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Förster resonance energy transfer (FRET), in most applications used as a “spectroscopic
ruler,” allows an easy determination of the donor-acceptor intermolecular distance. How-
ever, the situation becomes complex in membranes, since around each donor there is an
ensemble of acceptors at non-correlated distances. In this review, state-of-the-art method-
ologies for this situation are presented, usually involving time-resolved data and model
fitting. This powerful approach can be used to study the occurrence of phase separation
(“rafts” or other type of domains), allowing their detection as well as size evaluation. For-
malisms for studying lipid–protein and protein–protein interactions according to specific
topologies are also addressed. The advantages and added complexity of a specific type of
FRET (energy homotransfer or energy migration) are described, as well as applications of
FRET under the microscope.
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INTRODUCTION
Förster resonance energy transfer (FRET) is a photophysical
process by which an initially electronically excited fluorophore,
termed donor (D), transfers its excitation energy (and thus
becomes quenched) to another chromophore, termed acceptor
(A), which electronic absorption spectrum overlaps that of the
emission of D. The latter, initially in the electronic ground state,
becomes excited upon transfer, and may (or may not) fluoresce.
FRET involves neither photon emission nor molecular contact
between the two species, but is highly dependent on the distance
between them. For an isolated donor–acceptor pair, the (first-
order) rate coefficient for the FRET interaction is proportional
to the inverse sixth power of this distance (Förster, 1949). The
characteristic length for FRET is the Förster radius, R0, defined as
the donor/acceptor distance for which FRET within a given D/A
pair is 50% efficient (that is, as probable as the other processes
of D excitation decay). In practice, the distance range for which
FRET is sensitive is between 0.5 R0 and 2 R0, as FRET efficiency
varies from 98.5 to 1.5% in this interval. The value of R0 is char-
acteristic of each D/A pair in a given environment, but usually lies
in the 1.5- to 6-nm range. This implies that FRET is mostly sensi-
tive to distances in the 1- to 10-nm scale, which is out of the reach
of conventional optical microscopy techniques, but is entirely ade-
quate to the study of important questions in membrane biophysics,
such as detection and characterization of nanodomains/rafts and
lipid–protein or protein–protein interaction (Figure 1).

Different approaches can be envisaged, ranging from qual-
itative studies of variation of FRET steady-state efficiency,
without consideration of the underlying kinetics, to analysis

of time-resolved fluorescence data with appropriate formalisms,
allowing the quantitative recovery of topological information
about the system under study. Until recently, these latter sophisti-
cated applications were mostly restricted to simple systems (usu-
ally one- or two-component model membranes), whereas FRET
studies in complex systems such as the membranes of live cells
(for which acquisition of quality time-resolved fluorescence data
was technically unfeasible) relied on more qualitative treatments.
Nowadays, with the tremendous development of fluorescence
microscopy-based techniques, spatial, and time resolution can
be combined in a powerful way to the study of real biologi-
cal membranes. This review describes the basic formalisms of
FRET in membranes, and indicates significant illustrative appli-
cations of FRET to a variety of problems in membrane systems
(Table 1).

PHENOMENOLOGICAL APPLICATIONS OF FRET IN
MEMBRANES
Even if FRET is used as a qualitative indicator of chromophore
proximity, without accounting for its actual kinetics, there is still
a wide range of applications in membrane biophysics. Addition-
ally, the complexity of some systems is a serious deterrent to the
application of complex formalisms, and a more phenomenological
approach may be the only option available.

A classic use of FRET is monitoring lipid exchange or mixing
and membrane fusion, such as described by Struck et al. (1981).
These authors followed the fusion of phosphatidylserine (PS)
vesicles induced by calcium ion. Two vesicle populations, one
containing both D and A probes and the other containing solely
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FIGURE 1 | Schematic representation of applications of FRET in

membrane biophysics. Only one bilayer leaflet is depicted. (A) membrane
heterogeneity; (B) determination of transverse location of a fluorescent
residue/label; (C) protein/lipid selectivity; (D) protein oligomerization.

unlabeled phospholipid, were mixed. The chosen FRET pair
was composed of the labeled phospholipids N -(7-nitro-2,2,3-
benzoxadiazol-4-yl)-phosphatidylethanolamine (NBD-PE, D)
and N -(lissamine Rhodamine B sulfonyl)-dioleoylphosphatidyle
thanolamine (Rh-PE, A), and since then has become probably
the most commonly used pair in membrane FRET studies. Upon
addition of calcium ion, fusion causes mixing of the labeled and
unlabeled vesicles. Following lipid redistribution by lateral dif-
fusion, the surface concentration of acceptor probes surrounding
each donor is diminished. This results in a reduced extent of donor
quenching by FRET, the energy transfer efficiency decreases and
therefore the donor emission intensity increases. Another possi-
bility is to monitor the increasing of FRET efficiency (decreasing
of D fluorescence) upon mixing a population of vesicles labeled
with D only with another solely labeled with A, as exemplified in
a recent study of SNARE-mediated fusion (van den Bogaart et al.,
2010).

In the study of lipid lateral distribution, FRET between probes
of identical partition properties will become more efficient as
a consequence of phase separation (and conversely for probes
exhibiting complementary phase preference). However, probe par-
tition is not the only phenomenon that can affect FRET efficiency.
Upon altering membrane composition, variations of area/lipid,
and probe photophysical parameters (and hence R0) can occur,
which could potentially lead to either erroneous identification or
masking of domain formation. To this effect, ingenious schemes
can be designed for more precise detection of the onset of domain
formation, such as that proposed by Silvius (2003), in which FRET
efficiencies obtained with an acceptor with affinity for one of the
lipid phases and two different donors that distribute to different
membrane domains are compared. As long as the membrane is

homogeneous, variations in lipid composition will affect FRET
efficiencies of both D/A pairs similarly. However, if domains
are formed, the two donors partition to different phases, and
efficiencies of quenching for each of them will be affected in
opposite ways.

As mentioned below, partition of D or A can be estimated quan-
titatively from the parameters of the time-resolved fluorescence
of D in presence of A (analyzed globally together with that in
absence of A). FRET can also be used in a simpler way as an
indicator of domain preference as exemplified by the recently
proposed “FRET assay of raft association” (Nelson et al., 2010).
The efficiency of FRET between the protein under study (D)
and one of two acceptors, pyrene–DOPE (prefers ld phase) and
LcTMADPH (prefers lo phase) is measured and compared with
that using other donors, LW peptide (a transmembrane helix
type peptide with high affinity for ld domains) and cholera
toxin-B (a protein that binds to the raft-associating lipid gan-
glioside GM1 and has a very high affinity for lo domains) in
a ld/lo phase coexistence lipid mixture. In these authors’ exam-
ples, perfringolysin O is thus shown to have intermediate raft
affinity between that of LW peptide and cholera toxin-B in vesi-
cles containing ordered domains rich in brain sphingomyelin or
1,2-distearoyl-sn-3-glycerophosphocholine (DSPC).

In the study of lipid/protein interaction, FRET between, e.g., a
membrane peptide or protein D and lipid acceptors of different
classes/acyl chains may indicate preferential association or selectiv-
ity for a particular type of lipid, and FRET between D-bearing and
A-bearing membrane proteins can be used to detect formation of
protein hetero- or homo-oligomers. In this case, quantitative mod-
els are required for further characterization of these interactions
(see Formalisms for lipid–protein or protein–protein interaction
below).

INTRAMOLECULAR FRET: A “SPECTROSCOPIC RULER”
Förster resonance energy transfer between D/A pairs for which
the D–A distance is the same, such as verified in a solution of a
two-chromophore species, is often termed“intramolecular”FRET.
A quantification of the extent of FRET is given by the FRET
efficiency, E, which is calculated as

E = 1 −

∞∫
0

iDA(t ) dt

∞∫
0

iD(t ) dt

(1)

in this equation, iD(t ) and iDA(t ) are the D decays in absence and
presence of A (respectively). The effect of FRET on the fluores-
cence of D is the reduction of its lifetime and quantum yield. In
this simple case, the D decay law remains exponential, albeit faster
than in the absence of acceptor. The relationship between the life-
time of D in absence and presence of A (τ0 and τ, respectively) is
given by

E = 1 − τ

τ0
= R6

0

(R6 + R6
0)

(2)

where R is the D–A separation. An expression identical to Eq.
2 can be written for the fluorescence quantum yield, or the
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Table 1 | Selected examples of FRET membrane studies.

Application Reference(s) Comments

Detection and

characteriza-

tion of

membrane

heterogeneity

Fung and Stryer (1978) Pioneering test of Förster theory in fluid egg PC vesicles
Loura et al. (1996,

2000b)

Verification of FRET theoretical decay law in fluid DPPC, but not in the gel, due to probe segregation

Loura et al. (2000a) Gel/fluid partition of carbocyanine dyes from time-resolved FRET parameters

Loura et al. (2001) Detection of small (∼R0) domains of lo phase in DMPC/cholesterol

de Almeida et al. (2002) Kinetics of gel/fluid phase separation in DLPC/DSPC binary mixture

Fernandes et al. (2003) Formation of domains enriched in M13 major coat protein and matching lipid (DOPC) in fluid DEuPC/DOPC

and DMoPC/DOPC mixtures

Silvius (2003) Qualitative approach – SM or saturated phospholipids and/or unsaturated phospholipids/cholesterol

de Almeida et al. (2005) Dependence of domain size with composition in the ternary POPC/SM/cholesterol system

Fernandes et al. (2006) Absence of clustering of PI(4,5)P2 in POPC at slightly above physiological pH

Loura et al. (2006) Verification of gel/fluid phase coexistence of DPPC/DPPS 1:1 at 45˚C, unaffected by K6W peptide. At 60˚C,

peptide induces multibilayer structure upon the fluid vesicles

Buboltz et al. (2007) Application of the SP-FRET method to the DOPC/DPPC/cholesterol system

Coutinho et al. (2008) Lysozyme induces “pinched lamellar” multibilayer aggregates in POPC:POPS 4:1 mixture

Heberle et al. (2010) Application of the SP-FRET method to the DSPC/DOPC/cholesterol, DSPC/POPC/cholesterol, and

DSPC/SOPC/cholesterol systems

Membrane

protein

mapping

Cha et al. (1999) Measurement of voltage-sensitive distances between Shaker potassium channel subunits at specific

residues
Cornea et al. (2009) Distance measurements in calmodulin bound to the RyR1 Ca2+ release channel

Cornea et al. (2010) Distance measurements in the ryanodine receptor FK506-binding protein subunit

Basu et al. (2010) Distance measurements in the plasma membrane Cl−/ HCO−
3 exchanger, AE1

Determination

of the

transverse

location of

protein

fluorophores

Shaklai et al. (1977) Derivation of Eq. 7 and its application to the minimum distance between hemoglobin heme groups and

12-(9-anthroyl)stearic acid in red blood cell membranes

Gutierrez-Merino et al.

(1987)

Derivation of approximate formalism and its application to determine the transverse location of the ATP

binding site on the (Ca2+ + Mg2+)-ATPase

Johnson and Nuss

(1994)

Determination of the transverse location of the histrionicotoxin-sensitive ethidium binding site of the AChR

Valenzuela et al. (1994) Determination of the transverse location of the agonist binding site of AChR

Yegneswaran et al.

(1997)

Determination of the location of the active site of membrane-bound activated protein C relative to the

phospholipid surface

Chen and Lentz (1997) Determination of the distance to the membrane surface of the C-termini of prothrombin and meizothrombin

Domanov et al. (2005) Determination of the location of the heme group of cytochrome c relative to the membrane surface, for

varying protein coverage

Protein/lipid

selectivity

Narayanaswami and

McNamee (1993)

Qualitative measurement of the selectivity of AChR to cis- or trans-parinaric acids

Pap et al. (1993) Estimation of binding constants of different pyrene lipids to protein kinase C

Albert et al. (1996) Rhodopsin exhibits (qualitatively) larger affinity for cholesterol than for ergosterol

Antollini and Barrantes

(1998)

Qualitative measurement of the effect of adding different lipids on FRET efficiencies from the tryptophan

residues of AChR to laurdan

Levi et al. (2000, 2003) Selectivity constants for the lipid-plasma membrane calcium pump interaction

Poveda et al. (2002) Verification (using the Gutiérrez-Merino formalism) of formation of specific phosphatidic acid-rich lipid

domains, caused by AChR, which include the protein

Fernandes et al. (2004) Derivation of model for single transmembrane α-helix and application to selectivity of M13 major coat

protein for different lipids

Gambhir et al. (2004) PIP2 sequestration by the basic effector domain of myristoylated alanine-rich C kinase substrate

Capeta et al. (2006) Numerical solutions to lipid–protein selectivity and application to analysis of the data of (Poveda et al., 2002)

Nomikos et al. (2007) PIP2 sequestration by a basic peptide from phospholipase C-ξ

Picas et al. (2010) Adaptation of the model of (Fernandes et al., 2004) to larger membrane proteins and application to lactose

permease lipid selectivity

(Continued)
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Table 1 | Continued

Application Reference(s) Comments

Protein–

protein

oligomeriza-

tion

Mercier et al. (2002) β1- and β2-adrenergic receptor homo- and heterodimerization by BRET

Fernandes et al. (2008) Antiparallel dimerization of the N-BAR N-terminal domain in POPG

Harikumar et al. (2008) Homodimerization of G protein-coupled secretin receptor by BRET

Fung et al. (2009) Ligand-regulated oligomerization of β2-adrenoceptors

Harding et al. (2009) Constitutive dimerization of the G protein-coupled receptor, neurotensin receptor

Applications of

diffusion-

enhanced

FRET

Thomas et al. (1978) Verification of the Steinberg and Katchalski theory in vesicles, using a Tb3+ chelate as donor
Thomas and Stryer

(1982)

Determination of transverse location of the retinal chromophore of rhodopsin in membrane vesicles made

from disk membranes, using a Tb3+ chelate as donor

Leder et al. (1989) Determination of transverse location of the retinal chromophore in the purple membrane, using a Tb3+

chelate as donor

Kusba et al. (2002) Determination of lipid diffusion coefficients using diffusion-enhanced FRET from a Re-chelate-PE to

Texas-red PE

Meltzer et al. (2006) Determination of electrostatic potential at fixed sites on the AChR using diffusion-enhanced FRET, with a

Tb3+ chelate as donor

FRET

microscopy

studies

Kenworthy and Edidin

(1998)

Clustering of the GPI-anchored protein 5′ nucleotidase was not detected using FRET between labeled

antibodies
Varma and Mayor (1998) Clustering in domains with less than 70 nm of a GPI-anchored protein at the cell surface detected by

homo-FRET

Herreros et al. (2001) FRET–FLIM study of the raft dependent interaction of tetanus neurotoxin with Thy-1

Hughes et al. (2002) Suggestion of preferential interaction of phospholipase D with PC, rather than PE – a qualitative FLIM study

Sharma et al. (2004) Characterization of size of lipid-dependent organization of GPI-anchored proteins in live cells, using homo

and hetero-FRET

Von Arnim et al. (2005) FRET–FLIM revealed interaction between BACE (β site of amyloid precursor protein-cleaving enzyme) and

the LDL receptor-related protein occurring on lipid rafts at the cell surface

Acasandrei et al. (2006) Improved model for analysis of FRET adapted to the case where D and A label two probing proteins.

Application to the data of (Kenworthy and Edidin, 1998) gave quantitative support to the presence of lipid

rafts

Meyer et al. (2006) Quantitative study of the distribution of functional neurokinin-1 receptors in the plasma membrane. The

receptors are found to be monomeric and reside in membrane microdomains of size below optical resolution

Anikovsky et al. (2008) Derivation of a model considering intramolecular and/or intermolecular FRET and oligomerization, and its

experimental verification. Discussion of the effect of cell fixation

Goswami et al. (2008) Cortical actin activity regulates spatial organization of nanoclusters of GPI-anchored proteins at the cell

surface, as shown by homo-FRET

Hofman et al. (2008) FRET–FLIM revealed that ganglioside GM1 co-localizes with EGF receptor, but not with the non-raft

transferrin receptor

AChR, nicotinic acetylcholine receptor; DEuPC, 1,2-dierucoyl-sn-glycero-3-phosphocholine; DLPC, 1,2-dilauroyl-sn-glycero-3-phosphocholine; DMoPC, 1,2-

dimyristoleoyl-sn-glycero-3-phosphocholine; DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine; DOPC, 1,2-oleoyl-sn-glycero-3-phosphocholine; DPPC, 1,2-

dipalmitoyl-sn-glycero-3-phosphocholine; DPPS, 1,2-dipalmitoyl-sn-glycero-3-phosphoserine; DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine; GPI, glycosylphos-

phatidylinositol; PC, Phosphatidylcholine; PE, phosphatidylethanolamine; PI(4,5)P2, phosphatidylinositol-(4,5)-bisphosphate; PIP2, phosphatidylinositol-(4,5)-

bisphosphate; POPC, 1-palmitoyl,2-oleoyl-sn-glycero-3-phosphocholine; POPG, 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]; POPS, 1-palmitoyl-2-oleoyl-

sn-glycero-phosphoserine; SM, sphingomyelin; SOPC, 1-stearoyl,2-oleoyl-sn-glycero-3-phosphocholine.

fluorescence steady-state intensity. R0 is calculated independently
from spectroscopic data,

R0 (in nm units)

= 0.02108

⎡
⎣κ2 · ΦD · n−4 ·

∞∫
0

I (λ) · ε(λ) · λ4dλ

⎤
⎦

1/6

(3)

where κ2 is the orientation factor (see Van Der Meer et al., 1994 for
a detailed discussion), ΦD is the D quantum yield in the absence of
A, n is the refractive index, λ is the wavelength (in nm units), I (λ)

is the normalized D emission spectrum, and ε(λ) is the A molar
absorption spectrum In this way, R is easily computed from both
steady-state and time-resolved data. This is the basis of the use of
intramolecular FRET as a “spectroscopic ruler” (Stryer, 1978).

In the context of membrane biophysics, intramolecular FRET
is still used to retrieve structural and dynamical information on
membrane proteins. This is especially important given that high-
resolution structures of many membrane proteins (traditionally
obtained using X-ray crystallography, cryo-electron microscopy,
or NMR spectroscopy) are still missing. Site-directed labeling
allows incorporation of suitable FRET donor and acceptor groups,

Frontiers in Physiology | Membrane Physiology and Biophysics November 2011 | Volume 2 | Article 82 | 4

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Membrane_Physiology_and_Biophysics
http://www.frontiersin.org/Membrane_Physiology_and_Biophysics/archive


Loura and Prieto FRET in membrane biophysics

and, from the measurement of FRET efficiency, protein mapping,
and/or kinetics of conformational changes can be studied. Recent
applications are listed and briefly described in Table 1.

UNIFORM DISTRIBUTION OF FLUOROPHORES IN
MEMBRANES
In membranes, each D molecule is usually surrounded by a dis-
tribution of A molecules. Therefore, measurement of single D/A
distances is neither meaningful nor feasible. The decay of D’s
emission becomes complex and dependent on the topology of
the system under study, as well as the concentration of A. Ana-
lytical solutions can still be derived for uniform distribution of
chromophores. For planar distributions of D and A, the decay of
D in presence of A is given by Fung and Stryer (1978), Wolber and
Hudson (1979):

iDA(t )

= exp

(
− t

τ0

)
exp

{
−πR2

0nγ

[
2

3
,

(
R0

Re

)6 ( t

τ0

)](
t

τ0

)1/3
}

× exp

{
πR2

e n

(
1 − exp

[
−
(

R0

Re

)6 ( t

τ0

)])}
(4)

In this equation, γ is the incomplete gamma function, Re is the
minimum D/A distance (exclusion distance), and n is the numer-
ical concentration of A (molecules/unit area). Although it was
originally derived for a plane of acceptors containing the donor
(cis transfer), it is also valid if the D molecule is separated from
the A plane by a distance Re, a situation common on membranes,
as D and A are often located at different depths in the bilayer.

Upon preparation of lipid vesicles, D and A molecules are
frequently inserted in either of the bilayer leaflets, with equal prob-
ability. In this case, one must consider two planes of A for a given
D, one corresponding to the acceptors lying in the same bilayer
leaflet as the donor, and another for those located in the opposite
leaflet. The decay law in this case is obtained by simply multiply-
ing the intrinsic D decay by the FRET terms corresponding to each
plane of A.

Another common occurrence in membrane systems is a com-
plex decay of D even in the absence of A, with a sum of two or
three exponentials being required for a proper description. In this
case, the above equations can be still used, provided that the expo-
nential D intrinsic decay term is replaced by this function, and τ0

is replaced by the intensity–average (Lakowicz, 2006) decay life-
time. This is so because each lifetime component is characterized
by a different R0 value, proportional to the inverse sixth power of
the respective fluorescence quantum yield ΦD (Eq. 3). If all these
components have identical radiative decay constants (usually a
good approximation), their ΦD values are in turn proportional to
those of τ0. This implies that the FRET rates to a given A located
at distance R [given by (1/τ0)(R0/R)6] are the same irrespective of
the D lifetime component considered, because R6

0/τ0 is invariant
(Loura et al., 1996, 2000b). Because of this constancy, Eq. 4 can be
used with the average values of R0 and τ0. The option here is to use
the spectroscopic R0 (calculated with the experimental, averaged
value of ΦD) and the true statistical average of τ0, which is the
intensity–average.

For steady-state applications, Eq. 4 can be integrated numer-
ically (in a program or spreadsheet) to produce curves of FRET
efficiency E (calculated using Eq. 1) as function of acceptor con-
centration n, with Re as a parameter. Alternatively, Re is fixed and
experimental FRET decays/efficiencies are compared with the-
oretical expectations. Eventual failure to analyze FRET kinetics
with the uniform probe distribution formalism may have rele-
vance (e.g., addition of a new component to a given one-phase
lipid bilayer system may induce compartmentalization and/or
phase separation, and hence deviations to the theoretical uniform
distribution expectation).

NON-UNIFORM DISTRIBUTION OF FLUOROPHORES
CONTAINS TOPOLOGICAL INFORMATION
Non-uniform component distribution and phase separation are
common occurrences in lipid mixtures. The molecules which bear
the D and A fluorophores in a FRET experiment in such a sys-
tem will naturally have non-uniform distributions, following their
partition between the coexisting phase domains. Let us consider
that there are only two phases or types of domains present (the
most common experimental situation). If these are sufficiently
large to be infinite in the FRET scale (i.e., complications resulting
form FRET involving molecules in different domains, or boundary
effects, are negligible; this is the case if the domains are larger than
∼5–10 R0), then the donor decay law is simply a linear combina-
tion of the hypothetical decay laws in each phase i DA,phase i (given
by Eq. 4), weighed by the relative amount of D in each phase Ai

(Loura et al., 2000a, 2001):

iDA(t ) = A1iDA, phase 1(t ) + A2iDA, phase 2(t ) (5)

Note that the D lifetimes are usually different in the two phases,
as are the A surface concentrations (and possibly also the D–A
exclusion distances). This introduces a large number of fitting
parameters in Eq. 5. To ensure meaningful recovery of these para-
meters, the decay of D in presence of A is globally analyzed together
with that in the absence of A,

iDA(t ) = A1 exp(−t/τ1) + A2 exp(−t/τ2) (6)

where τ1 and τ2 are the D lifetimes in each phase. The recovered
parameters are usually τ1, τ2, A2/A1 (from which the D partition
coefficient K pD is obtained), and the A concentrations in the two
phases, C1 and C2 (from which the A partition coefficient K pA is
obtained; Loura et al., 2000a). A particular case of this formalism
is the so-called “isolated donors” situation, which corresponds to
C2 = 0.

Being strictly valid for infinite phase separation, this model
can be applied to nanoscale domain formation; in this case, the
recovered A partition coefficient (“FRET” K pA) will not be equal
to the true coefficient recovered from independent (fluorescence
intensity, anisotropy,or lifetime of A) measurements (“non-FRET”
K pA), and is affected (being closer to unity than the “non-FRET”
value) by the fact that donors in one phase are sensitive to accep-
tors in the other. The extent of this deviation reflects the size of
the nanodomains. In the very small domain size limit (<R0), the
“FRET” K pA is essentially unity. Therefore, this kind of analysis
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can produce insights regarding the size of the domains, and in
the case of infinite phase separation (which can be validated if the
“FRET” and “non-FRET” K pA values are indistinguishable) it was
shown that the phase diagram of a binary mixture can be obtained
from the decay parameters (Loura et al., 2001). An experimental
method of characterization of phase separation in lipid mem-
branes (and determination of binary and ternary phase diagrams
in the infinite phase limit) based on this formalism, but relying
solely on acceptor steady-state sensitized emission, was proposed
by Buboltz (2007), who termed it“Steady-State Probe-Partitioning
FRET” or SP-FRET. Applications of these methodologies are listed
in Table 1.

NUMERICAL AND SIMPLIFIED ANALYTICAL TREATMENTS OF
FRET IN NON-HOMOGENEOUS SYSTEMS
No exact solution of the FRET rate or efficiency has been derived
for the case of incomplete phase separation, with nanometer-sized
domains of a given type dispersed in the continuous phase. This
stems from the evident symmetry loss introduced by the presence
of the domains. One way to tackle this complexity is to calcu-
late the D decay using numerical simulation. Basically, the process
starts by building a topology of the lipid matrix (i.e., define size of
the simulated system, domain shape, average size and size distrib-
ution, and then place the domains on the matrix, ensuring that the
overall fraction of each phase is as intended) and placing D and A
molecules taking into account their domain preference. A given D
is then selected and its interaction with all the acceptors (or those
within a cutoff of several R0 lengths) is computed. This step is then
repeated for all the donors in order to obtain an ensemble average
value for all the system. One obtains the average D decay, and, by
using Eq. 1, the FRET efficiency value.

This kind of numerical simulations was already described by
Wolber and Hudson (1979) for uniform distribution in a planar
geometry to test their analytical theory. The first numerical solu-
tion of FRET for non-uniform membrane probe distribution was
given by Snyder and Freire (1982). In this work, heterogeneity
of probe distribution was introduced by incorporating a heuris-
tic potential function in the random placement of the probes.
Therefore, no domains are actually simulated, and whereas the
authors’ equations are suited to the analysis of probe aggrega-
tion in a single phase system, they are not useful regarding phase
separation. Simulations in which probe distribution heterogene-
ity is introduced by building a biphasic system and taking into
consideration probe partition have been presented by authors to
provide tests for their analytical formalisms (Loura and Prieto,
2000; Loura et al., 2001; Towles and Dan, 2007; Towles et al.,
2007).

Another simulation approach consists in recreating the exci-
tation and de-excitation processes of each D or A molecule by
performing stochastic simulations. These calculations take into
account the probabilities of donor excitation, donor decay by
non-FRET processes, FRET to a given acceptor, and acceptor de-
excitation. The FRET efficiency is simply calculated by the ratio
between the total number of transfers and the total number of D
excitations. This type of simulation has been applied to the case of
FRET in a planar geometry with disklike domains (Kiskowski and
Kenworthy, 2007).

All previous works are characterized by prior fixing of the
underlying lipid matrix, including domain size and shape, and
the simulations concern exclusively the calculation of FRET rates
and probabilities. A different approach was recently undertaken
by Frazier et al. (2007), who combined statistical mechanical
lattice Monte-Carlo simulations (to describe the lipid matrix
and to generate chromophore positions therein) with a simpli-
fied step-function FRET distance dependence (FRET was con-
sidered to occur if and only if the D–A distance in a given
pair were less than R0) to analyze experimental data of FRET
in a ternary, raft-model mixture. This work demonstrates that
FRET and computational techniques can be combined to cre-
ate a powerful combination, suited to the study of lipid phase
separation.

Globally, numerical simulations have the advantage of allowing
the calculation of FRET in systems for which, due to their com-
plexity, an exact solution is precluded. However, thus far they do
not provide a way to analyze experimental data directly, as many
degrees of freedom are expected in an actual experiment. For each
simulation, values for R0, D lifetime, D/A exclusion distance (all
being possibly different in each coexisting phase), domain shape
and size, and D and A partition coefficients need to be fixed. This
multiplicity of variables excludes the possibility of fitting with
simple empirical functions that could describe, e.g., the variation
of FRET efficiency as a function of concentration of A in a gen-
eral manner, which would be convenient for most researchers.
The study of a particular system requires individual setup and
simulation procedures.

An alternative to numerical simulations of FRET in
nanoheterogeneous bilayers is the use of simplified analytical
treatments, which, unlike the former, could potentially be suited
to direct analysis of experimental data enabling recovery of the
parameters of interest. However, this kind of formalisms has
been characterized by either severe simplifying approximations
(Gutierrez-Merino, 1981; Brown et al., 2007a,b) or relying to some
extent to numerical results (Towles et al., 2007; see Loura et al.,
2010a for a detailed discussion), precluding their widespread use.

FORMALISMS FOR LIPID–PROTEIN OR PROTEIN–PROTEIN
INTERACTION
A relatively simple application of FRET in membrane systems
containing peptides/proteins bearing fluorescent residues (trypto-
phan and tyrosine) is the determination of the transverse location
of the latter. Tryptophan and tyrosine act as energy transfer donors,
since they absorb at short wavelengths, so suitable acceptors with
known positions in the membrane should be used (see Table 1).
Because the efficiency of transfer depends on the D–A exclusion
distance, the value of Re (and hence the transverse location) can
be obtained by fitting Eqs 1 and 4 to the experimental data. A
series of stearic acids derivatized with the anthroyl chromophore
is available, and is characterized in great detail in the literature (see
e.g., Blatt et al., 1984). Because there is almost invariance of the
absorption spectra of the different acceptors, the Förster radius
is constant for all of them, and for tryptophan as D it is close to
R0 = 25 Å. It can be shown that, when Re > approximately 1.7 R0,
a Stern–Volmer type dependence is obtained (Shaklai et al., 1977;
Dewey and Hammes, 1980), expressed by the very simple equation
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IDA
= 1 + πnR2

0

2

(
R0

Re

)4

(7)

where I DA and I D denote the steady-state emission intensity of
D in the presence and absence of A, respectively. Whereas Eqs 4
and 7 assume axial distribution of A chromophores around the D
residue, Yguerabide (1994) generalized the theory to include the
case where D is not on the symmetry axis of the labeled protein,
and extended its validity to cases where Re < R0, inevitably with
some added complexity.

Proteins incorporated in model membranes containing lipids
with different electrostatic properties or hydrophobic lengths may
show selectivity to one lipid component at the protein–lipid inter-
face, which traditionally has been addressed using electron spin
resonance spectroscopy (Marsh and Horváth, 1998). However,
essentially identical information can be obtained using FRET.
Qualitative information is readily obtained by comparing the
extent of FRET from a protein to fluorescently labeled lipids of
different classes/acyl chains, as mentioned above. A few quanti-
tative models have been proposed, and were critically reviewed
recently (Loura et al., 2010b). Table 1 lists applications of these
formalisms to experimental FRET data.

Characterization of protein–protein interaction, using FRET
involving two distinct labeled derivatives of proteins or peptides,
have been described since more than 30 years ago. In a now histor-
ical paper, using a simple formalism which neglected intermolecu-
lar FRET but took into account different oligomerization schemes
(dimers/trimers/tetramers), Veatch and Stryer (1977) verified that
the hypothesis of formation of gramicidin dimers (D: dansyl-
gramicidin C; A: 4-(diethylamino)-phenylazobenzene-4-sulfonyl
chloride derivative of gramicidin C) led to better model fits than
both trimer and tetramer formation scenarios. Aggregation of pro-
teins of the chromaffin granule membrane, labeled with maleimide
iodoaminonaphthyl sulfonate (D) and fluorescein mercury acetate
or fluorescein-5-maleimide (A), was qualitatively verified by Mor-
ris et al. (1982) upon addition of calcium ion. Following these early
studies, FRET has become an important tool in the characteriza-
tion of protein/peptide aggregation. One must choose carefully the
formalism to be used for data analysis, as early models focus in the
intra-aggregate energy transfer, neglecting “bystander” intermole-
cular FRET (e.g., Adair and Engelman, 1994; Li et al., 1999). This
approximation is generally only valid in the limit of very dilute
labeled protein, and is commonly used in recent works applying
FRET or bioluminescence resonance energy transfer (BRET, see
e.g., James et al., 2006) to the study of membrane protein oligomer-
ization, listed in Table 1. Other treatments strive to compute the
pure intra-aggregate term (see Raicu, 2007 for a recent example).
It must be noted that the combination of the intra-aggregate and
intermolecular terms should be carried out carefully. In particular,
it is inaccurate to subtract the pure intermolecular efficiency from
that of combined inter-aggregate and intermolecular FRET (You
et al., 2005). If the donor population is subjected to quenching by
two different types of acceptor (e.g., those bound and unbound to
a given donor), the correct way to calculate the FRET efficiency is
to multiply the FRET terms corresponding to all quenching con-
tributions to obtain iDA(t ), and integrate in the end (Eq. 1). This
is exemplified in a recent study, which concluded that the N-BAR

N-terminal domain forms antiparallel dimers in 1-palmitoyl-2-
oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) vesicles
(Fernandes et al., 2008).

DIFFUSION-ENHANCED FRET
In the preceding sections, it was assumed that translational diffu-
sion of both D and A were negligible during the lifetime of the D
excited state, that is, the condition DDAτ0/s2 � 1 (where DDA is the
sum of D and A lateral diffusion coefficients and s is the average D–
A distance) was met. Otherwise, fast chromophore diffusion leads
to an enhancement in the rate of FRET, which can be intuitively
understood by considering that a D/A pair, initially separated by
a large distance which would prevent FRET, might become close
enough for FRET to occur with high probability in the course of
the D excited state lifetime as a consequence of diffusion.

The general theory of diffusion-enhanced FRET was estab-
lished by Steinberg and Katchalski (1968) and verified experimen-
tally by Thomas et al. (1978). Of particular interest is the so-called
rapid-diffusion limit, characterized by DDAτ0/s2 � 1, which leads
to extremely simplified equations for the rate of FRET. This condi-
tion requires D lifetimes in the microsecond to millisecond range,
which are typically achievable using suitable lanthanide chelates
as the D species. For a uniform two-dimensional distribution
of uncharged spherical chromophores, it can be shown that an
exponential D decay is obtained, with lifetime

τ = 1(
τ−1

0 + kT
) (8)

where

kT = πnR6
0

2τ0R4
e

. (9)

The latter equation (which, rather curiously, is formally iden-
tical to Eq. 7, which is an approximate solution to a very different
problem) shows that the rate of FRET in this regime is highly
dependent on Re. This is the reason why rapid-diffusion limit
FRET found application in the measurement of the distance of
closest D–A approach (where typically the A species is a protein), in
the 1980s (see Table 1 for examples). Additionally, FRET-enhanced
diffusion of charged D/A species is sensitive to the electrosta-
tic potential, and therefore can be used to determine membrane
potentials (Meltzer et al., 2006). Surprisingly, recent applications in
membranes have been very few, which led to the spirited comment
“Since the mid 1980s, the technique [diffusion-enhanced FRET]
seems to have remained dormant waiting for the right opportunity
to spring back to life” (Fairclough, 2006).

HOMO-FRET vs. HETERO-FRET
In the preceding sections, it was assumed that the D and A
chromophores were distinct (hetero-FRET). This implied the irre-
versibility of the transfer process, which could be monitored
measuring either the extent of quenching of D or the sensitized flu-
orescence of A. In contrast, FRET between identical fluorophores
(homo-FRET) does not lead to a reduction in donor fluorescence
intensity or lifetime, because the donor excited state population
is not diminished during the act of transfer. In practice, the
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sole observable which reflects the phenomenon is fluorescence
anisotropy (Lakowicz, 2006), which is reduced as a consequence of
homotransfer. Measurement of fluorescence anisotropy requires
polarizers and, because these lead to a considerable reduction in
the detected emission, often a larger amount of fluorophore (rel-
ative to that which would be used in an intensity measurement) is
needed for a given precision. In case that instrumentation is not a
problem, the decrease in anisotropy is quite clear: if the two mol-
ecules are separated by distance R = R0, the measured anisotropy
will only be ∼2/3 of that of the monomer, which is a significant
decrease.

Despite having an obvious advantage of only requiring a sin-
gle fluorophore, the use of homo-FRET is more restricted than
that of hetero-FRET. The rationalization of the extent of depo-
larization due to homo-FRET is more complicated than that of
quenching due to hetero-FRET, because: (i) there is the possibil-
ity of back-transfer to the directly excited donor, or transfer to
any donor, eventually involving a large number of transfer steps,
and (ii) being fluorescence anisotropy the relevant observable, in
addition to RET, another source of depolarization is fluorophore
rotation. If rotation and RET occur in the same timescale, the two
phenomena are coupled, which constitutes the main obstacle to
quantitative data analysis of homotransfer. Theoretical descrip-
tions which do not take these features into proper account (e.g.,
Yeow and Clayton, 2007) should be viewed cautiously. Despite this
complexity, homo-FRET is still regularly used in membrane stud-
ies, more recently in combination with fluorescence microscopy
(see section below and Table 1; Bader et al., 2011) to detect and
characterize chromophore (e.g., labeled protein) confinement or
aggregation. In this regard, it should be noted that the use of high
numerical aperture objectives results in reduction of the observed
anisotropy (Axelrod, 1979). This artifact can be minimized using a
lower numerical aperture (≤0.8), with loss in resolution and sen-
sitivity, or corrected, e.g., by using a standard molecule (Tramier
and Coppey-Moisan, 2008).

FRET UNDER THE MICROSCOPE
Recent developments in multi-wavelength and polarization
resolved imaging have led to a widespread use of FRET imaging
in studies of functional assemblies in cell membranes. The exper-
imental methods for visualizing membrane microdomains and
quantifying FRET efficiencies in FRET microscopy with emphasis
on novel strategies have been reviewed elsewhere (Rao and Mayor,
2005; Jares-Erijman and Jovin, 2006; Owen et al., 2007; Padilla-
Parra et al., 2008). Several approaches were developed in order to
explore, on the nanoscale range, specific protein–protein, lipid–
lipid, or lipid–protein interactions in live cells, both using homo-
and hetero-FRET.

Cell membranes are characterized by a large number of lipid
and protein components in a non-equilibrium state. One common
simplification is to assume two types of domains, e.g., raft/non-
raft or ordered/disordered. The results can then be compared to,
e.g., the ld/lo coexistence on a lipid phase diagram in a ternary
model system. Due to intrinsic limitations such as cell stability,
and because usually in cells microscopy studies are carried out (in
order to control cell state, to know the fluorophore localization,
and use the signal coming only from the membrane of interest)
fluorescence intensity decays with a high number of photons and
low background signal (necessary to the applications of most of
the formalisms described above) are generally unfeasible. Usually,
steady-state data is obtained and compared to an integrated FRET
formalism. Even when fluorescence lifetime imaging microscopy
(FLIM; see Stöckl and Herrmann, 2010 for a review of its appli-
cations to membrane heterogeneity) lifetime data is obtained
(FRET–FLIM), a relatively low number of counts is often obtained,
which implies that the decay is traditionally used to calculate
FRET efficiency using Eq. 1, rather than directly analyzed with
the underlying FRET kinetic model. However, with instrumental
improvements as well as development of novel analysis approaches
(Grecco et al., 2009) this trend is being reversed. Selected works
combining FRET and microscopy are listed in Table 1, which suc-
cinctly describes illustrative literature reports in which FRET was
used in (at least) one of the applications described above.

CONCLUSION
In this review, applications of FRET in membrane biophysics are
described, comprising studies of membrane protein mapping, lat-
eral heterogeneity (membrane domains), determination of the
transverse location (depth) of fluorescent residues/labels inside the
membrane, protein/lipid selectivity (preference of a specific lipid
for the protein vicinity), and membrane protein oligomerization.

The complexity of FRET in membranes was addressed, an
evaluation of hetero vs. homo-FRET is presented, and detailed
topological information can be obtained from this methodology,
once adequate modeling is taken into account. Examples of rel-
evant works in this area are critically reviewed, and the recent
applications of FRET under the microscope, namely from time-
resolved data (FRET–FLIM), are mentioned. On the whole, the
power of FRET as a tool in membrane biophysics is emphasized.
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