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Fluorescence correlation spectroscopy (FCS) has been increasingly used to study the binding of fluorescently-
labeled peptides and proteins to phospholipid vesicles. In this work, we present a new method to analyze
partition data obtained by this technique based on the assumption that the number of fluorescently-labeled
protein molecules bound per liposome follows a Poisson distribution. To not overestimate the recovered
partition coefficients, we first show that the variation in liposome brightness caused by this statistical
distribution must be considered explicitly in data analysis when the parameter used to establish the partition
curves is the fractional instead of the absolute amplitudes associated with the slowest diffusing particles in the
system (lipid vesicles), a choice frequently made in FCS partition studies. We further extend the theoretical
model describing the membrane partition of a fluorescently-labeled protein by considering the presence of a
trace amount of free fluorescent dye (non-binding component) in the system.We show that this situation can
account for an apparent maximal binding level lower than 100% in the experimental partitioning curves
obtained for Alexa 488 fluorescently-labeled lysozyme and liposomes prepared with variable anionic
phospholipid content. The extreme sensitivity of the FCS technique allowed uncoupling lysozyme partition
from the protein-induced liposome aggregation, confirming that lysozyme binding to negatively charged
liposomes is dominantly driven by electrostatic interactions.
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1. Introduction

Lipid–protein interactions are required to maintain cell functions and
viability and are involved in awide range of cellular processes, such as cell
signaling events [1,2]. The reversible recruitment of cytosolic proteins to
the membranes through the establishment of electrostatic interactions
with acidic phospholipids, and particularly with specific phosphoinosi-
tides, is a commonmechanismto theseprocesses [3,4]. On theotherhand,
several in vitro studies have shown that the surface of negatively-charged
lipid membranes can induce the pathological self-assembly of numerous
amyloidogenic and non-amyloidogenic peptides and proteins, resulting
in amyloid fiber formation [5–8]. The potentially high concentration of
peptides/proteins (surface crowding) reached at the membrane-surface
due to electrostatically-driven peptide/protein membrane interactions,
combined with the low dimensionality of the interface, are expected to
enhance the contact probability between partially unfolded peptides/
proteins, which may lead to faster clustering, and amyloid-like fiber
formation [5,6]. Quantitative evaluation of peptide/protein binding to
liposomes through thedeterminationof theirpartition coefficients should
therefore be the first key step in the elucidation of the role of lipid
membranes in their fibrillation mechanism. In fact, these equilibrium
constants allow the calculation of protein interfacial coverage of the lipid
vesicles, often the critical parameter controlling the peptide/protein
membrane binding mode (peripheral versus partial insertion) [9] and its
conformational/oligomerization state [8].

Among the wide variety of spectroscopic techniques that have been
employed in the determination of peptide/protein partition coefficients
[10], fluorescence correlation spectroscopy (FCS) has recently emerged
has an important alternative [11,12]. FCS is a technique with single
molecule sensitivity that analyzesfluctuations influorescence over time
within a small observation volume. These fluctuations arise from a
change in the average number of independently moving fluorescent
particles in the confocal observation volume and from transitions to a
dark state [13,14]. Autocorrelation (AC) analysis of FCS fluctuation data
can be used to measure concentrations, translational diffusion proper-
ties, chemical reactions and binding processes undergone by the
individual fluorescent molecules present in the sample [15,16].

http://dx.doi.org/10.1016/j.bbamem.2011.06.001
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In this work, we describe the application of FCS to membrane
partition studies by investigating the interaction between lysozyme
labeled with Alexa Fluor 488 (Alexa488-lysozyme) and liposomes
preparedwith variable anionic phospholipid content as amodel system.
Lysozyme is a stable, highly basic small globular protein with a well-
known 3D structure [17]. In addition to its known catalytic action, the
lipid-bindingproprieties of lysozymehavealsobeen recently implicated
in its bactericidal role [18]. Furthermore, phosphatidylserine-containing
membranes have also been proposed to be able to induce the formation
of “amyloid-like” fibrils by different non-amyloidogenic proteins,
including lysozyme among others [19–21].

In this study,we highlight some potential pitfalls in data analysis that
can lead toanoverestimationof protein's partition coefficientsmeasured
using single color FCS. The observable species that are distinguishable in
a FCS partition study, characterized by very different diffusion co-
efficients, are only two: the free fluorescently-labeled protein and the
lipid vesicles with one or more bound conjugated proteins. In a
multicomponent system the measured AC function is a weighted sum
of the AC functions of each component, with amplitudes proportional to
the square of themolecular brightness of the diffusing particles detected
[22]. Taking this consideration into account, we will show first the need
to consider explicitly the statistical (Poissonian) distribution of
conjugated proteins bound per liposome when the experimental AC
curves are analyzed using a fitting function with fractional instead of
absolute amplitudes, an aspect that is largely overlooked in the
literature. Secondly, we will illustrate how the presence of a trace
amount of free fluorescent dye in the system (non-binding component)
can produce anapparentmaximumbinding level lower than 100% in the
experimental partitioning curves and, consequently, affect the recovered
protein partition coefficients. The extreme sensitivity of the FCS
technique allowed lysozyme partition measurements to be uncoupled
from the potential interfering lysozyme-induced liposome aggregation,
confirming that lysozyme binding to negatively charged liposomes is
dominantly driven by electrostatic interactions.

2. Materials and methods

2.1. Materials

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-
palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS) were
obtained from Avanti Polar Lipids (Alabaster, AL). Lysozyme (EC
3.2.1.17) from chicken egg white was purchased from Fluka
Biochemika (Buchs, Switzerland). Alexa Fluor 488 SE (carboxylic
acid, succinimidyl ester, mixed isomers, dilithium salt) (Alexa 488), 2-
(4,4-difluoro-5methyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoyl)-
1-hexadecanoyl-sn-glycero-3-phosphocholine (BODIPY-PC) and rho-
damine 110 were obtained fromMolecular Probes, Invitrogen (Eugene,
OR). Distilled water (N18 MΩ/cm) was produced using a Millipore
(Billerica, MA) system and used throughout the work.

2.2. Fluorescent labeling of lysozyme

Lysozyme was covalently labeled with Alexa 488 succinimidyl
ester dye on the amine groups as described (using a 2-fold molar
excess of the dye relatively to lysozyme at pH 8.3) [23]. Alexa488-
lysozyme was separated from unreacted free probe by gel filtration
through a Sephadex G-25 gel filtration column (30.5×1.6 cm)
equilibrated in 20 mM Hepes-KOH, 0.1 mM EDTA, pH 7.4 buffer. A
dye-to-protein molar ratio, D/P, of 0.67 was estimated spectrophoto-
metrically using the extinction coefficient of the dye provided by the
supplier [24] and that of lysozyme in the UV [25]. Other labeling
conditions were also explored in this work, namely using an
equimolar dye-to-protein ratio in the reaction mixture, or lowering
its pH to 7.5. In these cases, the final D/P obtained was 0.21 and 0.50,
respectively.
2.3. Liposome preparation

Large unilamellar vesicles (LUV, ~100 nm diameter) containing POPC
mixtureswith 10, 20, 30 or 50 mol% POPSwere prepared by the standard
extrusion technique [26] using 20 mMHepes-KOH, 0.1 mMEDTA, pH 7.4
buffer asdescribedelsewhere [23]. Lipidvesicleswereusuallyusedwithin
2 days of preparation but they were found to be structurally stable for at
least 5 days when stored at 4 °C. Fluorescent lipid vesicles were prepared
by the addition of a small amount of BODIPY-PC to the phospholipid
mixture (1:10 000 labeled-phospholipid/total lipid molar ratio).

2.4. Alexa 488 (free dye) binding assays to lysozyme

Alexa 488 (free dye) titration was performed by adding increasing
concentrations of lysozyme to a fixed amount of free dye (0.1 μM)
after its reaction with hydroxylamine. After an incubation period of
30 min, the steady-state fluorescence intensity and anisotropy of the
samples were measured on a SLM-AMINCO 8100 spectrofluorometer
(Rochester, NY) using quartz cuvettes of 5×5 mm path length. The
steady-state anisotropy, brN, defined by:

brN =
IVV−GIVH
IVV+ 2GIVH

ð1Þ

was obtained by measuring the vertically (parallel) and horizontally
(perpendicular) polarized components of the fluorescence emission
with the excitation polarized vertically. The G factor (G= IHV/ IHH)
corrects for bias in the transmissivity between vertically and
horizontally polarized components of the emission introduced by
the detection system. Samples were excited at 480 nm, and the
polarized emission was detected at 512 nm, both with a bandwidth of
8 nm. Background intensities were always taken into account and
subtracted from the measured sample intensities.

Assuming a 1:1 stoichiometry, and that the protein is present in
large excess over the ligand, Eq. (2) was fitted to the experimental
data of fluorescence intensity, I, versus total protein concentration,
[P]t, by non-linear least squares regression to determine the protein–
ligand dissociation constant, Kd:

I = If−
ΔImax· P½ �t
Kd+ P½ �t

ð2Þ

where If and Ib are the fluorescence intensities of the free and bound
ligand, respectively, and ΔImax= If− Ib. The fluorescence anisotropy
binding curve of Alexa 488 to lysozymewas also used to determine Kd

by fitting Eq. (3) to the experimental data of brN versus [P]t:

b rN =
F·brNf · Kd + P½ �t

� �
+ b rNb−F·brNfð Þ· P½ �t

F· Kd+ P½ �t
� �

+ 1−Fð Þ· P½ �t
ð3Þ

where brNf and brNb are the steady-state fluorescence anisotropies of
the free ligand and ligand–protein complex, respectively, and F is the
fluorescence quenching factor of the Alexa 488 dye after its non-
covalent binding to lysozyme (F= If / Ib).

2.5. Fluorescence correlation spectroscopy

2.5.1. FCS instrumentation
FCSmeasurements were carried out on a FCS setup based on a dual

channel ISS Alba fluorescence correlation detector with avalanche
photodiodes connected to a Leica SP5 TCS confocal inverted micro-
scope (Leica Microsystems, Wetzlar, Germany). The 488-nm line
provided by an Argon laser was focused into the sample by an
apochromatic water immersion objective (63×, NA 1.2; Zeiss, Jena,
Germany). Theemissionwasdetected confocally after passing througha
500–550 band-pass filter. A 111.44 μm diameter pinhole in the image
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plane blocked out-of-focus signals. Partition studies were made using a
constant concentration of Alexa488-conjugated lysozyme and by
varying the total lipid concentration in solution. Each measurement
consisted of 10 AC curves of 20 s each, acquired with a sampling
frequency of 200 or 500 kHz. FCSmeasurements were carried out using
8-well chamber slides (Ibidi, Martinsried, Germany). To prevent
nonspecific adsorption of Alexa488-lysozyme, the chamber wells
were precoated with a 10% bovine serum albumin (BSA) solution and
the samples were loaded after extensive rinsing with buffer. The
fluorescence was recorded from the confocal volume located ~200 μm
above the top surface of the cover slide. The focus volume (0.21 fL) was
determined by calibration with 5 and 10 nM rhodamine 110 in buffer
solution measured under the same illumination conditions as the
samples and considering DRhodamine 110=440 μm2 s−1 [27].

2.5.2. Analysis of the experimental AC curves
Data analysis of the experimental AC curves was performed using

the ISS Vista software. This program uses a Marquardt–Levenberg
nonlinear least-squares fitting routine and the goodness of the fittings
can be judged by the recovered χ2 and random distribution of the
weighted residuals.

The AC function for single fluorescent particles is given by [14]:

G τð Þ = GT τð Þ·GD τð Þ ð4Þ

with

GD τð Þ = 1
N
· 1+

τ
τD

� �−1
· 1+

τ
S2τD

� �−1=2
ð5:AÞ

and

GT τð Þ = 1+
T

1−T
· exp − τ

τT

� �
: ð5:BÞ

GD(τ) and GT(τ) are the parts of the correlation function for
translational diffusion and triplet-sate formation, respectively. N is the
average number of fluorescent molecules in the laser focus volume, T
andτT are the fraction offluorophores in the triplet state and their triplet
lifetime, respectively, and τD is the translational diffusion time of the
particles. This correlation time is the characteristic average diffusional
transit time duringwhich amolecule resides in the observation volume
with the axial (ωz) to lateral (ωxy) dimension ratio S (=ωz /ωxy) and
equals τD=ωxy

2 /4D, where D is the diffusion coefficient. For one-
component samples (model M1), Eq. (4) was globally fitted to the
experimental data by linking the triplet and diffusing times (τT and τD,
respectively) across all the AC curves obtained for each sample. In the
analysis, a three-dimensional Gaussian model was selected for
describing the laser point spread function and the structural parameter
S obtained in the calibration procedure using 5 and 10 nM rhodamine
110 in buffer solution (S=5.9±0.5) was subsequently fixed for the
other samples measured in the same chamber slide.

In the partition studies, Eq. (6) was used to fit the experimental AC
curves, either by considering a two-component (model M2: free
Alexa488-conjugated lysozyme (i=1=P) and lipid vesicles with one
or more bound fluorescently-labeled proteins (i=2=ves)) or a
three-component system (model M3: free Alexa Fluor 488 dye
present in solution (i=1=Dye), free Alexa488-conjugated lysozyme
(i=2=P) and lipid vesicles with at least one fluorescently-labeled
protein bound (i=3=ves)):

G τð Þ = 1
bNN

· 1 +
T1

1−T1
· exp − τ

τT1

 ! !
· 1+

T2
1−T2

· exp − τ
τT2

 ! !

× ∑
3

i=1
fi 1 +

τ
τDi

 !−1

⋅ 1 +
τ

S2τDi

 !−1 =2

: ð6Þ
In this equation, Ti is the fraction of fluorescent component i in the
triplet state, τTi

and τDi
are their triplet and diffusion lifetimes,

respectively, and fi is its fractional contribution to the AC function
(with f2=1− f1 and f3=1− f1− f2 for the two- and three component
models, respectively). To reduce the strong statistical correlations
among the fit parameters, the FCS data was globally analyzed by
linking the diffusing time associated with the slowest component
(liposomes with bound fluorescently-labeled proteins) between all
the AC curves obtained for each sample. Additional parameters,
such as the triplet relaxation and diffusion times associated with
the free dye and Alexa488-conjugated protein were fixed at their
known values measured previously in calibration (one-component)
measurements.

2.5.3. Determination of membrane partition coefficients from FCS binding
data

To take into account the Poisson distribution of the fluorescently-
labeled lysozyme among the lipid vesicles in the determination of the
partition coefficients (see the Theory section), the experimental
partition curves (fractional amplitudes as a function of the accessible
lipid concentration) were fitted by a nonlinear least-squares proce-
dure using the Solver Add-in of the Microsoft Excel spreadsheet
program (Microsoft, Redmond, WA). The precision of the fitted
parameters was estimated using the macros Solver Statistics. The
calculations performed in the fitting procedure always considered a
three-component system (model M3: free Alexa Fluor 488 dye, free
Alexa488-labeled lysozyme and liposomes containing at least one
fluorescently-labeled protein bound). Values for the partition coeffi-
cient and concentration of free dye present in each sample, Kp and
[Dye], respectively, were initially guessed and the average number of
membrane-bound proteins per lipid vesicle, bkN, was calculated for
each lipid concentration using Eqs. (9) and (13). The average number
of lipid molecules in a liposome, μ, was calculated to be 100,000
considering that each phospholipid head group occupies an average
surface area of 0.63 nm2 [28] and that the liposomeswere prepared by
extrusion using filters with 100 nm pores. The probabilities of finding
a lipid vesicle with k proteins (k=1, 2,…) were then computed using
Eq. (10) and, finally, fvesM3 was obtained using Eq. (20) by assuming that
the ratio between the brightness of the free dye and the Alexa488-
covalently labeled lysozyme, q, was 1.9. These calculated fractional
amplitudes were then compared to the experimental values, and the
sum of their weighted square deviations was minimized using Solver
in an iterative procedure by changing the initially guessed Kp and
[Dye] values. The experimental fractional amplitudes used in the
fitting procedure were either f2 or f3, i.e., the fractional amplitudes
associated with the slowest diffusion component (liposomes with
fluorescently-labeled proteins bound) obtained from a two- or three-
component analysis of the experimental AC curves using Eq. (6),
respectively, as described in the previous section. The different
partition curves obtained for the same protein batch using variable
mol% of POPS in the preparation of the liposomes were globally
analyzed by linking the value of [Dye] between all the curves used in
the fitting procedure.

3. Theory

The AC function for multiple independent fluorescent species is a
linear combination of the autocorrelations curves for each species,
weighted by the square of their respective molecular brightness's, Bi,
[22]:

GD τð Þ = ∑
n

i=1
B2
i N

2
i GDi τð Þ

�
∑
n

i=1
BiNi

� �2
ð7Þ

where Ni and GDi(τ) are the mean particle number and the trans-
lational diffusion part of the AC curve for the ith species (Eq. (4)),
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respectively. The brightness of each species depends on its absorption
cross-section, fluorescence quantum yield and detection efficiency in
the confocal microscope. Considering qi the ratio of the brightness of
the ith component to that of a given component chosen as a reference
and GDi(τ)=1/Ni ⋅gi(τ), we obtain:

GD τð Þ = 1
Nav

· ∑
n

i=1
Ai·gi τð Þ ð8Þ

with Nav=∑
n

i=1
qiNi and Ai = q2i Ni

�
∑
n

i=1
qiNi

� �
.

Usually, in a partition experiment, the only two observable species
in a FCS measurement are the fast-diffusing free fluorescently-labeled
protein (index P) and the much larger, slower moving lipid vesicles
with one or more bound fluorescently-labeled proteins (index ves)
(two-component model, M2). Assuming that (i) protein binding to
the lipid vesicles is non-cooperative, the mole fraction of the
fluorescently-conjugated protein bound through hydrophobic/elec-
trostatic interactions to the liposomes, xm, is given by:

xm =
Kp· L½ �ac

W½ � + Kp· L½ �ac
ð9Þ

where Kp is the mole fraction partitioning coefficient [29], [L]ac is the
accessible lipid concentration (half of the total lipid concentration
used in each sample) and [W] is the water concentration. Further-
more, considering that (ii) the protein distributes randomly among
the liposomes according to a Poisson distribution [30], the probability
of finding a lipid vesicle with k bound proteins is given by:

P k;bkNð Þ = bkNk e−bk N

k!
ð10Þ

where bkN is the average number of membrane-bound proteins per
lipid vesicle.

The probability of finding liposomes without a membrane-bound
protein is then,

P 0;bkNð Þ = e−bkN ð11Þ

and the overall number of lipid vesicles with at least one protein
bound, Nves

P , is given by:

NP
ves = Nt

ves 1−P 0;bkNð Þð Þ ≅ Nt
ves ∑

l

k=1

bkNk e−bkN

k!
ð12Þ

where Nves
t and Nves

0 are the total number of lipid vesicles present in
solution and protein-free liposomes, respectively (Nves

t =Nves
0 +Nves

P ).
The Poisson distribution was approximated by a finite sumwith a cut-
off l set to 20 to guarantee that under the experimental conditions

used ∑
l

k=1
P k;bkNð Þ ≅ 1. Further assuming that (iii) the liposome

population is monodisperse and its morphology is not affected by its
protein occupancy number, bkN can be calculated from:

bkN =
xm P½ �t μ

L½ �t
ð13Þ

where [P]t and [L]t are the total protein and lipid concentrations
present in each sample, respectively, and μ is the average number of
lipid molecules in a liposome. Finally, (iv) if the protein exchange
among the liposomes is very slow during their diffusion time through
the confocal volume (frozen exchange regime [31]), then a two-
species model can be applied to describe the experimental AC curves
obtained in a partition experiment.

According to Eq. (8), and further assuming that (v) the brightness
of the conjugated protein does not change upon its binding to the
liposomes, the absolute amplitudes of each diffusing particle are given
by Eqs. (14.A) and (14.B), respectively:

AM2
P =

Nf
P

Nf
P + ∑

l

k=1
k⋅P k;bkNð Þ

 !
·Nt

ves

ð14:AÞ

and

AM2
ves =

∑
l

k=1
k2⋅P k;bkNð Þ

 !
·Nt

ves

Nf
P+ ∑

l

k=1
k⋅P k;bkNð Þ

 !
·Nt

ves

ð14:BÞ

where NP
f is the mean number of conjugated proteins that remain free

in solution. Eq. (14.A) shows that the amplitude of the AC function
associatedwith the fast diffusing species equals themole fraction of free
protein, xf, and therefore xm=1−AP

M2. However, using Eqs. (14.A)
and (14.B), it can be deduced that:

AM2
ves = B·xm ð15Þ

with B= ∑
l

k=1
k2⋅P k;bkNð Þ

�
∑
l

k=1
k⋅P k;bkNð Þ. The presence of the k2

factor in the numerator of this parameter makes AvesM2 equivalent to xm
only if an infinite diluted regime is achieved experimentally, i.e. when
each vesicle contains no more than a single bound protein, as already
discussedbyRusu et al. [11] andPosokhov et al. [12]. This stems fromthe
fact that a lipid vesiclewith twofluorescently-labeled proteins is exactly
twice as bright as a liposomewith a single protein, and it will contribute
four times as much to the two-component AC function. In other words,
as the total lipid concentration in solution is increased during a partition
experiment, the B factor decreases, progressively approaching its
limiting value of 1 at infinite dilution.

The fitting functions most commonly available in the software
programs used in the analysis of the experimental AC curvesmake use
of fractional, fi, instead of absolute amplitudes, Ai, as weighting
factors:

GD τð Þ = 1
bNN

· ∑
n

i=1
fi·gi τð Þ ð16Þ

with ∑
n

i=1
fi = 1.

In a partition experiment:

1
bNN = Nf

P + ∑
l

k=1
k2·P k;bkNð Þ

Nt
P

� �2 ð17Þ

where NP
t is the total number of protein molecules present in solution.

According to Eqs. (14.A) and (14.B), the following expressions
can be deduced for the fractional amplitudes associated with each
species:

fM2
P

=
Nf
P

Nf
P + ∑

l

k=1
k2·P k;bkNð Þ

 !
·Nt

ves

ð18:AÞ
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and

fM2
ves =

∑
l

k=1
k2·P k; bkNð Þ

 !
·Nt

ves

Nf
P + ∑

l

k=1
k2·P k;bkNð Þ

 !
·Nt

ves

ð18:BÞ

4. Results

4.1. Simulation of the outcome of a FCS partitioning
experiment — two-component model

Before investigating Alexa488-conjugated lysozyme binding to
liposomes prepared with a variable mole fraction of POPS, we tested
the influence of the type of fitting function used in the analysis of the
experimental AC curves on the recovered partition coefficients. Taking
into account the set of assumptions described in the Theory section,
and considering that the extruded lipid vesicles have on average
100,000 phospholipid molecules per liposome, we simulated the
outcome of an FCS partition experiment for different input Kp values
by calculating the variation of the absolute, Ai

M2, and fractional, fiM2,
amplitudes (associatedwith the fast and slow diffusing species i) with
the accessible lipid concentration present in each sample. The results
obtained in these simulations for 10 nM of a fluorescently-labeled
protein having a partition coefficient of 1×106 are exemplified in
Fig. 1C. This figure shows that the values calculated for 1−AP

M2 and
fves
M2 differ considerably when the lipid concentrations used in the
simulated partition study are low ([L]ac≤0.5 mM). For higher lipid
10
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Fig. 1. Simulated protein partition curves asmeasured by FCS for (C) a two- and (D) a three-com
proteins per lipid vesicle, bkN ( ), (B) the Poisson probability of finding liposomes with k pro
(CandD) themole fractionofmembrane-boundprotein, xm( ), 1−AP

M2 ( ) and fves ( ) on the
data of 1−AP

M2 versus [L]ac (Kp
fitted=1×106); (D) The solid blue line is just a guide to the eye. (C

(D) fvesM3 versus [L]ac, respectively, yielding the results listed inTable1. The red lines are the bestfit
Poissondistribution of 10 nMfluorescently-labeledprotein among the liposomes (μ=100,000)
the same Kp as the input value used in the simulation (Kp

fitted=1×106) (see the text and Table
concentrations, these two parameters progressively converged, until
their values became almost super-imposable for [L]ac≥1 mM. In this
situation, more than 95% of the fluorescently-labeled protein was
bound to the liposomes and the “infinite dilution regime”, as
described by Posokhov and co-workers [12], was attained. The excess
of lipid in solution caused the average number of membrane-bound
proteins per lipid vesicle, bkN, to be much lower than 1 (Fig. 1A) and
the B factor converged asymptotically to 1. On the contrary, when the
total lipid concentration used in the simulated partition assays was
less than 1 mM, the probability of finding multiple proteins simul-
taneously bound to a single liposome increased rapidly (Fig. 1B),
although most of the protein present in each sample remained free in
solution. These liposomes are brighter than the single-occupied ones
and therefore strongly contribute to the experimentally measured AC
curve (Eq. (18.B)), being responsible for the difference registered
between 1−AP

M2 and fves
M2 at these low lipid concentrations. As

expected, when the resulting partition curve of 1−AP
M2 versus [L]ac

was fitted to a mole fraction partitioning equilibrium described by
Eq. (9), the correct input partition coefficient used in the simulation
was recovered (Fig. 1C), confirming that xm=1−AP

M2. However, the
partition curve obtained by representing fves

M2 as a function of the
accessible lipid concentration was no longer hyperbolic and a Kp value
of 8.5×106, almost one order of magnitude higher than the input
value used in the simulation (Kp

input= 1×106), was obtained from
forcing the fitting of Eq. (9) to the simulated data (Fig. 1C and Table 1).
These results clearly show that the common assumption, often
considered in the analysis of FCS data obtained in a lipid–protein
partition experiment, that the fractional amplitudes of the AC curves
associated with the slow diffusing species (liposomes) are equivalent
to the membrane-bound protein mole fraction is not valid, unless the
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Table 1
Analysis of the FCS protein partition curves obtained in the simulation of a two- and
three-component system according to a simple mole-fraction partitioning equilibrium
(see the text for more details).

Two-component
system

Three-component system

Kp
input Kp

fitted a χ2 Kp
fitted b χ2 Kp

fitted c xm
max χ2

5×104 6.4×104 4.4×10−5 4.7×104 2.1×10−5 7.5×104 0.78 1.2×10−6

1×105 1.5×105 2.6×10−4 1.0×105 9.8×10−4 1.9×105 0.78 8.9×10−6

5×105 2.1×106 1.2×10−3 1.5×106 6.5×10−3 2.8×106 0.83 9.8×10−7

1×106 8.5×106 1.1×10−3 6.4×106 6.9×10−3 1.0×107 0.86 6.6×10−5

a Eq. (9) was used to fit the simulated data of fvesM2 versus [L]ac.
b Eq. (9) was used to fit the simulated data of fvesM3 versus [L]ac.
c Eq. (21) was used to fit the simulated data of fvesM3 versus [L]ac.
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Fig. 2. FCS measurements of Alexa488-conjugated lysozyme binding to liposomes
prepared with variable anionic phospholipid content. (A) Normalized AC curves of
Alexa488-conjugated lysozyme (10 nM; D/P=0.67) in the absence ( ) and in the
presence of 0.42 ( ) and 1.25 mM ( ) POPC:POPS 80:20 LUVs and of BODIPY-PC-labeled
liposomes prepared with the same lipidic composition ( ). The lines through the data
represent the bestfit of Eqs. (4) and (6) to one- and two-component samples, respectively.
(B) The experimental fractional amplitudes f2 obtained for POPC liposomes containing 10
( ), 20 ( ), 30 ( ) and 50 ( )mol% of POPS are plotted as a function of the accessible lipid
concentration. The solid curves are the best fit obtained in a global analysis of the binding
data (10, 20 and 30 mol% POPS) according to a three-component model (μ=100,000 and
q=1.9 were fixed in the analysis): the fitting parameters were 0.4 nM for the
concentration of free Alexa 488 dye and Kp=(4.5±0.7)×104, Kp=(1.9±0.1)×105 and
Kp=(7.0±0.4)×105 for 10, 20and30 mol%POPS-containing liposomes, respectively (see
the text for more details).
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FCS measurements are always carried out under the “infinite dilution
regime”. In order to correctly use the experimental fractional
amplitudes, f2, in the determination of Kp, the Poissonian distribution
of the fluorescently-labeled protein among the lipid vesicles must be
considered explicitly in the fitting procedure (see Section 2.5.3). This
allows to account for the fact that when the data points are collected
at low lipid concentrations the particles detected with the slow
diffusing time have a variable brightness, depending on the number of
proteins bound per vesicle, even when the protein binding to the
liposomes does not change its fluorescence quantum yield, as it is
shown in Fig. 1C. This effect is particularly important for peptides or
proteins that establish strong electrostatic interactions with anionic
lipid membranes, presenting high Kp values (Table 1).

4.2. Using FCS to monitor Alexa488-lysozyme binding to liposomes

Fig. 2A shows the normalized AC curves obtained for freely
diffusing lysozyme conjugated with Alexa 488 (D/P=0.67) and for
POPC:POPS 80:20 liposomes containing 0.01 mol% of BODIPY-PC.
Eq. (4) (one–component model) was used to fit the AC curves
measured with the fluorescently-labeled protein, and a diffusion time
of 93±9 μs (n=55) was obtained. The experimental AC functions
obtained for the POPC lipid vesicles prepared with 20 mol% of POPS
showed that the extruded liposomes were monodisperse on FCS
grounds presenting an average diffusion time of τves=1.5±0.1 ms
(n=5). Using the Stokes–Einstein relationship, an average hydrody-
namic diameter of 81 nm can be calculated for these lipid vesicles. We
measured small variations in τves depending upon the composition of
the vesicles but overall their hydrodynamic diameter was within the
range expected for liposomes prepared by extrusion using 100 nm
pores.

The curves in Fig. 2A clearly show that the AC curve of 10 nM
Alexa488-labeled lysozyme decays on a longer time scale upon
increasing the total lipid concentration in solution, causing an
increase of the diffusion time as the conjugated protein molecules
stay longer in the observation volume. A two-component model
(model M2) was required to fit these AC curves (Fig. S1A published as
Supporting Information). In the fitting procedure, the diffusion time of
the first component, τ1, was fixed to the value previously determined
for the free fluorescently conjugated protein, whereas the diffusion
time of the second component, τ2, was linked across a data set. For the
experiment presented in Fig. 2B, this diffusion time was found to be
τ2=(1.4±0.1) ms (n=14) and can thus be assigned to the slow
diffusing liposomes with fluorescent protein molecules bound as
expected. There was no systematic effect of the bound protein mass
on the diffusion time of the liposomes, τ2, which indicates that the size
of the lipid vesicles was not significantly affected as more fluores-
cently-labeled proteins were bound to the vesicles.

The binding of Alexa488-labeled lysozyme to POPC LUVs prepared
with a variable mol% of POPS was then examined quantitatively by FCS.
In Fig. 2B, the fractional amplitude f2 associated with POPC liposomes
preparedwith10, 20 and30 mol%of anionic POPS is plotted as a function
of the accessible lipid concentration in the samples. Surprisingly, this
parameter seems to reach a plateau valueof f2max ~0.80b1, that persisted
even when the acidic phospholipid content of the liposomes was
increased to 50 mol% of POPS ( f2=0.79±0.05 for [L]ac=2 mM). It
should be noted that in this last case it was not possible to explore a
wider range of phospholipid concentrations in the partitioning assay
because of the Alexa488-lysozyme-induced liposome aggregation,
which affects the form of the AC curves, as it is exemplified in Fig. S2.
The plateau detected suggests that apparently as much as ~20% of a
fluorescent species remains unbound in solution at saturating lipid
concentrations. We considered three different explanations for this
result, namely that (i) the labeling method inactivated lysozyme by
inducing a conformational change of the protein, (ii) the chemical
conjugation of the protein altered its binding behavior by changing its
net charge, and finally (iii) the presence of vestigial free fluorophore in
solution was responsible for this effect. To test for the first hypothesis,
circular dichroism(CD)wasused to characterize the secondary structure
of lysozyme and ensure that the protein backbone was not drastically
disturbed by covalently-binding of Alexa 488 to the protein. The far-UV
CD spectra obtained for theunlabeled and labeled lysozymeswere super
imposable (Fig. S3), confirming that the labeled protein was always
properly folded.We next considered the possibility that the alteration of
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lysozyme net charge due to non-specific labeling of the protein surface-
exposed amino groups by the succinimidyl ester of Alexa 488, might be
changing its affinity toward the negatively charged liposomes. Theoret-
ically, 7 amino groups on lysozyme, including the ε-amino group in
lysine residues and the α-amino group at the N-terminus, might be
reactive but several studies have already shown that the major
modification sites are the more surface-exposed Lys-97 and Lys-33,
followed by the amino group on the N-terminus and Lys-1 [32–34]. For
low average labeling ratios it is reasonable to assume a Poisson
distribution for the number of fluorophores per molecule, and therefore
the probabilities of obtaining unmodified, singly, doubly and triply-
labeled lysozyme molecules are P(0)=0.51, P(1)=0.34 (71% of the
labeled species), P(2)=0.11 (24%of the labeled species) and P(3)=0.03
(5% of the labeled species), respectively, for a labeling efficiency of ~0.67
fluorophores/protein (Table 2). At pH=7.4, the unmodified lysozyme
has a net charge of 8.0 [35], which should decrease to +5, +2 and −1
upon the progressive conjugation of the enzyme with the fluorophore
Alexa 488 [36]. Although the triply-labeled protein is present only in
trace amounts in solution, its fractional contribution to the Alexa488-
lysozyme AC curve might reach 0.22 (Table 2), close to the non-binding
fraction detected in the partitioning experiments if it is further assumed
that no self-quenching occurs between the covalently-bound fluoro-
phores. To test for this correspondence, we explored different labeling
conditions of lysozymewith Alexa 488. Both lowering thepH from8.3 to
7.5 (to maximize the modification of the N-terminal group of the
enzyme) or the useof an equimolar insteadof 2:1 dye-to-protein ratio in
the reaction mixture (to try to reduce the final yield of the multiply-
labeled protein species formed) caused a decrease in the final D/P
obtained (from 0.67 to 0.50 and 0.21, respectively (Table 2)). However,
when the FCS measurements were repeated with these protein batches
the apparent maximal fractional amplitude, f2

max, obtained did not
register an increase equivalent to the expected change undergone by
f(3), the fractional amplitude associated with the triply-labeled
lysozyme (which was expected to decrease from 0.22 to 0.04 when D/
P changed from 0.67 to 0.21, Table 2). Therefore, we ruled out this
possibility as the dominant factor and considered alternatively that the
presence of some residual free Alexa dye in solutionwas responsible for
this effect. This third explanation is considered inmore detail in the next
section.

4.3. Alexa 488 (free dye) binds non-covalently to lysozyme

Since the purification of the labeled protein by gel filtration
chromatography under optimal chromatographic conditions seems to
have failed to remove the unconjugated label completely, we
considered that the anionic Alexa 488 dye could also be non-
Table 2
Poisson statistics for the number of fluorophores covalently-bound per lysozyme
molecule. Poisson probabilities of having lysozyme molecules labeled with 0, 1, 2 and 3
Alexa Fluor 488 fluorophores, P(i), normalized probabilities for the fluorescently-
labeled enzyme molecules only, Pn(i), and fractional amplitudes of the AC curve
associated with each fluorescently-labeled protein species, f(i), as a function of the final
average labeling molar ratio, D/P, of the sample.

Labeling
conditions

Poisson probabilities Normalized
probabilities

Fractional
amplitudesa

D/Pib pHc D/Pd P(0) P(1) P(2) P(3) Pn(1) Pn(2) Pn(3) f(1) f(2) f(3)

1:1 8.3 0.21 0.81 0.17 0.02 0.00 0.90 0.09 0.01 0.67 0.28 0.04
2:1 7.5 0.50 0.61 0.30 0.08 0.01 0.77 0.19 0.03 0.42 0.42 0.16
2:1 8.3 0.67 0.51 0.34 0.11 0.03 0.71 0.24 0.05 0.33 0.44 0.22

a The fractional amplitudes were calculated considering that the protein brightness
scales linearly with the number of fluorophores per molecule (i.e. no self-quenching
occurs).

b Dye-to-protein molar ratio used in the labeling reaction.
c pH used in the labeling reaction.
d Final dye-to-protein molar ratio of the sample determined spectrophotometrically.
covalently bound to the highly cationic lysozyme. This hypothesis
was tested by monitoring the binding of the free Alexa 488
fluorophore to lysozyme by steady-state fluorescence measurements.
Upon increasing the total lysozyme concentration in solution, the
fluorescence intensity of 0.1 μM free unconjugated dye was found to
progressively decrease (Fig. 3). Assuming the formation of a 1:1
complex between the enzyme and free dye, a Kd=(99±6) μM and a
quenching factor F=1.9 were obtained by nonlinear fitting of Eq. (2)
to the experimental data of I versus [P]t (Fig. 3). Concomitantly, the
steady-state fluorescence anisotropy of the fluorophore underwent an
approximately ten-fold increase, starting from brNf–0.012 for the free
fluorophore, revealing the progressive association of the dye to its
protein binding site (Fig. 3). The nonlinear fitting of Eq. (3) to the
experimental data of brN versus [P]t yielded an equilibrium dissoci-
ation constant Kd=(94±6) μM and brNb=0.140±0.003. Lysozyme
has already been reported to form a stoichiometric 1:1 complex with
the fluorescent dye eosin Y, a tetrabrominated derivative of
fluorescein [37,38]. Eosin binds in a hydrophobic pocket of lysozyme
distinct from its active site [37], with a Kd=4.5 μM at pH 5.3 [38]. The
muchweaker affinity of Alexa 488 relatively to eosin toward lysozyme
can be explained by its more hydrophilic character.

In conclusion, in addition to the covalently-tagged Alexa 488
fluorophore, lysozyme is also able to form a 1:1 non-covalent complex
with this probe. Prior to an FCS measurement, the fluorescently-labeled
lysozymewas diluted to amuch lower concentration, around 10–40 nM,
causing the dissociation of Alexa 488 fluorophore from the protein. The
anionic fluorophore remains free in solution and does not bind to the
negatively-charged liposomes due to the strong repulsive electrostatic
interactions between these two components at pH7.4 [39]. In fact, the re-
analysis of the AC curvesmeasured for each batch of Alexa488-lysozyme
using a two- instead of one-component model (Eq. (6)) slightly
improved the quality of the fits. Afterfixing the pre-determined diffusion
time associated with the free dye in each analysis, an average diffusion
time τ2=108±3 μs was obtained for the Alexa488-conjugated protein.
Considering DRhodamine 110=440 μm2 s−1 [27], DAlexa488-lysozyme=83±
7 μm2 s−1 was calculated, close to the experimental value of D=
109 μm2 s−1 measured for lysozyme [40]. More importantly, the
recovered average fractional amplitudes f1 associated with the diffusion
of free dye in solution presented a good agreement with the plateau
reached in each set of partitioning experiments carried out with the
different protein batches, corroborating the above conclusion (e.g.
f1=0.21±0.08 for Alexa488-conjugated lysozyme with a D/P=0.67).

Further evidence in favor of the third hypothesis was obtained from
anadditional set of experiments. A secondgelfiltration chromatography
using a high ionic strength buffer was carried out to further purify a
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Fig. 3. Alexa 488 (free dye) binds non-covalently to lysozyme. Dependence of the
steady-state fluorescence intensity, I ( ) and anisotropy, brN ( ) of 0.1 μM Alexa 488
with lysozyme concentration in solution, [P]t. The solid curves are the best fits of
Eqs. (2) and (3) to the data of I and brN versus [P]t, respectively.
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batch of Alexa488-lysozyme (D/P=0.45). The chromatogram and
fluorescence spectra presented in Fig. S4 confirm that the addition of
0.3 M NaCl to the buffer solution was able to induce the dissociation of
Alexa 488 dye (peak II) from the fluorescently-labeled protein (peak I).
After pooling and extensively dialyzing peak I against 20 mM Hepes-
KOH, 0.1 mM EDTA, pH 7.4 buffer, additional FCS measurements
were performed. In the presence of 4 mM POPC:POPS 80:20 LUVs,
fves
M2=(75±10)% wasmeasured for the non-purified batch of conjugat-
ed protein, in agreement with fves

M2=(73±3)% obtained earlier for
Alexa488-lysozyme (D/P=0.67) (Fig. 2B). When these measurements
were repeated using now the purified conjugated protein pool (F11+
F12), a higher value of fvesM2=(90±5)% was obtained (data not shown).
This result conclusively shows that the residual free Alexa 488 dye
present in the Alexa 488 fluorescently-labeled lysozyme samples was
responsible for an apparent maximal binding level lower than 100%
obtained earlier in the FCS partitioning curves.

4.4. Analysis of FCS partitioning curves in the presence of a non-binding
component

To evaluate how much the presence of a non-binding component
affects the protein partition curves measured by FCS, partitioning
curves were again simulated for 10 nM fluorescently-labeled protein
(Kp=1×106) but now in the presence of 0.5 nM free dye (three-
component model, M3). According to the master Eq. (7) for a
multicomponent system, and using the same set of assumptions as
before (see the Theory section), it can be derived that the absolute
amplitudes of each diffusing particle are given by Eqs. (19.A), (19.B)
and (19.C), respectively,

AM3
Dye =

q2⋅NDye

T
ð19:AÞ

AM3
P =

Nf
P

T
ð19:BÞ

AM3
ves =

∑
l

k=1
k2·P k;bkNð Þ

 !
·Nt

ves

T
ð19:CÞ

where T=q·NDye+Nf
P + ∑

l

k=1
k⋅P k; bkNð Þ

 !
·Nt

ves, NDye is the mean

number of free dye molecules in solution and q is the ratio of the
brightness of the free dye to that of the fluorescently-labeled protein.
Furthermore, the fractional amplitude associated with the slowest
diffusing species, fves

M3, of this three-component system can be
calculated using Eq. (20):

fM3
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·Nt
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Assuming that the free fluorophore is two-fold brighter than the
fluorescently-labeled protein (q=2), the calculated partition curve of
fves
M3 versus [L]ac was found to strongly deviate from the usual
hyperbolic behavior, leveling off to a limiting value of ~0.85, much
lower than 1, as expected (Fig. 1D). Accordingly a simple mole-
fraction partition model (Eq. (9)) gave a poor fit to the simulated data
(Kp=6.4×106; χ2=6.9×10−3 (Table 1)). The use of an empirical
modified equation that accounts for the partitioning curves not
reaching an asymptotic level of one [12]:

xm =
Kp· L½ �ac

W½ �+Kp· L½ �ac
·xmax

m ð21Þ
greatly improved the quality of the fit (Kp=1.0×107; xm
max=0.86;

χ2=6.6×10−5 (Table 1)). In Eq. (21), xmmax is the maximum fraction
of membrane-binding competent species present in each sample
(determined at lipid saturation). However, the Kp recovered was an
order of magnitude higher than the input value used in the simula-
tion, demonstrating that in this case proper analysis of the partition-
ing data must take into consideration a more complex, three-
component model (Fig. 1D). Therefore, the experimental binding
data obtained for each protein batch (f2 versus [L]ac for 10, 20 and
30 mol% POPS containing liposomes) was globally fitted using the
nonlinear least-squares procedure described in detail in Section 2.5.3.
This procedure takes into account the probabilistic distribution of the
membrane-binding species among the liposomes in addition to the
presence of a non-membrane-binding component in solution. It is
important to mention that although the simultaneous presence in
solution of three fluorescent species with different diffusion co-
efficients (free dye, free fluorescently-labeled protein and lipid
vesicles with at least one conjugated protein bound, respectively)
implies that the analysis of the experimental AC curves should have
been done using a three-component model (model M3— Eq. (6)), we
found that reliable partitioning data was still obtained when the
experimental AC curves were fitted using a simplifying two-
component equation (see the Supporting Information).

By implementing the data analysis strategy described above, the
partition coefficients of Alexa488-lysozyme were found to increase
exponentially with the mol% of POPS included in the POPC liposomes
(Fig. 4), showing that electrostatic interactions dominate this associa-
tion when a low ionic strength buffer is used. This exponential
relationship was essentially independent of the lysozyme labeling
ratio used (Fig. 4), supporting the view that the main non-binding
component was correctly identified as the free dye in solution and that
the labelingheterogeneity of theprotein does notmarkedly influence its
overall partitioning behavior. The concentrations of free Alexa 488 dye
found for eachprotein batchused in the FCSmeasurementswere0.3, 1.7
and0.4 nMfor aD/P=0.21, 0.50 and0.67, respectively (or 3.5%, 12%and
5.6% relatively to the concentration of fluorescently-labeled protein
present in each protein batch, respectively).

5. Discussion

5.1. Using FCS to measure partition coefficients

Rusu and co-workers [11] were the first authors to carry out a
systematic binding study of fluorescently labeled peptides to lipid
vesicles using FCS. This study validated the use of this technique by
confirming that the partition coefficients obtained from their FCS
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measurements were comparable to those determined using more
conventional techniques [11]. Since then, FCS has been increasingly
applied to the study of interfacial partition to phospholipid vesicles of
different peptide and proteins [12,39,41–51]. The pioneer work of Rusu
et al. [11] established the conditions necessary for a correct quantitative
analysis of the FCS binding data, namely fitting individual curves to a
two-component AC function and extracting the fraction of bound
peptide/protein by only using the absolute amplitudes of the free peptide
and the total number of peptides in solution. Nevertheless, this
recommendation has often been ignored in FCS partition studies. In
thiswork,we show thatwhen the function used in the fitting procedure
employs fractional instead of absolute amplitudes as weighting factors
(i.e., the fitting function most commonly available in the data analysis
software programs), the correct analysis of the experimental binding
data requires using a nonlinear iterative least-squares procedure that
takes into account the statistical (Poissonian) distribution of the
fluorescently-labeled protein among the ensemble of liposomes to not
overestimate the recovered protein partition coefficients. The applica-
tion of this method is expected to be particularly important for peptides
or proteins that present high Kp values due to the establishment of
strong Coloumbic interactions with anionic lipid membranes.

The FCS partition curves obtained in this study for the Alexa 488-
conjugated lysozyme and extruded liposomes prepared with variable
anionic lipid content always reached an asymptotic value lower than
100%(Fig. 2B). Someof thepartitioningcurves published in the literature
also leveled off to a maximum value of the fraction of protein bound to
the vesicles lower than 100% at lipid saturating conditions [12,45,47,48].
Ladokhin and co-workers elegantly showed in their work that this last
result was due to a pH-dependent formation of amembrane-competent
form of annexin B12 [12] and diphtheria toxin T-domain [45]— if the pH
of the medium was sufficiently acidified, the fluorescently-labeled
protein bound 100% to the phospholipid vesicles. On the other hand, Pu
et al [47,48] justified their results by the preferential binding of the
fluorescently-labeled phosphatidylinositol-specific phospholipase C to
the smaller vesicles present in the polydisperse small unilamellar
population used in their experiments. Regarding our own study, we
showed that the non-binding component detected in the Alexa488-
conjugated lysozyme partitioning curves is due to the presence of a trace
amount of free Alexa 488 dye in solution that was not completely
removed during the purification of the fluorescently-conjugated protein
due to its non-covalent association with lysozyme. Upon dilution of the
Alexa 488-conjugated protein to nM concentrations required to carry
out the FCS measurements, the non-covalently-bound Alexa 488 dye is
released from the protein and remains free in solution because both the
fluorophore and the lipid vesicles are negatively-charged. The presence
of vestigial free dye in solution is a common situation previously
detected in several other FCS studies [52–55] due to the often
encountered difficulty in completely removing it during the purification
procedure necessary after labeling the species of interest with an
adequate fluorophore for the FCSmeasurements. It should also be noted
that the truemolar fraction of the freely diffusing dye can be significantly
under- or overestimated in the FCS measurements depending if its
molecular brightness is significantly lower/higher than that of the
fluorescently-conjugated protein itself, respectively (qb1 or qN1 in
Eq. (19.A), respectively).

5.2. Lysozyme binding to anionic phospholipid vesicles

The partition coefficients determined by FCS for Alexa488-conjugated
lysozyme presented an exponential dependence on the molar fraction
of POPS included in the liposomes (Fig. 4), showing the predominance
of electrostatic interactions in lysozyme binding to negatively charged
liposomes and the relatively weak binding of the protein to electrically
neutral bilayers, in general agreement with the literature [35,56]. In
addition, the partition coefficients were found to be essentially indepen-
dent of the final D/P obtained in the labeling reactions of lysozyme
(0.21bD/Pb0.67) indicating that the non-specific method used for
fluorescently-labeling the protein did not alter dramatically its average
binding behavior to the liposomes. However, our results are at variance
with a recent publication from Gorbenko et al. [57] in two important
aspects: (i) overall lysozyme binding to the liposomes was found to be
much weaker in this study compared to Gorbenko's work, and (ii) the
partitioning curves obtained here for Alexa 488-conjugated lysozyme did
not present any deviation from the expected hyperbolic behavior when
the liposomes included 20 and 30 mol% POPS in their composition
(i.e. there was no evidence for Alexa488-conjugated lysozyme self-
association upon membrane association within the lipid and protein
concentrations used in our experiments).We speculate that the discrep-
ancies between the two studies might be related to the simultaneous use
of amuch higher lysozyme concentration (150 nM) andmuch lower lipid
total concentrations (that varied between 12 and 70 μM) by Gorbenko et
al. in their work [57]. These conditions are known to induce an extensive
protein-mediatedaggregationof thenegatively-charged liposomes [23]. If
this is the case, then the decrease detected in the fluorescence of the
fluorescein 5′-isothiocyanate labeled lysozyme upon its binding to the
liposomes by Gorbenko et al. in their study [57] might be reporting both
processes simultaneously and not only the lipid binding properties of the
protein. In this respect, it should be noted that the very high sensitivity of
the FCS technique enables high signal-to-noisemeasurements at very low
(nanomolar) concentrations of fluorescently-labeled peptides/proteins
and therefore thebindingof theprotein/peptide to the liposomesdoesnot
usually change significantly the surface charge density of the vesicles,
decreasing the probability of an extensive protein-mediated aggregation
of the lipid vesicles. Furthermore, even when this phenomenon occurs, it
can be easily detected in the FCS measurements because it produces an
alteration in the shape of the experimental AC curves, as it is exemplified
in Fig. S2. Therefore, FCS measurements can guarantee that protein
partition is evaluated under conditions that completely eliminate the
often concomitant phenomenon of protein-induced liposome aggrega-
tion, which might complicate data analysis.

6. Conclusions

In this work, we re-evaluate the conditions required for a correct
quantitative analysis of FCS partition data. There were two major
findings: (1) in order to avoid obtaining biased partition coefficients,
the Poissonian loading of the lipid vesicles with the fluorescently-
labeled peptide or protein must be taken explicitly into account when
fitting a partition model to the experimental binding curves obtained
by the FCS technique (fractional amplitude of the bound species versus
accessible lipid concentration) and, (2) the presence of a trace amount
of free fluorescent dye (non-binding component) in the system can
lead to plateau values lower than 100% in the partition curves
obtained using the FCS technique. A misinterpretation of this result
can lead to a large overestimation of the recovered partition
coefficients. Finally, FCS measurements of lysozyme binding to
POPS-containing liposomes were easily uncoupled from the potential
interference of lysozyme-mediated liposome aggregation, confirming
that its binding is dominantly driven by electrostatic interactions.
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