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1. Evolutionary dynamics in infinite populations 

1.1. Overview 

   Given that most mathematical terminology of population dynamics has been proposed 

for the case of infinite populations [1, 2], we shall ground our analysis of evolutionary 

dynamics resulting from repeated group interactions on the dynamics obtained from 

infinitely large populations. In section 2, this discussion will be extended to arbitrary 

population sizes.  

   Let us assume an infinitely large, well-mixed population. Groups of N individuals, 

sampled randomly from the population, interact in repeated NPD’s. There are two game 

strategies: AD and RM. RM players always contribute in the first round. Subsequently, 

they contribute only if at least M players did contribute in the previous round. ADs 

always opt for defection. We use x to denote the fraction of the population playing RM. 

The expected average payoff associated with each strategy is given by [3-5]  

.          (1) 

! 

"RM
(k)  (

! 

"AD (k)) denotes the expected net payoff a RM (AD) player acquires in a group 

with k RM players and N-k AD players. These payoff values are defined as follows 

! 

"AD (k) =
Fkc
N

1+#(k $M) %r& $1( )[ ]
"RM

(k) ="AD (k) $ c 1+#(k $M) %r& $1( )[ ]
                    (2) 

where 

! 

"r#  is the average number of rounds and  the Heaviside step function 

(

! 

"(x < 0) = 0 and 

! 

"(x # 0) =1).  

The payoff of an individual measures the success of his/her strategy in the population. 

Successful strategies spread; the rest disappears. The replicator equation [1] 
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! 

˙ x = x(1" x)( fR M
" fAD )                                      (3) 

describes this dynamical process. The roots of the fitness difference 

! 

Q(x) " fRM
(x) # fAD (x)  determine the non-trivial equilibria of the replicator dynamics. 

In the following section we detail the analysis of  showing that it can be written as 

! 

Q(x) = c(" #1) + c($r% #1)R(x) ,                                (4) 

with 

! 

" = F N  and 

! 

R(x) = ("M #1)
N #1
M #1
$ 

% 
& 

' 

( 
) xM #1(1# x)N #M + (" #1)

N #1
k

$ 

% 
& 

' 

( 
) 

k=M

N #1

* xk (1# x)N #k#1. (5) 

We also prove several properties of the polynomial R(x) that allow us to come up with a 

detailed analysis of the roots of Q(x). This analysis consists of a general part, valid for 

1<M<N, and the degenerate cases M=1 and M=N.  

 

Fig. S1. Classification of all possible dynamical scenarios when evolving an infinitely 
large population of RM and AD as a function of M, N, w and 

! 

" = F N . A fraction x of 
an infinitely large population adopts the strategy RM; the remaining fraction 1-x adopts 
AD. The replicator equation describes the evolution of x over time. Solid (open) circles 
represent stable (unstable) equilibria of the evolutionary dynamics; arrows indicate the 
direction of selection. (a) Defection dominates if 

! 

" < 1 M , irrespective of the other 
parameters. (b) If 

! 

1 M < " <1, there can be either zero, one or two interior equilibria, 
depending on the value of w, M and N. (c) Cooperation is dominant if 

! 

" >1. (d) Each 
curve shows the position of the roots of the fitness difference 

! 

Q(x)  as a function of F for 
a particular value of M. It illustrates the dynamical scenarios pictures on the left panels, 
and is qualitatively similar to those shown in Fig. 1 of the main text (

! 

w = 0.8, N = 5).  
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Fig. S1 illustrates the resulting classification of the different dynamical scenarios. If 

! 

1 < M < N , 

! 

R(x) attains a maximum at 

! 

x =
"M #1
"N #1

. Furthermore,  increases 

monotonically between 0 and , and decreases monotonically between 

! 

x  and 1. Then: 

(i) for , we have 

! 

Q(x) > 0 , for all 

! 

x " 0,1[ ] ; (ii) for , we have 

! 

Q(x) < 0 , for all 

! 

x " 0,1[ ] ; (iii) for 

! 

1 M < " <1 and 

! 

"r# <1+
1$ %
R(x )

& r , we have 

! 

Q(x) < 0 , for all 

! 

x " 0,1[ ] ; (iv) for 

! 

1 M < " <1 and 

! 

"r# = r , 

! 

Q(x)  has a double root 

at 

! 

x = x  ; (v) for 

! 

1 M < " <1 and 

! 

"r# > r , 

! 

Q(x)  has two simple roots 

! 

{xL
* ,xR

* } , 

! 

xL
* " ] 0,x [  and 

! 

xR
* " ]x ,1[ . 

! 

xL
*  is unstable because 

! 

Q'(xL
* ) > 0, 

! 

xR
*  is stable because 

! 

Q'(xR
* ) < 0 .   

If M=N, our analysis consists of five cases again. The first three are exactly the same as 

for 1<M<N, discussed in the previous paragraph. The final two read as follows: (iv) for 

! 

1 M < " <1 and 

! 

"r# = r , 

! 

Q(1) = 0  and 

! 

Q(x) < 0  for all 

! 

x " 0,1[ [; (v) for 

! 

1 M < " <1 and 

! 

"r# > r , 

! 

Q(x)  has one simple root in 

! 

x* " 0,1] [ . 

! 

Q(x) < 0  for 

! 

x" 0, x*[ [ and 

! 

Q(x) > 0  for 

! 

x" x*,1] ]. 

If M=1, RM is essentially the same as unconditional cooperation, making the analysis 

independent of . There are only two cases: (i) for , we have 

! 

Q(x) > 0 , for all 

! 

x " 0,1[ ] ; (ii) for 

! 

" <1, we have 

! 

Q(x) < 0 , for all 

! 

x " 0,1[ ]. 

 

1.2. Detailed analysis of Q(x) 

In section 1.1 we sketch the evolutionary dynamics of an infinitely large, well-mixed 

population of individuals playing the repeated N-person Prisoner’s Dilemma (NPD). 

Here, we study in detail the direction of evolution by analyzing the fitness difference 
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! 

Q(x) " fRM
(x) # fAD (x) . The population is in equilibrium when 

! 

Q(x) = 0 . Evolution 

favors RM (AD) players if 

! 

Q(x) > 0  (

! 

Q(x) < 0 ). Following Equation (1), 

! 

Q(x)  equals 

! 

Q(x) =
N "1
k

# 

$ 
% 

& 

' 
( xk (1" x)N "k"1 )RM

(k +1) ")AD (k)( )
k=0

N "1

* .   (6) 

The payoff differences in this equation are given by (see Equation (2)) 

! 

"RM
(k +1) #"AD (k) ="AD (k +1) #"AD (k) # c 1+ (r #1)$ (k +1#M)( ) . (7) 

Note that we use r as a shorter notation for the average number of rounds 

! 

"r# . The 

payoff difference at the right-hand side of Equation (7) is given by  

, (8) 

so that Equation (7) reduces to 

.  (9) 

This allows us to rewrite Equation (6) as follows 

.   (10) 

Since 

, (11) 

we have that  
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. 

(12) 

By introducing the polynomial  

,  (13) 

 can be written as follows 

.      (14) 

In the following section, we analyze the shape of , assuming , later on 

followed by the analysis for the degenerate cases  and . Together, these 

results prove the classification of all possible dynamical scenarios shown in Fig. S1. 

1.2.1. Analysis for 1<M<N 

The following lemma facilitates proving the main result of this section, comprised in 

Proposition a.1. 

 

Lemma a.1 Let . The polynomial  satisfies following properties 

1)  

2)  

3)  attains a maximum at . Moreover,  for all  and 

 for all . 

Proof: The first two properties follow immediately from the definition of . We 

now prove the third property. First we rewrite  as follows 
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. (15) 

By substituting  by , we obtain 

,    (16) 

where . The polynomial  is of the form , with 

.   (17) 

Noting that 

! 

z'= " 1
x 2

= "
z +1
x

, we obtain the following expression for 

! 

R'(x) 

! 

R'(x) = (N "1)xN "2p(z) " xN "2p'(z)(z +1)
= xN "2 (N "1)p(z) " p'(z)(z +1)[ ]

= xN "2 (N "1) aiz
i

i=0

N "M

# " iaiz
i

i=1

N "M

# " iaiz
i"1

i=1

N "M

#
$ 

% 
& 

' 

( 
) 

= xN "2 (N "1)a0 " a1 + (N "1) aiz
i

i=1

N "M

# " iaiz
i "

i=1

N "M

# iaiz
i"1

i=2

N "M

#
$ 

% 
& 

' 

( 
) 

= xN "2 (N "1)a0 " a1 + (N "1) aiz
i

i=1

N "M

# " iaiz
i "

i=1

N "M

# (i +1)ai+1z
i

i=1

N "M "1

#
$ 

% 
& 

' 

( 
) 

= xN "2 (N "1) aiz
i

i=1

N "M

# " iaiz
i "

i=1

N "M

# (i +1)ai+1z
i

i=1

N "M "1

#
$ 

% 
& 

' 

( 
) 

* xN "2S(z)

.     (18) 

The polynomial 

! 

S(z)  can be further simplified  

! 

S(z) = (M "1)aN "M z
N "M + MaN "M "1 " (N "M)aN "M[ ]zN "M "1

+ (N " i "1)ai " (i +1)ai+1[ ]
i=1

N "M "2

# zi
.  (19) 
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For 

! 

1 " i " N #M # 2, the coefficients 

! 

ai  satisfy the recurrence relation 

! 

ai+1 = (" #1)
N #1
i +1

$ 

% 
& 

' 

( 
) 

= (" #1) N #1# i
i +1

N #1
i

$ 

% 
& 

' 

( 
) 

=
N #1# i
i +1

ai

,     (20) 

so that 

! 

(N " i "1)ai " (i +1)ai+1[ ]zi = 0
i=1

N "M "2

#     (21) 

and 

! 

S(z) = (M "1)aN "M z
N "M + MaN "M "1 " (N "M)aN "M[ ]zN "M "1

= (#M "1)
N "1
N "M
$ 

% 
& 

' 

( 
) z " #M

N "1
N "M "1
$ 

% 
& 

' 

( 
) 

* 

+ 
, 

- 

. 
/ (M "1)zN "M "1 .  (22) 

Therefore, we can write the derivative of 

! 

R(x) as follows 

! 

R'(x) = xN "2 (#M "1)
N "1
N "M
$ 

% 
& 

' 

( 
) z " #M

N "1
N "M "1
$ 

% 
& 

' 

( 
) 

* 

+ 
, 

- 

. 
/ (M "1)zN "M "1

= M(M "1)
N "1

N "M "1
$ 

% 
& 

' 

( 
) xM "1(1" x)N "M "1 #M "1

N "M
z " #

* 

+ , 
- 

. / 

.  (23) 

It is clear that 

! 

R'(x) vanishes at  

! 

z = "(N # M)
"M #1

=
"N #1
"M #1

#1
.      (24) 

Since 

! 

z =
1" x
x

=
1
x
"1, 

! 

z  corresponds to 

! 

x =
"M #1
"N #1

.       (25) 

Following Equation 23, 

! 

R'(x) > 0 for 

! 

z > z  and 

! 

R'(x) < 0 for 

! 

0 < z < z . The function 

! 

z =
1" x
x

 decreases monotonously and maps 

! 

0,1] [ on 

! 

0,"] [ . Hence, the interval 
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! 

0 < z < z  corresponds to 

! 

x < x <1. The region 

! 

z > z  corresponds to 

! 

0 < x < x . This 

proves the third property of Lemma a.1. !  

 

Proposition a.1 Let .  satisfies the following properties: 

1) If , then there is a critical number of rounds  which 

determines the behavior of : 

i) If , then  for al . 

ii) If , then  has a double root at .  

iii) If , then  has two simple roots ,  

with  and . 

2) If , then  for al . 

3) If , then  for al .  

Proof: 

1.i) Let . We obtain the following inequality by applying Lemma a.1 

! 

Q(x) = c(" #1) + c(r #1)R(x)
< c(" #1) + c(r #1)R(x )

= c(" #1) + c(r #1)1# "
r #1

= 0

,    (26) 

for all 

! 

x " 0,1] [. At the boundaries of the interval 

! 

0,1[ ], we have 

! 

Q(0) = c(" #1) < 0  and 

! 

Q(1) = cr(" #1) < 0. Hence, 

! 

Q(x) < 0  for all 

! 

x " 0,1[ ]. 

1.ii) For 

! 

r = r , we have 

! 

Q(x ) = c(" #1) + c(r #1)R(x )

= c(" #1) + c
1# "
R(x )

R(x )

= 0

.    (27)  
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 To prove that  is a double root, we show that  and . The existence 

of a root  in  follows directly from Equation 9 and Lemma a.1: 

. To find the value of , we first derive an expression for 

. We know from Equation 18 that . The second derivative of 

 is therefore given by 

.    (28) 

Calculating the derivative of  gives us 

.  (29) 

Since , it follows that 

,     (30) 

which proves that  is a double root. 

1.iii) For , we have  

.    (31) 

Since  and , the Intermediate Value Theorem 

predicts that  will have at least two roots: one root  in  and another root  

in . Since  has only one root (see Lemma a.1), at ,  cannot have more 

than two roots. Hence,  increases monotonically in  and decreases 

monotonically in . 

2) For ,  is positive in 0, 1, and :  

.     (32) 
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Since  increases monotonically in  and decreases monotonically in , it 

follows automatically that  for all . 

3) For , then . Therefore,  decreases monotonically between 0 and 1. 

Since  and , it follows that  for all 

. !  

1.2.2. Analysis for M=N 

Let us derive an expression for , which is valid for , starting from Equation 

(6). By calculating the fitness differences  

  (33) 

and 

,   (34) 

we arrive at the following expression for : 

.  (35) 

 

Proposition b.1 Let .  satisfies the following properties: 

1) If , then there is a critical number of rounds  which 

determines the behavior of : 

i) If , then  for al . 

ii) If , then  and  for al .  
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iii) If , then  has one simple root  in .  for  

and  for . 

2) If , then  for al . 

3) If , then  for al . 

Proof: The last two properties follow directly from Equation (35). We now prove the 

first property. Note that  increases monotonously if . Therefore,  

has one single root if and only if  and . This condition  is 

always true for . The other condition, , holds in case . 

!  

1.2.3. Analysis for M=1 

For M=1, Equation (4) reduces to  

! 

"RM
(k +1) #"AD (k) = ($ #1)cr .    (36) 

Therefore, 

,   (37) 

which proves the proposition below. 

 

Proposition c.1 Let M=1. Q(x) satisfies the following properties: 

1) If , then  for al . 

2) If , then  for al . 

 



Van Segbroeck, Pacheco, Lenaerts and Santos, Emergence of fairness in repeated group interactions,  
Supplemental Material (SM). 

 Supplemental Material — page 13 

2. Evolutionary dynamics in finite populations 

2.1. Overview 

We consider a well-mixed population of constant size Z. Suppose that only two 

strategies are present in the population: AD and RM, M being fixed at one specific value. 

The expected payoff associated with each of these two strategies is given by [3, 4] 

,                  (38) 

where k denotes the number of RM players in the population. 

Strategies evolve according to a mutation-selection process defined in discrete time. At 

each time step, the strategy of one randomly selected individual A is updated. With 

probability , A undergoes a mutation. He/she adopts a strategy drawn randomly from 

the space of available strategies, which includes the strategy AD and the N strategies RM 

( ). With probability , another randomly selected individual B acts as a 

role model for A. The probability that A adopts the strategy of B 

equals

! 

p = 1+ e" ( fA # fB )[ ]#1 . A sticks to his/her former strategy with probability . 

This update rule is known as the pairwise comparison rule [6, 7]. We used fA and fB to 

denote the fitness of individual A and B, respectively. The parameter , in EGT 

called the intensity of selection, measures the contribution of fitness to the update 

process. In the limit of strong selection ( ), the probability p is either zero or one, 

depending on fA and fB. In the limit of weak selection ( ), p is always equal to , 

irrespective of the fitness of A and B.  

If the mutation probability  is sufficiently small, the population will never contain 
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more than two different strategies simultaneously. The time between two mutation 

events is usually so large that the population will always evolve to a homogeneous state, 

i.e., to a state in which all individuals adopt the same strategy, before the next mutation 

occurs. The dynamics can now be approximated by means of an embedded Markov 

chain whose states correspond to the different homogeneous states of the population [8-

11]. Let us denote the list of available strategies as Si ( ). The transition 

matrix  collects the different (transition) probabilities for the 

population to move from one state to the other. Specifically,  is the probability that a 

population in state Si will end up in state Sj after the occurrence of one single mutation. 

This probability is given by , where  is the probability that a Sj 

mutant takes over a resident population of Si individuals. The diagonal of the transition 

matrix is defined by . The normalized left eigenvector associated 

with eigenvalue 1 of matrix  determines the stationary distribution, i.e, the fraction of 

time the population spends in each of the homogeneous states of the population [12, 

13]. 

The fixation probability  can be calculated analytically as follows. Let us assume a 

population with k Si individuals and Z-k Sj individuals. The probability that the number 

of Si individuals increases/decreases by one is given by  

,    (39) 

establishing also the probability  [6, 7, 14] 

 .     (40). 
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   Finally, it is important to highlight the difference between behavioural mutations and 

execution or implementation errors. In this context, the latter turns the analytical 

computation of the fitness values of each strategy cumbersome (see Eqs. (2) and (38)), 

being however easy to compute numerically. In fact, all results portrayed in Fig. 2 of the 

main text remain qualitatively unaltered if one adopts a small probability (!) associated 

with a limited fraction of implementation errors. 

2.2. Computer simulations 

All individual-based computer simulations start from a randomly initialized population 

of size . The population dynamics is implemented following the rules described 

above. We calculate the fitness of an individual by averaging the payoff he/she acquires 

in 1000 NPD’s with randomly selected partners. We have checked that the obtained 

values provide a good approximation of the actual expected payoff values, which are 

given by Equation (38) in case of just two strategies. The stationary distributions shown 

in Fig. 3 of the main text are computed as the configuration of the population averaged 

over the entire simulation time (109 iterations). We do 30 independent runs for each 

value of . The value of !=0.05 reflects a convenient choice in terms of computation 

time, but similar results are obtained if we adopt the selection of strength (!=1.0) used 

in the rest of the figures (see stationary distributions in Fig. 2 and dashed lines in Fig. 

3b). 
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