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Studying dynamical phenomena in finite populations often involves Markov processes of significant
mathematical and/or computational complexity, which rapidly becomes prohibitive with increasing
population size or an increasing number of individual configuration states. Here, we develop a framework
that allows us to define a hierarchy of approximations to the stationary distribution of general systems that
can be described as discrete Markov processes with time invariant transition probabilities and (possibly) a
large number of states. This results in an efficient method for studying social and biological communities in
the presence of stochastic effects—such as mutations in evolutionary dynamics and a random exploration
of choices in social systems—including situations where the dynamics encompasses the existence of stable
polymorphic configurations, thus overcoming the limitations of existing methods. The present formalism is
shown to be general in scope, widely applicable, and of relevance to a variety of interdisciplinary problems.
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Many complex time-dependent processes, from the evo-
lution of cooperation [1] to genetic drift and evolution of
ecosystems [2], flocking behavior [3], voter dynamics [4],
disease spread [5], diffusion of innovations [6], consensus
formation [7], and peer influence [8], have been modeled by
stochastic Markov processes. The nonlinear nature of the
dynamics often precludes a full analysis, even under con-
tinuous approximations, in which case (quasi)stationary
distributions of the Markov chain still provide insightful
information [9–11]. However, with an increasing number of
states, determining these distributions leads to chains of a
prohibitive size (see below). As a result, the so-called small
mutation approximation (SMA) was introduced, defining a
minimal (embedded)Markov chainwhose solution estimates
the limiting stationary distribution of the population [9].
To reveal the savings obtained under the SMA, let us

consider a population of size Z where each individual
adopts one of S different strategies (states), σ1; σ2;…; σS.
The (mean-field) population configurations are character-
ized by the number of individuals adopting each strategy,
with fi1; i2;…; iSg adding up to jsj ¼ ðZþS−1

S−1 Þ possible
configurations, requiring us to solve a Markov chain of that
size. The complexity obtained for large finite S turns the
complete analysis unfeasible, even for a small Z. In the
absence of mutations, this stochastic process has S absorb-
ing states, the so-called monomorphic [9,12,13] configu-
rations, in which all individuals play the same strategy.
Starting at a given monomorphic configuration, the pop-
ulation will remain there until a mutation happens that flips
the state of one individual. This new behavior either
spreads, leading to another monomorphic configuration,
or goes extinct, leading to the starting configuration. If
mutations are rare, the time scales of selection (fast) and

mutation (slow) become separated. This allows us to define
an embedded Markov chain consisting only of S mono-
morphic configurations. The transition matrix is given by
the fixation probability of a single mutant in a homo-
geneous population of resident individuals [14]. Thus,
under the SMA the (embedded) configuration space has
a size S and all transitions are computed through processes
involving only two states at a time.
The SMA has been employed with success in different

areas of research [10,12,15], its validity requiring the
mutation probability μ to be small [16], depending on
the population size and the underlying dynamics of the
system. Thus, many time-dependent processes of interest
cannot be described in the SMA [15,17].
Here, we develop a new framework leading to a hierarchy

of approximations to the stationary distribution of a general
population Markov process. At each level, our framework
involves implementing the following process: (1) Choose an
(ideally) small set of configurations of interest (COIs), thus
separating the set of all possible configurations s¼
fs1;s2;…;sjsjg into two disjoint sets—A¼fa1;a2;…;ajAjg,
the COIs, and B ¼ fb1; b2;…; bjBjg, the neglected configu-
rations (NCs)—such that jsj ¼ jAjþ jBj and jAj ≪ jBj. The
goal is to infer the full dynamics considering only the COIs.
The stable fixed points constitute ideal choices to include in
the COIs. If they cannot be determined analytically or
numerically, one may use a sample of the state space. Both
cases are illustrated below. The hierarchical nature of the
approximation stems from the locationof theCOIs in the state
space (the simplex):Hn corresponds towhen all points in the
COIs belong to hyperfaces of dimension at most n. In this
case, the approximation is of the order n in the exploration
parameter, μ (typically, mutation), restricting the phase space
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to those configurations accessible through n cumulative
transitions in μ, starting at the vertices. (2) Calculate the
transition probabilities among the COIs, ρai→aj , from the
known one-step transitions between the states si and sj, Tsisj .
The probability of reaching aCOI,aj, starting fromone of the
NCs, bn, can be computed through an absorbing Markov
chain and reads Pbnaj ¼

P
fbmgTbnbmPbmaj þ Tbnaj . Thus,

for nonadjacent COIs, ρaiaj ¼
P

fbngTaibnPbnaj , allowing the
computation of an unnormalized stationary distribution, p,
over the COIs through p ¼ ρTp. (3) p reflects the relative
time spent in each COI, yet it ignores the prevalence in the
COIs relative to the NCs. Thus, a renormalization is in
order to allocate the right strength to each point in the
COIs. We write the distribution over the whole phase space
as PðxÞ ∝

PjAj
i¼1 pðaiÞfiðxÞ=fiðaiÞ, where fi represents

locally defined distributions that characterize PðxÞ around
eachCOI. Thisway,we associatewith eachCOI themoments
of the distribution around it, reflecting its shape around these
configurations. This can be achieved by using local informa-
tion and/or the remaining COIs.
Whenever analytical approaches are not available, the

complexity of Hn is dominated by the computation of ρ,
involving the inversion of a matrix of size ≈Zn=n!,
still much smaller than the original Markov chain for
any n < s − 1 (see the original chain size above). Below,
we provide an efficient alternative for H1.
Let us illustrate the method with some examples. We

consider a one-dimensional system (S ¼ 2) to motivate our
first-order approximation (H1) and the limitations of the
SMA (H0). Specifically, consider the evolutionary dynamics
of a population of size Z where individuals are eitherC orD
and they interact with all others via a two-person game that
posits a social dilemma of cooperation, with the associated
payoff matrix

C

D

C D
!

1 f

1þ g 0

"
;

with ff;gg∈½−1;1& [18]. The states si are defined by the
number i of C individuals (Z − i are D individuals). Time
evolution proceeds via a discrete-time birth-death process
[19], characterized by the probabilities that, in each time step,
the number of individuals adopting strategy C changes by
'1 or 0.We employ a stochastic imitation process inspired in
the Fermi distribution of statistical physics [20], allowing the
analytical computation of the transition probabilities: T'

i ≡
Tði→i'1Þ¼ð1−μÞ½iðZ−iÞ=ZðZ−1Þ&f1=½1þe∓β½fCðiÞ−fDðiÞ&&gþ
μf½ðZ−iÞ=Z&δð1;'1Þþði=ZÞδð−1;'1Þg; where fC (fD) is the
average payoff of aC (D), and the inverse temperature,β ≥ 0,
mimics the intensity of natural selection [19], to which we
added a mutation probability μ that accounts for the pos-
sibility of (unanticipated) randomexplorationof strategies, an
important process in social and cultural evolution [21].

Naturally, different assumptions regarding the time evolution
of the population will result in different expressions for the
transition probabilities, but the method remains valid for any
population Markov chain.
In Fig. 1(a) we show results for a coexistence game,

known as the snowdrift game in physics and economics
[22], the hawk-dove game in evolutionary biology [23], and
the chicken game in other contexts [24]. The full stationary
distribution is depicted by the blue histogram bars. There
are two monomorphic states, associated with configura-
tions in which all individuals are either D (i ¼ 0) or C
(i ¼ Z). The existence of a probability attractor at i( ¼
0.7Z ¼ 35 reflects the coexistence dynamics. H0 (SMA)
leads to the dashed gray bar in Fig. 1(a). The solid line
represents the so-called gradient of selection, given by
GðiÞ ¼ Tþ

i − T−
i . Clearly, SMA leads to a distribution that

differs substantially from the full distribution. Indeed,
Fig. 2(a) shows that the existence of an interior attractor
means that, to get a good agreement between the SMA and
the full distribution, μmust be less that 10−13—leading to μ
values unreasonably small, both in biological and social
contexts. Importantly, as μ increases, the SMA quickly fails
to account for the changes introduced in the stationary
distribution by nonzero mutations.
Figure 1(b), in turn, shows the result of employing H1.

The first step consists of adding the attractor i( to the COIs
already including i ¼ 0 and i ¼ Z. This additional point is
trivial to find [19]. The second step implies calculation of the
probabilities ρai→aj within the COIs, merely requiring a
repartition of the terms already computed inH0, bringing no
additional overhead to the computation. Indeed, an ordering
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FIG. 1. Stationary distributions associated with a coexistence
game (f ¼ 0.7, g ¼ 0.3). The gradient of selection is represented
by the black curves, whereas the exact stationary distribution,
computed for μ ¼ 10−10, is depicted by the solid (blue) bars. Two
levels of approximation are considered: (i) zeroth order, H0 or
SMA (the dashed gray bars) and (ii) first order, H1 (the crossed
red bars). In (a), we compare the exact solution with H0 (SMA).
In H0, the COIs include only the configurations i ¼ 0 and i ¼ Z,
and the most probable transitions between the COIs—indicated
by the red arrows—suggest why the full strength is concentrated
at i ¼ Z. Clearly, μ ¼ 10−10 in a population of size Z ¼ 50 is not
small enough to bring the exact result into the SMA domain of
validity. In (b), the crossed red bars represent the stationary
distribution yielded by H1, where i( was added to the COIs. The
other parameters are Z ¼ 50, β ¼ 10.
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can be defined over configurations in A such that transition
probabilities from ai to aði'1Þ are written as ρ'ai ≡ ρai→aði'1Þ .
These correspond to the probability of having a one-step
transition in the direction of aði'1Þ and then being absorbed

by it, resulting in ρ'ai¼T'
ai ½1þ

Pai'1∓1
j¼ai'1

Qj
k¼ai'1ðT

∓
k =T

'
k Þ&

−1

[see the Supplemental Material (SM) [25] for additional
details].
With ρ'ai , the unnormalized stationary distribution

over configurations in A, pðaiÞ, is calculated through an
eigenvector search [26]. The histogram shown with crossed
red bars in Fig. 1(b) results from a proper renormalization
of pðaiÞ via the implementation of step 3 above. Indeed, as
a2 is a probability attractor, it should carry an associated
strength that mimics the weight of the full stationary
distribution (the solid blue bars) in its vicinity. The natural
choice (and the one we propose and adopt throughout) is to
derive this renormalization factor from a normal distribu-
tion whose expected value is equal to (the value of the
process at) a2 and whose variance can be calculated from
the Kramers-Moyal expansion of the associated master
equation [19]. We may therefore write the distribution as

PðiÞ ≈ α−1½pða1Þδia1 þ Z
ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
pða2Þδia2 þ pða3Þδia3 &;

where α ¼ pða1Þ þ Z
ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
pða2Þ þ pða3Þ, and σ2 can be

derived from the transition probabilities Tþ
x and T−

x around
a2=Z as σ2 ¼ F=jJj, with J¼dðTþ

x −T−
x Þ=dxjx¼a2 and F ¼

ðTþ
a2 þ T−

a2Þ=ð2ZÞ. In the SM [25] we prove these results
and discuss the validity and accuracy of these estimates.
Whenever the game at stake is not one of coexistence

but, instead, one of coordination [22,27]—thus character-
ized by the occurrence of a probability repeller instead of an

attractor—our approach remains unchanged, as detailed in
the SM [25].
The choice of theCOIs (and hierarchy order n) dictates the

complexity and accuracy of the whole procedure, as the
problem is reduced from solving a chain of size∼Zs−1 to one
of size∼Zn, n < s. Any choice of COIs optimizing the trade-
off between complexity and accuracy will depend on the
specifics of each model, such as the characteristic mutation
rate, number, and position of fixed points and their basins of
attraction. In general, choosing as COIs the stable fixed
points of the gradient of selection provides the most natural
choice to minimize the size of the embedded chain that leads
to an accurate approximation. These fixed points are often
easy to find by resorting to numerical methods whose
complexity scales linearly with jsj ∼ Zn [28].
Nonetheless, our framework can still be applied when-

ever the fixed points are unknown. In Fig. 2(b) we provide
results analogous to Fig. 2(a) by defining the COIs in the
simplest possible way: a homogeneous grid including one,
three, or five intermediate configurations. Clearly, depend-
ing on the problem, other methods (such as importance
sampling) may be employed to improve the choice of COIs.
In terms of accuracy,H0 (SMA) leads to the smallest COI

set, accurate for μ → 0. At H1, one enlarges the set A,
including in the COIs points located along the edges of the
simplex. A comparison of Figs. 2(a) and 2(b) shows that
including the fixed points in the COIsminimizes its size for a
given order. Whenever an increase in the order leads to a
mismatch between the results, we identify the region of
validity of the previous orders. This mismatch occurs
whenever a stable fixed point is present at the newly included
dimension and exploration rates allow the system to reach
them. In turn, this means that, if there are no internal fixed
points above a givenordern, this orderwill suffice todescribe
the system for any exploration rates. Indeed, orderHnwill be
exact to the extent that the probability of reaching dimension
m > n from n ð∝ μðm−nÞÞ is much lower than the probability
of goingback (model dependent).Aswe increaseμ, retaining
accuracy will require increasing the hierarchy level.
It is worth pointing out at this stage that, already at H1,

one is able to study explicitly the role of mutations, whose
occurrence is ubiquitous in, e.g., (noisy) social systems
[29]. Indeed, whereas in the SMA (H0) mutation is a tool to
enforce that the embedded Markov chain is irreducible, in
our case nothing prevents mutations from occurring at par
with the selection process.
Consider now a population in which Z individuals may

adopt (be in) one of three possible strategies (states) (σk,
k ¼ 1, 2, 3). This higher dimension problem may call for
higher order approximations, as we discuss next. Each
configuration si ¼ ði1; i2Þ is one in which i1 (i2) individuals
have the strategy σ1 (σ2) (and Z − i1 − i2 have the strategy
σ3). BothG and the stationary distribution can be represented
using the two-dimensional simplex portrayed in Fig. 3. We
consider the evolutionary dynamics of a three-strategy game
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FIG. 2. Same system as Fig. 1. (a) We compare the results of
H0 and H1 with the exact solution. (b) We add one, three, and
five homogeneously distributed points to the H0 COIs, assuming
a flat distribution around each COI. With five equidistant points,
we reproduce the full distribution, disregarding any information
about the dynamics and its fixed points. The vertical line indicates
the value of μ employed in Fig. 1.
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(see the caption to Fig. 3), characterized by an interior saddle
point, while exhibiting both coexistence and coordination
dynamics along the edges of the simplex, a problem
reminiscent of the evolutionary dynamics of multiple
myeloma cancer cells [30,31]. Under H0 (SMA), the
COIs include the three monomorphic configurations [verti-
ces of the triangles and the red solid circles in Fig. 3(a)],
confining the evolutionary trajectories to the edges of the
simplex. Under H1, the COIs now include additional
configurations along the edges, as illustrated by the blue

open circles in Fig. 3(b). Importantly, the criteria adopted in
choosing these COIs follow straightforwardly from the one-
dimensional cases already discussed, given the constraints
that apply to the trajectories at this level of approximation.
At level H2, we add to the COIs one configuration in the

interior of the simplex (in which three strategies are
present), identified by the (interior) solid orange triangle
in Fig. 3(c). The results obtained are shown in Fig. 4, where
we compare the exact solution (the black open circles) with
the results provided by successive orders of approximation,
for a wide range of mutation values. As expected, H0
(SMA) is unable to provide an overall accurate description
of the stationary distribution. As μ increases, the stable
fixed points move away from the vertices, first along the
edges, a feature which is nicely captured at the level of H1,
and subsequently to the interior of the simplex, requiring
one to move to H2.
Notably, bothH1 andH2 provide accurate results for the

average distribution. This, for a large μ, is an artifact of
averaging, as the variance of the distribution will be differ-
ent. Indeed, H1 imposes a dynamics along the edges,
whereasH2 allows exploration of the interior of the simplex.
In summary, as is well known in many areas of science, a

judicious choice of COIs proves instrumental in minimiz-
ing the workload necessary to reach a good description of a
system. In this Letter we show how this concept applies to
nonlinear population dynamics where individuals may be
equipped with complex physical, biological, or social
repertoires. In dealing with population Markov chains, we
establish an approximation order associated with the dimen-
sionality of the simplex points to be included as COIs, an
approach that allows the explicit inclusion ofmutations in the
dynamics, leading to, among other features, an explicit

(a) (b) (c)

H0 H1 H213

2

13

2

13

2

FIG. 3. COIs at different levels of the hierarchical approximation. The arrows represent themost likely direction of evolutionof the system
(the gradient of selection, G, with warm colors representing larger magnitudes), whereas the background gray shading represents the
stationary distribution (darker areas correspond to states with higher probability). As mutation increases, the population explores
configurations deviating gradually from the vertices. For the dynamics and parameters specified below, this trend starts (a) at μ ¼ 10−4,
exploration of the phase space extending mostly along the edges (b) up to μ ¼ 10−2, to finally explore the interior of the simplex for
higher values of μ [μ ¼ 10−1 in (c)]. The probabilities of updates from strategies σi to σj are given by Tðσi→σjÞ ¼
½Z=ðZ − 1Þ&xixjð1 − μÞð1þ eðΔfðσiσjÞÞÞ−1 þ xiðμ=dÞ, withΔfσiσj ¼ βijxðx1 − x(1Þ þ βijyðx2 − x(2Þ, with xi being the frequency of strategy
σj and d the number of accessible strategies, given the restriction of the phase space considered. The parameters are Z ¼ 50, β12x ¼ 2,
β12y ¼ β13x ¼ 10, β23y ¼ −10, β13y ¼ β23x ¼ 0, x(1 ¼ 2=10, and x(2 ¼ 3=10.

A
A
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M

FIG. 4. We plot the average of the stationary distributions as a
function of mutation probability for the system depicted in Fig. 3,
and at different levels of the hierarchical approximation. At the
H0 level (SMA), accurate average values are obtained whenever
μ < 10−5. As mutation increases, the polymorphic configurations
attract higher probabilities, requiring the inclusion of COIs along
the edges of the simplex (H1) and in its interior (H2)—see the
text for details.
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dependence of the weight and location of the fixed points on
μ. Although reminiscent of the approach of Freidlin and
Wentzell [32], these features of our framework make it
different and especially well suited to treat not so large
deviations, mostly when mutations induce deviations with
time scales comparable to those of the dynamical process,
having a direct impact on G, as well as on higher moments.
By dramatically reducing the complexity of the multidimen-
sional Markov processes we aim to describe, the present
framework allows one to retain analytical and/or numerical
tractability, being general in scope, and thus of a potential
applicability in a wide variety of problems that transcend
pure physics applications.
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4Departamento de Matemática e Aplicações da Universidade do Minho, 4710-057 Braga, Portugal

(Dated: December 20, 2016)

Here we elaborate on the method introduced in the main text, which can be used to calculate a
hierarchy of approximations to the stationary distribution of a Markov chain by means of simpler
embedded chains that comprise a reduced number of configuration (configurations of interest, CoI).
The granularity of this procedure can be tuned by moving up or down in the hierarchy, allowing
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I. ON THE SCOPE OF THE METHOD

The examples used in the main text belong to evolu-
tionary game theory, which provides a very convenient
framework to explore the approximation procedure that
we propose given that, on one hand, di↵erent games
lead to very di↵erent phase-space dynamics, while on the
other hand a single parameter – mutation – controls the
probability of jumping between the di↵erent topologically
distinct regions in phase space. More precisely, mutation
allows the system to move from the vertices to the edges
of the phase space simplex, as well as from the edges to
the faces, and so on. In this sense, it is natural that the
simplest (and, in our notation, the 0th-order) estimate of
the stationary distribution at the vertices was coined as
the small mutation approximation (SMA).
Despite our arguments being built on evolutionary

models, we believe the scope of the method reaches far
beyond that and can be applied to a broader class of
problems, of potential interest in several branches of sci-
ence. In fact, the method we propose allows one to
estimate the stationary distribution of a generic dis-
crete Markov process through a corresponding embed-
ded Markov chain whose states are selected (starting)
from the hyperfaces of smallest dimension of the original
phase-space (or simplex) and moving inward, to succes-
sively higher dimensional hyperfaces. The approxima-
tion is hierarchical as one may tune the recursion level of
the state-space reduction, starting from the vertices (0th-
order), to the edges (1st-order), faces (2nd-order) and so
on. This means that it can be adapted to the needs and
features of di↵erent problems.

II. TRANSITION PROBABILITIES BETWEEN
CoI (⇢) IN AN ARBITRARY MARKOV CHAIN

Let us start by laying down the general framework for
an arbitrary chain, defining the transition probabilities

mailto:vvvasconcelos@fc.ul.pt
mailto:fernando.pedro@tecnico.ulisboa.pt
mailto:franciscocsantos@tecnico.ulisboa.pt
mailto:jmpacheco@math.uminho.pt
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between the selected CoI using the transitions stemming
from the full chain. To begin with, it is worth noting that
in any finite chain, the configurations can be counted and
ordered. Thus, we consider a finite set of configurations�
s1, s2, . . . , s

|A|+|B|

 
that, as clarified below, can be di-

vided in those of interest (CoI, here belonging to set A)
and those to be neglected (set B). A time-homogeneous
Markov process happens over this set such that the sys-
tem moves from configuration s

k

to configuration s
l

, in
each step, with a time invariant probability T

sk!sl (or
T
sksl in matrix notation) independent of the configura-

tions it occupied in all previous times.
The goal now is to reduce the number of consid-

ered configurations to those of interest (CoI), A =�
a1, . . . , a

|A|

 
, and calculate the transition probabilities

between each of these selected configurations, ⇢
ai!aj (or

⇢
aiaj ). For this we also need the one-step transition

probabilities T
bnbm between neglected configurations in

B =
�
b1, . . . , b

|B|

 
, the one-step transitions between ne-

glected configurations and CoI, T
bnai , and vice-versa for

T
aibn and, also, the transitions between neglected config-

urations and CoI, which we call P
bn!aj (or Pbnaj ). Thus,

we can write that

⇢
aiaj =

X

{bn}

T
aibnPbnaj + T

aiaj and (1)

P
bnaj =

X

{bm}

T
bnbmP

bmaj + T
bnaj . (2)

If we conveniently order the configurations, placing the
neglected configurations first and then the CoI, we can
make use of matrix notation and algebra. We may write

T = [T
kl

] =


Q R
U V

�
, T

kl

⌘ T
sksl (3)

with Q
mn

= T
bmbn representing one-step transitions be-

tween neglected configurations, R
mi

= T
bmai represent-

ing one-step transitions from neglected configurations to
CoI, U

im

= T
aibm representing one-step transitions from

CoI to neglected configurations and V
ij

= T
aiaj repre-

senting one-step transitions between CoI. Notice that if
there are no adjacent CoI, V = 0. This turns Eqs.(1,2)
into

⇢ = UP+V and (4)

P = QP+R. (5)

Finally, we can write for the transitions between CoI

⇢ = U(1�Q)�1
R+V. (6)

Notice, however, that the calculation of these transi-
tions involves a matrix inversion, which, if calculated nu-
merically, may be ill-conditioned.

Nonetheless, when considering a one dimensional chain
– which turns out to be the cornerstone of our 1st-order

approximation – this expression becomes fairly simple
and exempts the numerical inversion of matrices or the
eigenvector search. After presenting the general frame-
work, we devote a whole a section (VII) to explore this
scenario.

III. USING ⇢ TO COMPUTE STATIONARY
DISTRIBUTIONS OVER CoI AND THE
NECESSITY OF ESTIMATING THE

REMAINING DISTRIBUTION

Let us distinguish between the general process we de-
fined, with transition probability between configurations
s
k

and s
l

, T
sksl , and the process that happens only over

the set of CoI that one gets from using ⇢ as its transition
matrix. Because we calculate transitions between CoI, ⇢,
from the microscopic transitions between all states, T

sksl ,
the two processes must be related. Let us figure out that
relation.
Consider the full Markov chain with transition proba-

bility between configurations s
k

and s
l

, T
sksl . We have

seen that we can writeT as in Eq.(3) and, thus, according
to the Master Equation [1], the stationary distribution of
the system can be obtained as the vector p = {p

b

,p
a

}
whose sum of the entries is 1 and is given by


p
b

p
a

�
=


Q R
U V

�
T


p
b

p
a

�
. (7)

Solving Eq.(7) by substitution we get that, apart from
normalization, the probability of finding the system in
the subset of configurations a

i

, p
a

, is given by

p
a

= ⇢Tp
a

. (8)

This equation for p
a

is exactly the equation of the
stationary distribution of the process concerning only the
CoI and ⇢ as its transition matrix, and this defines the
relation between the two processes.
This result shows that the transitions ⇢, computed in

the previous section as Eq.(6), when used as transition
matrices for the calculation of the stationary distribu-
tion, turn out to give the probability of finding the full
system in each CoI apart from a normalization constant,
which depends on the neglected configurations. Conse-
quently, i) the ratios between the probabilities of being
in each CoI can be easily computed as the ratios of the
unnormalized p

a

obtained in Eq.(8). Moreover, ii) cor-
rect normalization of p

a

requires, at least, an estimate of
the distribution over the neglected configurations.
These points formally clarify our arguments. i) clarifies

why using the SMA – or, in general, an approximation
level lower in hierarchy compared to the dimensionality
of the system – is important, as in this way we already
collect crucial information on the process; ii), in turn,
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calls for our comprehension of the shape of the distribu-
tion around the CoI. That is precisely what we discuss
next.

IV. RENORMALIZATION PROCEDURE

Let us assume that we have |A| CoI, a
i

, of which S cor-
respond to vertex configurations (also called monomor-
phic, see Section VI), and |A|�S to internal stable fixed
points. We can write a continuous stationary probabil-
ity density for the state variable, x = {x1, . . . , xS�1},
which we call P (x). As shown already, we are able
to compute p (a

i

), the non-normalized stationary dis-
tribution over configurations in A computed from the
eigenvector of ⇢, in Eq.(6). Since the probability of be-
ing in a CoI a

i

is ↵�1p(a
i

), where ↵�1 is a normal-
ization constant over the entire phase-space, and given
that this configuration has a range of 1/Z in each of
the S� 1 independent directions, the probability density
at that point must be ↵�1ZS�1p(a

i

). In other words,
P (a

i

/Z) = ↵�1ZS�1p(a
i

), for i = 1, . . . , |A|. A simple
way of collecting this information is by writing

P (x)↵/ZS�1 =

|A|X

i=1

p (a
i

)
f
i

(x)

f
i

(a
i

/Z)
. (9)

The f
i

(x) functions are normalized probability densi-
ties that are non-zero in the neighborhood of x = a

i

/Z,
D [a

i

], and their shape allows one to compute ↵. The
choice of D[a

i

] should take into account the decay of the
function near a

i

, such that includes most of its probabil-
ity, and the union of all D[a

i

] should be the whole phase
space. In general, the boundary of D[a

i

] should estimate
the minimum of the PDF, moving away from a

i

. How-
ever, if the functions decay fast enough, in a way that

their tails do not intersect, one can set all D[a
i

] to the
whole phase-space, avoiding the computation of cumula-
tive distribution functions.
In order to further simplify the procedure, let us com-

pute the weight of each peak, w
ai = s

D[ai]
P (x) dx, and

then use it as the probability of being in configuration
a
i

.
Taking the weights of each peak as the value of the

distribution in that CoI and setting the remaining states
as unoccupied, we may write a discrete counterpart as

P (s) = ↵�1
X

i

p (a
i

)
ZS�1

f
i

(a
i

/Z)
�
sai . (10)

We are left with computing a normalized function f
i

in
a single point that reflects the shape of the distribution
around the CoI. Bellow we deduce the expressions for
di↵erent functions in di↵erent dimensionalities.

V. PDF SOLUTION NEAR AN INTERNAL
STABLE FIXED POINT

Now that we have laid down the general framework, we
can start making some assumption in order to produce
some closed form formulas.
Let us estimate the shape of the probability distribu-

tion function (PDF) near an attractor that corresponds
to a stable fixed point in the infinite dynamics and show
that it can be approximated by a Gaussian function. To
this end, let us keep considering a general phase space
of arbitrary dimension. The system moves from configu-
ration s

k

to configuration s
l

, in each step, with a prob-
ability T

sksl . In general this corresponds to an S � 1
dimensional process with the same properties.
The evolution of the PDF of the process x = i/Z,

p (x, t), is given by the Master Equation [1] below.

p (x, t+ ⌧)� p (x, t) =
X

�

�
p (x+ �, t)T�� (x+ �)� p (x, t)T � (x)

�
, (11)

where T � (x) ⌘ T
Zx,Z(x+�). This, in turn, can be ex-

panded in power series in � ⇠ 1/Z to give

@p

@t
(x, t) = �

X

k

@

@x
k

⇣
D

(1)
k

(x) p (x, t)
⌘

+
X

k

X

k

0

@2

@x
k

@x
k

0

⇣
D

(2)
kk

0 (x) p (x, t)
⌘

+ . . . (12)

where

D
(1)
k

(x) = T k+ (x)� T k� (x) ,with

T k± (x) ⌘
X

�:�k=±1/Z

T � (x) (13)

and

D
(2)
kk

(x) =
1

2Z

�
T k+ (x) + T k� (x)

�
(14)

D
(2)
kk

(x) = � 1

2Z

⇣
T k!k

0
(x) + T k

0
!k (x)

⌘
, k 6= k0(15)
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Here, T t!t

0
corresponds to a transition with � =

{0, . . . , 0, �
t

= �1, 0, . . . , 0, �
t

= +1, 0, . . . , 0}.
If we neglect the remaining terms of the expansion, we

get a Fokker-Planck equation, in which the term D
(1)
t

corresponds to the drift, or gradient of selection, giv-
ing us the most likely direction of evolution of the sys-

tem, whereas the D
(2)
tt

0 term accounts for di↵usion [2].
Thus, it is natural that the system spends a lot a time
around the attractive roots of D(1) as long as di↵usion
is not too high. As a rough approximation, we lin-
earize the gradient of selection, D(1) (x) = J (x� x⇤),
with J the Jacobian matrix of D(1) (x) at x⇤ and set
D(2) (x) = D(2) (x⇤) = D as a constant. Using the gra-
dient, r =

�
@
x1 , . . . , @xS�1

�
, and Hessian, H, operators,

we can write

@p

@t
(x, t) = �r. (J (x� x⇤) p (x, t))

+Tr (H(p(x, t))D) (16)

which corresponds to a multidimensional Ornstein-
Uhlenbeck process, whose stationary solution is a mul-
tivariate normal distribution [1]. This gaussian should,
then, be plugged into Eq.(9) or Eq.(10) as the appropri-
ate f function.

Bellow we explicitly show the equations and solutions
of the normal distribution for 1D and 2D cases as a func-
tion of the transition probabilities, as well as the partic-
ular expression for the population dynamics models we
used in the main text.

A. One dimensional case (two strategies)

The equation for a linear drift or gradient of selection, D(1) (x) = J (x� x⇤), and constant di↵usion D is

0 = � d

dx
(J (x� x⇤) p (x)) +D

d2p

dx2
(x) , p(x) = Normal

�
x; hxi = x⇤,�2

x

= �D/J
�
, (17)

where x⇤ is such that T+ (x⇤)� T� (x⇤) = 0, J = d (T+ (x)� T� (x)) /dx|
x=x

⇤ and D = (T+ (x⇤) + T� (x⇤)) / (2Z) .
For a pairwise Fermi update rule [3, 4], we can write

T+ (x)� T� (x) = (1� µ)
Z

Z � 1
x (1� x) tanh

��f12
2

+ µ (1� 2x) , (18)

T+ (x) + T� (x) = (1� µ)
Z

Z � 1
x (1� x) + µ, (19)

with �f12 representing the fitness di↵erence driving the update of players of trait 1 in relation to trait 2. This
completely defines the parameters of the Gaussion function for any given �f12. For this particular 1D scenario, the
expression of the variance is fairly simple:

�2
x

=
1

2

 
1� 1� µ

µ

Z

Z � 1

�
1
2 � x⇤

�
sinh��f12(x⇤) + x⇤(1� x⇤)��f

0
12(x

⇤)
2

1 + cosh��f12(x⇤)

!
�1

(20)

B. Two-dimensional case (three strategies)

In a population with three strategies, x = (x1, x2) is the configuration of a population with a fraction of individuals
x1 with strategy 1 and x2 individuals with strategy 2 (1 � x1 � x2 is the fraction of individuals with strategy 3).
Setting y = x� x⇤, with x⇤ such that T 1+ (x⇤)� T 1� (x⇤) = 0 ^ T 2+ (x⇤)� T 2� (x⇤) = 0, the equation for a linear
drift or gradient of selection, D(1) (y) = J (y), and constant di↵usion D is

0 = � @

@y1
(J11y1 + J12y2)p(y, t)�

@

@y2
(J21y1 + J22y2)p(y, t) +D11

@2p(y, t)

@y21
+ 2D12

@2p(y, t)

@y1@y2
+D22

@2p(y, t)

@y22
,

p(x, t) =
1p

⇡2det⌃
e�(x�x

⇤)T⌃

�1(x�x

⇤),(21)
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with

⌃11 =
�
2D12J12J22 �D22J

2
12 �D11

�
J2
22 + detJ

��
((trJdetJ)2) (22)

⌃12 = ⌃21 = (2D12J11J22 �D11J21J22 �D22J11J12) ((trJdetJ)2) (23)

⌃22 =
�
2D12J21J11 �D11J

2
21 �D22(J

2
11 + detJ)

�
((trJdetJ)2) , (24)

where

J =


@
x1

�
T 1+ (x)� T 1� (x)

�
@
x2

�
T 1+ (x)� T 1� (x)

�

@
x1

�
T 2+ (x)� T 2� (x)

�
@
x2

�
T 2+ (x)� T 2� (x)

�
�����

x=x

⇤
, (25)

D =
1

2Z


T 1+ (x⇤) + T 1� (x⇤) T 1!2 (x⇤) + T 2!1 (x⇤)

T 1!2 (x⇤) + T 2!1 (x⇤) T 2+ (x⇤) + T 2� (x⇤)

�
. (26)

Again, for a pairwise Fermi update rule, we can write

T k+ (x)� T k� (x) = (1� µ)
Z

Z � 1
x
k

3X

l 6=1

tanh
��f

kl

2
x
l

+
µ

2
(1� 3x

k

) (27)

T k+ (x⇤) + T k� (x⇤) = (1� µ)
Z

Z � 1
x⇤

k

(1� x⇤

k

) +
µ

2
(1 + x⇤

k

) (28)

T 1!2 (x⇤) + T 2!1 (x⇤) = (1� µ)
Z

Z � 1
x⇤

1x
⇤

2 +
µ

2
(x⇤

1 + x⇤

2) , (29)

with �f
kl

representing the fitness di↵erence driving the update of players of trait k in relation to trait l. This set of
equations completely defines the parameters of the Gaussian for any given set of �f

kl

.

VI. PDF SOLUTION NEAR MONOMORPHIC
CONFIGURATIONS

In the previous section we gave functional forms for
the functions that can be used to weight the internal
CoI. Now we look at what happens in the boundaries,
which can also act as attractors and that is why some of
its configurations are usually included in the CoI.

The boundaries are characterized by having at least
one absent strategy, while the remaining coexist. No-
tice that each direction is defined by a pair of interacting
strategies. This means that the shape of the function in
the directions of the coexisting strategies falls into the
previous section, with a reduced number of total strate-
gies, since in those direction the CoI are internal. Thus,
we are left with computing the shape of the function in
the directions where absent strategies invade others.

Because new strategies can only appear through mu-
tation, and the boundaries are only occupied when mu-

tation is small, the simplest shape we can assume for the
distribution around the CoI in the boundary is that it de-
cays immediately to zero, requiring no renormalization,
as the range of the function in that direction is 1/Z and
thus its value is Z, canceling out.
However, one might want to improve this estimation.

Whenever those CoI act as attractors and mutation
is non-zero a tail arises in the distribution, conferring
strength to configurations near the CoI. The solution is
to study the behavior of the system close to the bound-
aries, which will depend on the system at hands.
For the sake of completeness, let us be more strict and

deduce the behavior of the systems we used in the main
text.
Because the configurations corresponding to the ver-

tices only have transitions into the edges, we can start
analyzing the 1D case. There, the evolution of the PDF
of the process i, p (i, t), is given by the appropriate Mas-
ter Equation (11),

p (i, t+ ⌧)� p (i, t) =
X

�

�
p (i+ �, t)T�� (x+ �)� p (i, t)T � (i)

�
, (30)

which has an analytical solution p(i), for its stationary
distribution when considering a one step process,

p (i) = p (0)
i�1Y

l=0

T+
l

T�

l+1

, p (0) =

 
1 +

ZX

i=1

p(i)

!
�1

.(31)
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Typically, when a configuration from the CoI – in
this case a monomorphic configuration – is an attrac-
tor, the stationary probability of the adjacent configura-
tion is smaller than that of the CoI. In this case, and
assuming that the attractor is state 0, we have that
p (0) > p (1) = p (0)T+

0 /T�

1 or T+
0 < T�

1 or, equiva-
lently, µ < T�

1 , reflecting the balance between mutation
and selection of a mutant in a population.

Let us assume a resident (and dominant) strategy R
and a mutant strategy M . If i is the number of individ-
uals with strategy R, the assumption that configuration
0 is an attractor means that the fitness of a mutant in
the population is smaller than that of the individuals in

the populations by an amount �f . For simplicity, let
us make it frequency independent (at least in the region
where the function decays). With these assumptions we
can calculate p (i) and use it to renormalize the probabil-
ity of being in the considered monomorphic state (i = 0).
Assuming a Fermi-update process, we have that T+

i

=
Z�i

Z

⇣
i

Z�1
1�µ

1+e

��f + µ
⌘
and T�

i

= i

Z

⇣
Z�i

Z�1
1�µ

1+e

���f + µ
⌘
.

Using Eq.(12) we obtain a decaying function. Recalling
Eq.(10), we need both the value of the function, p(i), at
0 and the cumulative function to guaranty a distribution
(with a normalization of one) in the selected range D[0].
In this case, the value of the distribution at zero is a
hypergeometric function,

p (0) = 2F1

"
�Z,

�
1 + e���f

�
(Z � 1)

µ

1� µ
;�

(Z � 1)
�
1 + e��fµ

�

1� µ
; e��f

#
�1

, (32)

which can be obtained using Eq.(31) and reads, approx-

imately,
�
1� e��f

�
�(1+e���f)Zµ

. The cumulative func-
tion must be used whenever the decay is not fast enough
and the function penetrates the domain of other attrac-
tors. With the knowledge of the transition to be com-
puted between CoI and the right renormalizations to the
distributions, we have shown all the ingredients present
in the main text.

In general, when there are several strategies in place,
this means that, in order to renormalize the probability
of the monomorphic states, one needs the fitness of each
of the mutants. This fitness should be smaller than that
of the resident population and satisfy Tmutant!resident >
µ

S�1 , for all the S � 1 mutant strategies. If this is not
the case, the state will not be an attractor and no renor-
malization is needed. The same procedure can be used
to calculate more accurately the shape of the attractor
in any boundary in the direction caused by a single mu-
tation.

VII. ONE DIMENSIONAL SYSTEMS:
TRANSITION PROBABILITIES BETWEEN CoI

As promised, we deduce next the expression for Eq.(6)
in a one-dimensional Markov chain.

For a one dimensional one-step Markov chain the phase
space, of size Z + 1, is simply {0, 1, . . . , Z}. This phase-
space is a single line, corresponding to an edge of a multi-
dimensional problem. Because in 1st order only edge
points are included, the following treatment corresponds
to the 1st order correction to the SMA.

The one dimensional process is characterized by allow-
ing transitions only between adjacent states, contrary to
what happens in the general scenario of the previous sec-
tion and the di↵erent notation in the labeling of states is

done to reflect that.
Consider |A| non-adjacent ordered CoI

�
a1, . . . , a

|A|

 
,

and, the remaining, |B| = Z + 1� |A| neglected configu-
rations

�
b1, . . . , b

|B|

 
. Once again, the goal is to reduce

the Markov chain containing the whole phase space to one
containing only the CoI {a

i

} and calculate the transition
probabilities ⇢

aiaj between those configurations as a func-
tion of the one-step transition probabilities of the whole
1D chain T

kl

. Notice that the new simpler chain of CoI is
also a 1D one-step Markov chain, in the sense that each
configuration has two transitions outward, apart from the
two boundary configurations that have only one.
Let T±

k

⌘ T
kk±1 and T 0

k

⌘ T
kk

, ⇢±
ai

⌘ ⇢
aia(i±1)

and
P a

b

⌘ P
ba

(see Fig. 1). In what follows we will use config-
urations and the value of the process in that configuration
interchangeably.
Given two non-adjacent configurations a

i

⌘ L < a
j

⌘
R (Left and Right), we have

⇢+
L

= T+
L

PR

L+1, (33)

meaning that the probability of moving from L to R,
requires a (one step) transition to the right from configu-
ration L (to the neglected configuration L+ 1), T+

L

, and
then eventually going to R from L+1, PR

L+1. To calculate
this term, we write the equations for the probability of
being absorbed by R from any intermediate configuration
b 2 {L+ 1, . . . , R� 1}

PR

b

=T�

b

PR

b�1(1� �
b L+1) + T 0

b

PR

b

+T+
b

PR

b+1(1� �
b R�1) + �

b R�1T
+
b

, (34)

which are known and whose solution is [5]
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ା 𝜌௔మ

ି ൗ𝜌௔మ
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FIG. 1. Illustration of the transition and notation considered in this section. T denotes the one-step transition probabilities
between any pair of adjacent configurations, whereas ⇢ and P denote the long run transition probabilities to configurations in
A departing from, respectively, configurations in set A in set B.

PR

L+1 =

0

@1 +
R�1X

j=L+1

jY

k=L+1

T�

k

T+
k

1

A
�1

. (35)

With this we can define ⇢+
L

as a function of the one
step transitions. Using the same procedure for ⇢� we
can finally write

⇢±
ai

= T±

ai
P

a(i±1)

ai±1 = T±

ai

0

@1 +

a(i±1)⌥1X

j=ai±1

jY

k=ai±1

T⌥

k

T±

k

1

A
�1

.(36)

Now the constraint to non-adjacent CoI can be lifted,
in which case we may write ⇢±

ai
= T±

ai
for adjacent con-

figurations.

VIII. ONE DIMENSIONAL SYSTEMS:
EXAMPLE OF AN INTERNAL STABLE FIXED

POINT

Let us continue with the one dimensional case with
phase space {0, 1, . . . , Z}, of size Z + 1. Let us assume
that we have three CoI, the two monomorphic configu-
rations, a1 = 0 and a3 = Z and a coexistence (stable
fixed point) at a2. Following the general procedure, we
can write a continuous stationary probability density for
the fraction of individuals playing strategy �1, x = i/Z,
which we call P (x). As shown already, we are able to
compute p (a

i

), the non-normalized stationary distribu-
tion over configurations in A computed from the ⇢±

ai
, in

Eq.(36). Since the probability of being in configuration
a
i

is ↵�1p(a
i

), and given that this configuration has a
range of 1/Z, the probability density at that point must
be ↵�1Zp(a

i

), where ↵�1 is a normalization constant.
In other words, P (a

i

/Z) = ↵�1Zp(a
i

), for i = 1, 2, 3. A
simple way of writing this is

P (x)↵/Z = p (a1)
f1 (x)

f1 (a1/Z)
+ p (a2)

f2 (x)

f2 (a2/Z)
+ p (a3)

f3 (x)

f3 (a3/Z)
. (37)

The f
i

(x) functions are normalized probability densities that are non-zero in the neighborhood of a
i

/Z, D [a
i

]. The
simplest choice for f1 (x) and f3 (x) is to let them reflect the peaking in the monomorphic configurations as a constant
with value Z in a range 1/Z – see section VI for further refinements – whereas for f2 (x) we consider a Normal
distribution, N (x), centered at point a2/Z with variance �2. This defines an estimate of the distribution. In order

to further simplify the procedure, let us compute the weight of each peak, w
ai = s

D[ai]
P (x) dx, and then use it as the

probability of being in configuration a
i

.

w1 =

Z 1/Z

0
↵�1Zp(a0)

1/Z

1/Z
dx = ↵�1p(a1), (38)

w2 =

Z 1�1/Z

1/Z
↵�1Zp(a2)

N(x)

N(a2/Z)
dx = ↵�1Zp(a2)

p
2⇡�2

1

2

✓
Erf


a2/Z � 1/Zp

2�2

�
+ Erf


1� a2/Z � 1/Zp

2�2

�◆
, (39)

w3 =

Z 1

1�1/Z
↵�1Zp(a3)

1/Z

1/Z
dx = ↵�1p(a3). (40)

where �2 can be derived from the transition probabilities T+
x

and T�

x

around a2/Z as �2 = F/ |J | with J =

d (T+
x

� T�

x

) /dx|
x=a2/Z

and F =
⇣
T+
a2/Z

+ T�

a2/Z

⌘
/ (2Z) (see section VA).
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Notice that collapsing the weight of the distribution around the fixed point is particularly useful if one is interested
in computing the first moment.

Furthermore, if 0 < a2/Z ± 2� < 1, then w2 = ↵�1Zp(a2)
p
2⇡�2. Taking the weights of each peak, we may write

a discrete counterpart as

P (i) = ↵�1
⇣
p (a1) �ia1 + Z

p
2⇡�2p (a2) �ia2 + p (a3) �ia3

⌘
(41)

where ↵ =
⇣
p (a1) + Z

p
2⇡�2p (a2) + p (a3)

⌘
.

Indeed, for the average we get

hi/Zi = ↵�1
⇣p

2⇡�2p (a2) a2 + p (a3)
⌘
. (42)

Also, one could use Eq.(41) to compute the second moment, but since we already know the variance of the Gaussian,
we can use Eq.(37) to get an estimation of the variance of any 1D process with a single fixed point. For 0 < a2/Z±2� <
1 the expression is can also be simplified to

var
i/Z

= ↵�1
⇣
hi/Zi2 p(a1) + �3Z

p
2⇡p (a2) + (1� hi/Zi)2p(a3)

⌘
. (43)
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0.0
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FIG. 2. Stationary distributions resulting from a Coordina-
tion game (f = �0.7, g = �0.3). We use the same notation
and conventions as in Fig.1 in the main text.

IX. ONE DIMENSIONAL SYSTEMS:
EXAMPLE OF AN INTERNAL UNSTABLE

FIXED POINT

Whenever the game at stake is not one of coexistence
(see main text) but, instead, one of coordination, our
approach remains unchanged. In Fig.2-a we show results
for a coordination game, embodying both payo↵ and risk-
dominant equilibria, of ubiquitous importance in areas as
diverse as Economics, Econo-Physics, Biology and Phi-
losophy [6, 7]. In this case, the evolutionary dynamics is
characterized by the occurrence of a probability repeller
at i⇤ = 35.

Fig.2-c shows that SMA (H0) leads to a much bet-
ter scenario under coordination than under coexistence,

leading to very good results up to µ ⇡ 1/Z. However,
as µ increases, deviations inevitably occur (Fig.2-a), and
SMA fails whenever µ > 10�0.5. In Fig.2-b we show the
H1 results after adding two configurations to the CoI.
These, again, are trivial to find, being associated with
the probability attractors that are roots of G(i) close to
the monomorphic states. Naturally, these two roots will
depend on µ and their location should be determined for
each value of µ. Once this choice is made, we merely
repeat the procedure described and already adopted to
produce Figs.1 and 2 in the main text. As Fig.2-c shows,
H1 leads to an excellent agreement between the hierar-
chical approximation and the exact solution.

X. SUMMARY AND GENERAL PROCEDURE

Our approach attempts to describe the dynamics and
steady state solution of the system by following a series
of systematic steps:

1. Investigate the existence of stable fixed points,
based on the gradient of selection dynamics.
Choose the desired order of approximation (order
n or Hn-approximation), in which at most n + 1
strategies are present in the population. These con-
figurations, together with the monomorphic config-
urations, are named configurations of interest (CoI)
and compose the set called A, making SMA the H0-
approximation.

2. Calculate the transition probabilities ⇢
aiaj between

all configurations in A. Then, compute the (un-
normalized) stationary distribution given the re-
duced Markov chain whose configurations and tran-
sition probabilities are, respectively, the configura-
tions in A and the transitions just calculated.
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3. Build a normalized stationary distribution by
renormalizing the stationary distributions calcu-
lated in point 2 with a normalization factor deduced
either from properly linearizing the system close to
those points (presented in the main text and de-
tailed in sections IV, V and VI above) or using the
collected information to estimate the distribution
over the neglected configurations.

Each of these points encompasses advantages and lim-
itations. Point 1 reflects the limitations of stopping the
expansion. Whenever there are stable fixed points more
internal than the phase space considered in a given term
of the expansion, its validity only holds for lower muta-
tion rates, which was the original problem of the SMA.
Nonetheless, we are able to incorporate, without signif-
icant increase in computational cost, the ability to take
into account fixed points along the edges of the phase
space. This evidences the fact that higher order approx-
imations come with a computational cost. It is worth
mentioning that, in the expressions deduced, we assume
that the distribution near the monomorphic configura-
tions either adopts the shape of a delta function, or a
decaying function resulting from frequency independent
mutant disadvantage. Moreover, we regard the distribu-
tion near the stable fixed points as displaying the symme-
try properties of a Gaussian curve, which may not be the
case. Ways to improve both matters can be introduced
in order to attain results with higher precision, whenever
necessary.

In the main text, in order to compute the stationary
distribution at di↵erent orders of µ (the mutation pa-
rameter), we estimate the behavior of that distribution
employing an approximation of the Master Equation as a

Fokker-Planck equation near the stable fixed points. As
we show above, this consists in using a normal distribu-
tion near the stable fixed points and delta – or rapidly
decaying – functions on the borders. Naturally, these es-
timates can be improved by studying, for instance, the
discrete version of the equations, or by taking into ac-
count the influence of the borders.

Additionally, if analytical tractability is not an issue,
when dealing with step 3, one might use Eq.(7) to com-
pute p

b

, the distribution over the neglected configura-
tions. Notice that this computation is done over the re-
stricted phase-space of any given order in the hierarchy
and, thus, has the same complexity of the computation of
the transitions between CoI. In particular, if one inverts
(1�Q) to compute ⇢, as a consequence of Eq.(6), the
bulk of the calculations have already been done in that
step and, given that we have already computed p

a

, using
Eq.(8), we have that

p
b

= (1�Q)�1Up
a

. (44)

Nonetheless, this approach may not be so easy to do in
general, especially for higher orders in µ, which increase
the dimensionality of the phase-space taken in consider-
ation.
Finally, it is worth to point out that the accuracy of the

numerical implementation of our method is not a closed
problem and it will depend on the population model con-
sidered. Depending on the complexity of the problem un-
der study, computer simulations can and should be used
to assess the validity of the approximation.
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