\right]
$$

From Eq. $\{2\}$ or Eq. $\{9\}$, respectively,

$$
\begin{align*}
& z=\left[\begin{array}{lll}
0,56 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
110 \\
130 \\
15
\end{array}\right]=61,6 \\
& z=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
110 \\
130 \\
15
\end{array}\right]+61,6=61,6
\end{align*}
$$

Now, x_{2} is the new entering variable. According to the constraints, it can be increased till:

B

$$
\begin{align*}
2 x_{2} & =130 \\
x_{2} & =15 \\
0 x_{2} & =110
\end{aligned} \rightarrow \begin{aligned}
& x_{2}=65 \\
& x_{2}
\end{aligned}=150 \begin{aligned}
& x_{2}=\infty
\end{align*}
$$

Substituting for x_{2} everywhere (except its own constraint), we have

$$
\begin{align*}
& {[\max] z=0,42\left(15-x_{4}+1,5 x_{5}\right) \quad-0,56 x_{5}+61,6} \\
& +2\left(15-x_{4}+1,5 x_{5}\right)+x_{3}-x_{5}=130 \\
& x_{2} \quad+x_{4}-1,5 x_{5}=15 \\
& x_{1} \\
& +x_{5}=110 \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
110 \\
15 \\
100
\end{array}\right]} \\
& \left\{x_{1}\right\}+x_{5}=110
\end{align*}
$$

Now, x_{5} is the new entering variable. According to the constraints, it can be increased till:

B

$$
\begin{align*}
& 2 x_{5}=100 \quad x_{5}=50 \\
& -1,5 x_{5}=15 \rightarrow x_{5}=\ldots \\
& x_{5}=110 \quad x_{5}=110
\end{align*}
$$

C

$$
x_{5}=50-\frac{1}{2} x_{3}+x_{4}
$$

Substituting for x_{5} everywhere (except its own constraint), we have

$$
\left.\begin{array}{cccc}
{[\max] z=} & & -0,42 x_{4} & +0,07\left(50-\frac{1}{2} x_{3}+x_{4}\right) \\
& x_{3} & -x_{4} & +x_{5}
\end{array}\right)=\begin{array}{cc}
+67,9
\end{array}
$$

A

$$
\begin{gather*}
\left.\left\{x_{1}\right\} \begin{array}{ccc}
\left\{x_{2}\right\}+0,75 x_{3} & -0,5 x_{4} & = \\
-0,5 x_{3} & +x_{4} & = \\
\hline
\end{array}\right]=60 \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
60 \\
90 \\
50
\end{array}\right]}
\end{gather*}
$$

Now, no variable produces an increase. So, this is a maximum.

In sum:
A In the system of equations, find the identity matrix (immediate solution).
B search for an entering variable (or finish)
C consequently, find a leaving variable (if wrongly chosen, negative values will appear).

References:

- Zionts, Stanley, 1974, "Linear and integer programming", Prentice-Hall, Englewood Cliffs, NJ (USA), p 5. (IST Library.) ISBN 0-13-536763-8.
- See others on the course webpage (http://web.tecnico.ulisboa.pt/mcasquilho).

[^0]: ${ }^{1}$ A, B, C identify the iteration, as summarized below.
 ${ }^{2}$ Iterative: involving repetition; relating to iteration. Iterate (from Latin iterare), to say or do again (and again). Not to be confused with interactive.

