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Abstract. Whether by nature or nurture, humans often respond dif-
ferently when facing the same situation. Yet, the role of behavioral dif-
ferences between individuals when immersed in their social network re-
mains largely ignored in most problems of natural and social sciences.
Here, we investigate how diversity in the way individuals assess their
adverse social partners affects the evolution of cooperation. We resort
to evolutionary game theory (EGT) to describe the dynamics of pop-
ulations in which individuals interact according to an adaptive social
network and may respond differently to unwanted social interactions.
We show that increasing the number of ways of responding to adverse
ties in the population always promotes cooperation. As such, adaptive
social dynamics and behavioral differences benefit the entire community
even though myopic individuals still act in their own interest. As de-
fectors are wiped out, surviving cooperators maintain the full diversity
of behavioral types, providing the means to establish cooperation as a
robust evolutionary strategy.
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1 Introduction

Cooperative behavior constitutes the hallmark of human society [8]. We tend to
help others, even if providing such help is costly. However, often it is advanta-
geous to accept all help offered by others without ever giving anything in return,
creating the famous paradox of cooperation. The framework of EGT [7] conve-
niently formulates the problem by representing interactions between individuals
in terms of simple games, like the two-person prisoner’s dilemma [13], where
each individual has the choice to either cooperate or defect. Individuals receive
a certain payoff upon interaction, whose value depends on their own action and
on that of their partner. The payoff they accumulate after interacting with all
their contacts measures their fitness and represents their social success. Those
that do well will be imitated and their behavior spreads in the population.
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Often one considers a black and white world with only unconditional co-
operators (C’s) and unconditional defectors (D’s). The fate of each strategy is
determined by the payoff values characterizing the game being played. Mutual
cooperation leads to a reward R for both individuals, mutual defection to a
punishment P . A C interacting with D receives a suckers payoff S, whereas the
D gets a temptation to defect T . The fingerprint of the prisoner’s dilemma is
associated with the payoff ranking T > R > P > S: joint cooperation is threat-
ened by the temptation to defect towards a cooperator and by the fear of being
betrayed by cooperating against a defector. In infinite, well-mixed populations
evolution will always drive C’s to extinction [4,2].

This scenario drastically changes when one takes the specific structure of
modern networks of interaction and cooperation into account [10,16]. It has, for
instance, been shown that heterogeneity in the role and position of individuals in
social networks promotes strong levels of cooperation [14,16,17]. This effect even
enhances when one recognizes that interaction networks are dynamic entities [6],
whose structure co-evolves with the individual behavior [15,12,18]. Up to now,
however, the C’s and D’s that continuously reshape their interaction network
exhibit no differences in the way they manage their contacts. This situation con-
trasts with our everyday experience, where we recognize a continuous behavioral
spectrum: Two C’s (D’s) may react differently when confronted with the same
unfavorable situation. Their context in the social web will usually reflect a sin-
gular melting pot of influences, from culture, environment, family, acquaintances
and friends, which together trigger a wide range of responses among individuals
in the population [1]. In this work, we study how variability in the spectrum of
possible reactions to adverse ties influences cooperation among humans along
the links of the social web.

2 The Model

Consider a population described in terms of a network with constant number
of nodes N . Every node represents an individual, every edge an interaction be-
tween the two individuals it connects. The number of edges changes in time as
individuals continuously seek new interactions while abandoning old ones. The
lifetime of each interaction depends on the behavior of both individuals involved,
coupling the network dynamics with the behavioral (strategy) dynamics. Irre-
spective of one’s game strategy (C or D), interacting with a C always leads to
a higher payoff than interacting with a D (S < R and P < T ). Individuals
will therefore be satisfied about their connections with C’s and would like to
maintain these as long as possible. Connections with D’s, on the other hand,
can be considered as adverse and will be broken at different rates, determined
by the individuals’ linking strategy. We introduce behavioral diversity by con-
sidering M (usually many) different linking strategies, and study the entangled
co-evolution of game strategy and linking strategy with the self-organization of
the population structure.
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Let us denote the combined game and linking strategies as Si, with i ∈
{1, . . . , 2M}. We assume for simplicity that all individuals seek new interactions
with same propensity α, independent of their game or linking strategy. New links
are therefore formed at rate α2. Links connecting Si individuals with Sj individ-
uals disappear at rate κij = 1

2 (γij +γji), where γ−1
ij (γ−1

ji ) is the average time Si

(Sj) individuals would attribute to links with Sj (Si) individuals. The value γij

reflects whether Si individuals are satisfied or dissatisfied with their links with
Sj individuals. When satisfied, γij is taken as the minimum value γ among all
γij . When dissatisfied, on the other hand, γij is given by the linking strategy of
Si individuals and satisfies γij ≥ γ. The corresponding linking dynamics of the
network can be described by a set of ordinary differential equations [11,12]:

L̇ij = α2(Nij − Lij)− κijLij , (1)

where Lij (respectively, Nij) is the number (respectively, maximum number) of
edges connecting Si individuals with Sj individuals. These differential equations
lead to a stationary distributions of links given by L∗ij = Nijφij , where φij =
α2(α2+κij)−1 denotes the fraction of active links between Si and Sj individuals.

Strategies spread in the population according to a mutation-selection process
defined by the pairwise comparison rule [20,22]. At every strategy update, an in-
dividual A is drawn randomly from the population. With probability µ, he adopts
a strategy selected randomly from all 2M available strategies. With probability
1− µ, fitness determines whether he adopts the strategy of a randomly selected
individual B, i.e., A imitates B with probability pAB = (1+eβ(fA−fB))−1, where
fX denotes the payoff accumulated by player X after playing a one-shot game
round with each neighbor in his network of contacts. The value β (≥ 0) con-
trols the intensity of selection. The limit β → ∞ leads to imitation dynamics
in which the individual with the lower payoff always adopts the strategy of the
one with the higher payoff. When β � 1, the process becomes equivalent to the
weak-selection limit of the frequency dependent Moran process [9].

When the time scale for network updating (τa) is much faster than that for
strategy updating (τe), the steady state of the linking dynamics determines the
configuration of an individual’s neighborhood every time he updates his strategy.
In this limit, the fitness of an Si individual is given by [12]:

fi =
�

j

aijφij(Nj − δij), (2)

where A = [aij ]i,j=1,...,2M is the game payoff matrix and Nj the number of Sj

individuals. This is mathematically equivalent to the fitness of an Si individual
playing a game specified by the rescaled payoff matrix

B = [bij ]i,j=1,...,2M = [aijφij ]i,j=1,...,2M (3)

in a finite, well-mixed population (complete network). This allows us to com-
pute analytically the probability (fixation probability) ρij that an individual
with strategy Si takes over a population of N − 1 individuals with strategy Sj ,
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assuming that meanwhile no additional strategies appear because of mutations.
Following [22],

ρij =
Erf(ξ1)− Erf(ξ0)
Erf(ξN )− Erf(ξ0)

(4)

with Erf (x) = 2√
π

� x
0 dye−y2

, ξk =
�

β
µ (ku + v), 2u = bii − bij − bji + bjj and

2v = bjj + bijN − bjjN − bii. Computer simulations show that results obtained
under the fast linking assumption (τa � τe) remain valid for a much wider range
of time scales than one would expect from theoretical considerations [12].

As we address the role of behavioral diversity in this work, we will typi-
cally consider more than two possible strategies (M > 1), which precludes an
analytical description of the stochastic evolutionary dynamics for arbitrary mu-
tation rates. By assuming that mutations occur only rarely, we can analytically
describe the system in a compact form [5,3]. The evolutionary dynamics does
no longer proceed in the entire 2M -dimensional strategy space, but only along
its boundaries, where there are never more than two different strategies present
simultaneously. Indeed, as long as no mutations occur, stochastic update dynam-
ics always drives the population to a homogeneous state (monomorphic popula-
tion), i.e., a state in which only individuals of one particular strategy survive.
Assuming a monomorphic population, a specific new strategy will show up with
probability µ

2M−1 and to the extent that µ is sufficiently small, this mutant will
go extinct or will fixate before any new mutation occurs. We can approximate
this system by a Markov Chain with only 2M states, each state correspond-
ing to a certain homogeneous state of the population. The probability that the
appearance of a random mutant in a state with otherwise only Si individuals
moves the population to a state with only Sj individuals defines the transition
probability between the corresponding states of the Markov Chain. These prob-
abilities define the transition matrix Λ of the Markov Chain, which is given by
Λ = [Λij ]i,j=1,...,2M , where Λii = 1− 1

2M−1

�2M
k=1,k �=i ρki and Λij = ρji

2M−1 (j �= i).
The normalized left eigenvector of the unit eigenvalue of Λ defines the stationary
distribution, i.e., the fraction of time the population spends in each of the avail-
able strategies. The stationary distributions obtained using this small-mutation
approach also hold for larger mutation rates, as also shown in [3].

3 Results

The most simple configuration is the one in which there are only two different
linking strategies (M = 2): Individuals break up adverse connections either at
a slow rate γS , or at a fast rate γF . In combination with the game strategy
we obtain a total of four different strategies: slow C’s (SC’s) and D’s (SD’s),
whose adverse interactions last long, and fast C’s (FC’s) and D’s (FD’s), whose
adverse interactions are short lived. Following Equation (3), we obtain the payoff
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Fig. 1. Transition probabilities and stationary distributions for a population
with M = 2 (a) and M = 10 (b) different linking strategies. In the limit of rare
mutations, the dynamics reduces to transitions between homogeneous states of the
population [5,3]. The arrows indicate those transitions for which the fixation probability
is greater than neutral fixation, ρN = 1

N . The explicit values were obtained analytically
with the pairwise comparison rule [22]. a) Adaptive network dynamics allows C’s, in
the form of SC or FC, to remain in the population for 7.2% of the time. D’s dominate
because of the flow from FD to SD, either directly or by using the alternative route
via SC. b) When M increases to 10, the population spends already 59.8% of the time
in a cooperative state. Numbering C’s and D’s according to their type, C0 (D0 ) being
the slowest cooperator (defector), we see that increasing M splits the “outflow” of fast
defectors among a wide range of different possibilities. As a result, cooperation emerges,
since only few types of defectors are evolutionarily stable, whereas the vast majority of
cooperative types work as “flow sinks”. (N=100, β=0.01, T=2.1, R=2, S=0.9, P=1,
α=0.4, δ=0.3)

matrix:




SC FC SD FD

SC RφS RφS SφS SφS

FC RφS RφS SφM SφM

SD TφS TφM PφS PφM

FD TφS TφM PφM PφF



, (5)

where φx = α2(α2 + κx)−1, with κS = γS , κM = 1
2 (γS + γF ) and κF = γF .

Adopting the small-mutation approach discussed in the previous section,
the complex co-evolutionary dynamics reduces to one associated with a Markov
Chain with only 4 (2M) states. The Markov Chain’s transitions that are favored
by natural selection, i.e., those that are larger than ρN = 1

N (the fixation proba-
bility associated with neutral evolution), characterize the main driving forces of
the evolutionary dynamics. These transitions are shown in Figure 1 for a region
where D’s dominate. The exact values are obtained by computing the proba-
bility that a mutant (with strategy located at the end of each arrow) fixates in
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Fig. 2. Cooperation and behavioral diversity. a) The population spends more
time in a cooperative state (of any type) when the number of possible types (M)
increases, irrespective of the temptation to defect T in the prisoner’s dilemma. (N=100,
β=0.1, α=0.4, δ=0.3, R=2, P=1, S=3−T ) b) While the majority of cooperator types is
equally represented, only the slower types of defectors manage to survive. The defector
population exhibits behavioral differences, which inhibits the dominance of slowest
defector type, providing an escape hatch for cooperation to thrive (M=50, T=2.1,
R=2, P=1, S=0.9).

a monomorphic population of individuals adopting the strategy located at the
start of the arrow. We see that SD’s are clearly the winners of the evolutionary
race. FD’s, on the other hand, are rendered disadvantageous with respect to
any other strategy. When a FC manages to fixate, we end up in a rather stable
scenario. In addition, SC’s acquire a transient character, providing an alterna-
tive route from FD to SD. In this specific case, it is, however, mainly the direct
transition from FD’s into SD’s that hinders C’s survivability. As we will show
below, the viability of C’s relies on the extent to which the transition FD → SD
is inhibited compared to transitions into FC’s.

We do now extend the analysis to an arbitrary number of linking strategies
M , with rates for breaking adverse ties taken uniformly in the interval [0.5 −
δ, 0.5 + δ]. This leads to a trivial generalization of payoff matrix (5). Figure
2a shows that cooperation blooms when the number of linking strategies M
increases. In the following, we investigate the mechanism responsible for this
remarkable performance of C’s?

A first hint is provided in Figure 2b, where the fraction of time spent in
each state of the population is shown for the case in which there are M =
50 possible types (linking strategies). Figure 2b shows that all types of C’s
are present in the population, whereas the D’s who survive are only of the
slowest types. Importantly, however, with increasing number of available types,
the difference between the values of the rates associated with contiguous types
is reduced, which provides a means for D’s other than the slowest to survive
in the population. These are precisely the D’s who provide an escape hatch
for C’s to survive (cf. Figure 1a), since many of them will be disadvantageous
with respect to C’s. Indeed, Figure 2b shows that increasing the number of
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possible types, D’s with break-up rates higher than the minimum γ are now
able to survive. Although these individuals do not dominate, they effectively
promote the appearance of fast C’s, since the transition D→C between these
types is favored by natural selection. On the other hand, because all C-types
are neutral with respect to each other, they end up fairly equally distributed in
the population, unlike D’s for whom natural selection favors the slower types
(cf. Figure 2b). Figure 1b also shows that, with increasing number of types,
the number of C-types which are favored increases more than the corresponding
number of D-types. As a result, all but the slowest D’s are disadvantageous
with respect to (most of the) C’s. Increasing the number of types efficiently
inhibits the transition from the fastest to the slowest D’s, paving the way for
cooperation to thrive, an effect which remains valid irrespective of the model
parameters, inasmuch as T and S are such that cooperators manage to survive.
Mathematically, a large number of different types allows individuals to engage
in a wider range of games and the complex set of different interactions allows
the appearance of D’s from which C’s can profit.

4 Discussion

In social systems, individuals often behave differently when dealing with their
social contacts. The present model shows that such diversity provides a perfect
breeding ground for cooperation. Having individuals that think and behave dif-
ferently creates a multi-dilemma environment [12,15] in which cooperation easily
prevails, without any need for reputation, punishment or any other community
enforcing mechanism.

Together with other recent results that underline the importance of different
forms behavioral diversity in the evolution of cooperation [17,19,21], this work
supports the idea that diversity deserves to be considered as a fundamental
mechanism towards the emergence of cooperative behavior. In addition, given
the strong multi-cultural nature and inherent diversity in modern societies, the
current prevailing minority-friendly policies may have resulted from the evolu-
tionary advantages shown here.

Finally, diversity in the way individuals organize their contacts may be im-
portant in other problems than the emergence of cooperative behavior. From
spreading of infections diseases, in which individuals may react differently to a
risk of infection from their neighbors, to spreading of computer viruses, where
individual diversity in the resistance to pernicious attacks is common, the new
mathematical framework presented in this article can be a valuable tool in the
study of a broad spectrum of problems.
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