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This has (always) an obvious, sure solution.  Let 

 0, 21 =xx  {3}

Then 
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Is this optimal ?  How to improve ? 

There does not appear (Dantzig) to be a systematic way of setting all the 
nonbasic variables simultaneously to optimal values —hence, an iterative2 method. 

Choose the variable that increases the objective function most per unit (this 
choice is arbitrary), in the example, x1, because its coefficient (0,56) is the largest. 

According to the constraints, x1 can be increased till: 
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The third equation (why ?) in {2} leads to x1 = 110 and x5 = 0.  The variable x1 will be 
the entering variable and x5 the leaving variable: 

                                                 
1  A, B, C identify the iteration, as summarized below. 
2 Iterative:  involving repetition;  relating to iteration.  Iterate (from Latin iterare), to say or do again 

(and again).  Not to be confused with interactive. 
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C  51 110 xx −=  {7}

Substituting for x1 everywhere (except in its own constraint), we have 
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which is of course equivalent to Eq. {2}. 
We now have a new (equivalent) LP problem, to be treated as the original 

was.  The process can continue iteratively. 
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From Eq. {2} or Eq. {9}, respectively, 
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Now, x2 is the new entering variable.  According to the constraints, it can be 
increased till: 
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C  542 5,115 xxx +−=  {14}
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Substituting for x2 everywhere (except its own constraint), we have 
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Now, x5 is the new entering variable.  According to the constraints, it can be 
increased till: 

B  
110

155,1

1002

5

5

5

=
=−

=

x

x

x

    →    

110

50

5

5

5

=
=
=

x

x

x

…  {18}

C  435 2

1
50 xxx +−=  {19}

Substituting for x5 everywhere (except its own constraint), we have 
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Now, no variable produces an increase.  So, this is a maximum. 
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In sum: 

A In the system of equations, find the identity matrix (immediate solution). 
B search for an entering variable (or finish) 
C consequently, find a leaving variable (if wrongly chosen, negative values will 

appear). 
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