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Abstract. Large-scale population genetics studies are fundamental for
phylogenetic and epidemiology analysis of pathogens. And the validation
of both evolutionary models and methods used in such studies depend on
large data analysis. It is, however, unrealistic to work with large datasets
as only rather small samples of the real pathogen population are avail-
able. On the other hand, given model complexity and required population
sizes, large-scale simulations are the only way to address this issue. In this
paper we study how to efficiently parallelize such extensive simulations
on top of Apache Spark, making use of both the MapReduce program-
ming model and the GraphX API. We propose a simulation framework
for large bacterial populations, over host contact networks, implement-
ing the Wright-Fisher model. The experimental evaluation shows that we
can effectively speedup simulations. We also evaluate inherent parallelism
limits, drawing conclusions on the relation between cluster computing
power and simulations speedup.

Keywords: Population genetics · Large-scale simulations · Graph-
parallel computations · Spark · GraphX

1 Introduction

Understanding bacterial population genetics is vital for interpreting the response
of bacterial populations to selection pressures, as antibiotic treatment or vaccines
targeted at only a subset of strains [15]. In this context, large-scale studies are
fundamental not only for such understanding, but also for validating both models
and methods, such as phylogenetic inference algorithms. But we cannot validate
them with real pathogen populations as only rather small population samples are
available and accessible. Hence, given model complexity and required population
sizes, large-scale simulations are the only way to address this issue.
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Previous studies have shown that observed population genetic structure of
several important human pathogens, such as Streptococcus pneumoniae and
Neisseria meningitidis, can be explained using a simple evolutionary model [6– 9].
This model is based on neutral mutational drift and modulated by recombina-
tion, but incorporating the impact of epidemic transmission only for panmictic
populations. Although this simple evolutionary model works well for local popu-
lations, at a “microepidemic” level, its predictions no longer seem to fit observed
genetic relationships of large and widely distributed bacterial populations. With
the increasing volume of data obtained with sequence based typing methods,
namely by Multi-Locus Sequence Typing (MLST) [12], currently the gold stan-
dard for epidemiological surveillance, a much more complex pattern emerges,
that cannot be explained solely by the simple “microepidemic” assumption.

The evolution of transmissible bacteria occurs by mutation and recombina-
tion, and is influenced by epidemiological as well as molecular processes. These
aspects are fundamental in the process of strain diversification [16], and as a
mechanism by which strains acquire virulence factors or resistance determi-
nants [13]. On the other hand, bacterial population evolution is also influenced
by the environment and by host contact networks, through which bacterial popu-
lations spread. The study of the impact of host contact network topologies, and
associated transmission ratios, on bacterial population evolution and genetic
diversity becomes then relevant, increasing the model complexity.

Large-scale simulations are, however, computationally demanding, in partic-
ular when model complexity increases. In this work, considering an extension
of the above simple evolutionary model by incorporating the underlying host
contact network, we propose a simulation framework for large bacterial popula-
tions, implementing the Wright-Fisher model [17], on top of Apache Spark [21]
and making use of both MapReduce programming model and GraphX API [19].
Then we discuss how such large simulations can benefit from parallelization. We
conducted several experiments on Google Cloud Platform and results show that
we can effectively speedup simulations. We also evaluate inherent parallelism
limits, drawing conclusions on the relation between cluster computing power
and simulations speedup.

The paper is organized as follows. We describe the simulation and computa-
tional models in Sect. 2. Implementations details are discussed in Sect. 3. Finally,
we present and discuss experimental evaluation results in Sect. 4.

2 Simulation and Computational Models

The simulation framework proposed in this paper allows us to observe the evolu-
tion of a bacterial population through a host contact network, while parametriz-
ing different simulation aspects. We focus on bacterial population genetics where
isolates are represented as MLST profiles. MLST is a technique in which DNA
sequences are obtained for a set of housekeeping loci, and different sequences at
each locus are assigned as different alleles [12]. From an abstract point of view,
each isolate/pathogen is just characterized through a profile that may be subject
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to transformations along time, under the influence of genetic events, environment
and host contact networks.

Let each strain in a bacterial population be then characterized by a MLST
profile, where each sequence type (ST), or MLST profile, is defined by the com-
bination of its alleles, a vector of labels, where different labels mean different
alleles. Given an underlying host contact network, we simulate a bacterial popu-
lation at each host, or vertex, with a neutral evolutionary model [5]. This model
is based on a previous null model for evolutionary change, the neutral infinite
alleles model (IAM) [10]. Under IAM, mutation always generates a new allele,
leading to new STs. Recombination, on the other hand, introduces an existing
allele randomly selected from the isolates present in the previous generation,
which may lead to novel allelic profiles, or to the reappearance of existing ones.
Mutation or recombination occur independently, with each event being rare and
mutation taking precedence over recombination. When a new ST is produced, it
is given a new ST number, and the parental ST is recorded. For recombination,
the allele donor is also recorded.

We assume non-overlapping generations and, at each step of evolution, a new
generation is obtained. The probability of an ST to occur in the next generation
is proportional to its frequency in the current generation after migration among
hosts. The interactions between hosts, over the network, takes place by allowing
pathogens to migrate from one vertex to another accordingly to some frequency
and edge transmission probabilities, defined by the user, followed by selection at
each host through sampling with replacement from the current host generation.

The model just described, based on the IAM, is also known as the Wright-
Fisher model [17]. Neutral evolution means that all individuals have the same
fitness. Fitness, in population genetics, is a measure of the expected number of
offspring. In the neutral Wright-Fisher model, equal fitness is implemented by
equal probabilities for all individuals to be picked as a parent.

We rely on Apache Spark [21] and GraphX [19] to parallelize our simulations.
Apache Spark came up with an extended MapReduce model that enables the
creation of iterative programs, maintaining the scalability and fault tolerance
of MapReduce, through its Resilient Distributed Datasets (RDD) [20]. MapRe-
duce [11] is a high-level programming model originally proposed by Google [4]
and it was designed to address embarrassingly parallel data processing prob-
lems using cheap commodity hardware. Apache Hadoop is probably the best
well known MapReduce open source implementation, on top of which Apache
Spark is built. Apache Spark provides new levels of abstraction exceeding some
limitations of Apache Hadoop and a high-level API, usable through several pro-
gramming languages such as Scala, Java or Python. It provides also the GraphX
API [19] to address graph-parallel problems, relying also on RDDs. We will rely
on both the MapReduce programming model and the GraphX API.

The MapReduce programming model has two main steps: map and reduce.
The map phase processes the input as key-value pairs and applies a user defined
function to each one, generating a set of intermediate key-value pairs. The reduce
phase takes those intermediate key-value pairs, aggregate them by key and then
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apply a user defined function to the values, merging them, and generating new
key-value pairs.

When thinking about applying the MapReduce programming model for solv-
ing a problem, since many mappers and reducers run in parallel, and the dis-
tributed file system is a shared global resource, special care must be taken to
ensure that such operations avoid synchronization conflicts. It is then impor-
tant to analyze some basic requirements. Taking a careful look into the model
described above, we observe that the problem is composed by two main tasks:
(1) the evolution of each population at each node where mutation and recom-
bination take place, and (2) the exchanges between nodes and the replacement
of each population taking into account the samples of the populations from the
neighbourhoods.

Even with each node having its own population, and hence being able to
evolve independently from one another, one must take into consideration the
fact that each mutation requires the creation of a new allele, because of the
IAM, demanding a unique global identifier. Thus, for the first task we find two
challenges: (a) mutation process assumes that there is a central memory/data-
base for generating/requesting new alleles; (b) recombination demands that the
populations of each node must be in the same memory space—if we are to recom-
bine an allele we must choose, randomly, other ST to provide an already existing
allele, i.e., to be its parent. To avoid implementing a shared database, one solu-
tion is modifying how a new allele is generated and identified. If we guarantee
that at each mutation a new allele is created and the individual gets a unique
identifier, then we can have different populations evolving at the same time in
independent nodes. For solving both (a) and (b) problems, we had to create a
new way to identify uniquely each ST and also to make sure that after the first
mapping task we group each population at the same memory space, at the cost
of losing some efficiency of the MapReduce model.

For the second task, each node just has to receive a sample of the current
population of its neighbours, mix with its own population, and create a new
population through sampling. Besides being a simple problem when thinking
about the MapReduce model, we can identify some similarities between this
process and PageRank [14] or Label Propagation [22] problems. Both rely on
exchanging information among neighbours to update their state, and both have
already been implemented using MapReduce and, in particular, making use of
GraphX. Hence we will use GraphX and a similar approach for this second task.

3 Implementation

Let G = (V,E) be a connected and weighted graph, with n = |V | vertices and
m = |E| edges, and with an edge transmission probability function w : E → IR.
Let t be the number of times that the sequence of number of evolutions followed
by the number of exchanges happens.

The simulator takes eight parameters: (1) the population size of each node;
(2) the file containing the populations; (3) the file containing the network;
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(4) mutation rate; (5) recombination rate; (6) number of evolutions; (7) number
of exchanges; (8) number of times for the cycle (6) followed by (7) to happen;
(9) frequency of writing on disk. Each iteration of evolution is considered one
generation.

The general workflow consists in iterating t times the following two steps:
(i) perform the sequence of evolutions for each population, and (ii) perform the
sequence of exchanges between nodes.

The interaction between host populations is as follows: each host copies a
given proportion of its population, corresponding to the edge transmission prob-
ability w(u, v), and sends it to each corresponding neighbour; each host receives
the amount of population sent by the neighbours and create a pool with those
bacteria mixed with its own population; a new population is built, with the same
size as the previous one, but the individuals are chosen randomly from the pool.

3.1 Using MapReduce with Spark and GraphX

Adapting an algorithm into a MapReduce programming model implies some
modifications in the way the input is processed and how the data is man-
aged through the Map and Reduce phases. Frameworks based on this model,
as Hadoop or Apache Spark, read the input from a file in HDFS, where each line
is a pair ⟨key , value⟩.

We rely on Apache Spark not only because of its flexibility and easiness of use,
but also because RDDs allow to develop iterative programs in a light manner.
These RDDs are fault-tolerant, parallel data structures that make it possible
to persist intermediate results in memory, manage how they are partitioned to
optimize data placement among workers, and provide a rich set of operators to
apply on data processing. Apache Spark has also an embedded API, the GraphX
API, that allows the user to work with graphs in a transparent manner. With
GraphX, graph-parallel and data-parallel computations are possible with a single
composable API. Graphs can be viewed as collections (RDDs) without data
duplication and one can attribute properties to the vertices or edges through
the PropertyGraph. It also allows to access vertices, edges, or both (triplets)
separately.

Let us not discuss how the two main tasks defined before can be parallelized.
The first input file contains the bacterial population of all the host contact
network. This file has an individual per line in which the key corresponds to a
vertex identifier to which it belongs, and the value corresponds to the sequence
of its alleles, and also a global unique identifier. This global unique identifier is
needed to guarantee that, at each mutation event, a completely new individual
is generated, as demanded in IAM. We must also modify the characterization
of each allele. Although in traditional MLST data we have an array of integers,
in our approach each individual is characterized by an array of strings in the
form X.Y.Z where X is the id of the node where the mutation occurs, Y is the
generation id, and Z is the individual unique identifier. With this change we
guarantee the requirements of the IAM regarding allele uniqueness on mutation
events. The second input file is the network file. This file contains an edge list
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Listing 1.1. Evolutionary process.

val nextpop = populationRDD.map{ i =>
val idpop = i._1
val population = i._2
for (each indidivual in population){

// Recombintation | // Mutation
population.update(i, individual)}

(idpop , population)}
populationRDD = nextpop

with the transmission probabilities: source, destination and the probability of
transmission w(source, destination). If the network is undirected the edge list
must contain edges in both directions. Another requirement is that each node
must have an edge to itself with a probability of transmission 1.0. The reason
is explained later on. We load the input files with the SparkContext .textFile
method, which maps the inputs into RDDs. With this method we are able to
explicitly define how data should be partitioned.

Evolutions in each population and exchanges between the nodes can be imple-
mented as independent Map and Reduce tasks as follows. For the evolution
process, after loading the input into an RDD, we use the (groupByKey) trans-
formation to guarantee that each population is in the same memory space. As
explained before, recombination demands elements from the same population
to recombine. This transformation, when called on a dataset of (K,V ) pairs,
returns a dataset of (K, Iterable⟨V ⟩) pairs. With this we have each population
gathered in the same data structure. This is the major drawback of approach,
we can not have each individual evolving independently and groupByKey uses
shuffle operations that have some costs. After this, the approach is straightfor-
ward. Having the populations RDD, we do the Map transformation to make each
population evolve in parallel (Listing 1.1).

In what concerns the exchange process we have an explicit notion of graph
structure. For the nodes (populations) to communicate with their neighbours we
use the GraphX API. By making use of the GraphX API and its PropertyGraph,
we can use both the populations RDDs and the network (edge list) RDD to create
the graph.

After the PropertyGraph is created, we use the triplets view to access all
EdgeTriplet [V,E] that contain information about the source and destination
vertices, with their properties (populations), and also information about the edge
and its property (transmission probability). With this we have all the information
needed to generate the samples from each source node to each destination node.
Regarding the fact that each node must have an edge to itself with a probability
of 1.0 associated, this is necessary for the reduceByKey operation. After the
samples are generated and emitted, the reduceByKey function is applied on the
values with the concatenation operator (++) that joins all the collections with
the same key, providing a collection with all the elements to be sampled for the
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Listing 1.2. Exchanging process.

val result = graphpopulation.triplets.map{ t =>
// generate a collection with the proportion
//of population to send
(dest , fractionofpopulation)

}. reduceByKey(_ ++ _).map{ i =>
// create the new populations by sampling
(key , newpopulation)}

new population: its own population and the samples sent from the connected
populations. Each new population is then generated through sampling with a
Map transformation (Listing 1.2).

4 Results and Discussion

Apache Spark can run either in local mode or in a cluster. We relied on both for
our experiments to compare how running time scales, parametrizing simulations
with different population sizes and different graphs. Experiments were conducted
in a cluster hosted at Google Cloud Platform1, configured with different number
of workers: 2, 4, 8 and 16. Each worker is an Intel(R) Xeon(R) CPU @ 2.50GHz
with 4 cores and 16GB of RAM, where only 2 cores were usable by Apapche
Spark. To achieve the best results possible, in each experiment we partitioned
the input in as many partitions as the number of the cores available. The local
setup is equivalent to a worker node.

Given the evolution model coupled with a host contact network, leading to
both evolutions and interactions between populations, the operations in local
mode, with each step being executed sequentially, take considerable time. And
it scales reasonably well when in cluster mode. For a precise comparison, in what
concerns time scale, we fixed almost all parameters of the simulator: the size of
the population per node is 1000; the mutation rate is 0.001; the recombination
rate is 0.01; the number of evolutions per time step is 25; the number of exchanges
per time step is 1; the number of time steps is 10; the frequency for writing on
disk is 10 generations; and the transmission probability is 0.01. This means that
each dataset will evolve in a cycle of 25 evolutions followed by one exchange
between nodes 10 times. We also write on disk every time we have exchanges
to track how STs are transversing the network. This information is relevant in
most biological analyses, which are however out of the scope of this paper.

The first observation is that writing on disk is the operation that takes an
higher cost. We address this issue by using the saveAsTextFile method available
in Apache Spark, exploiting the ability of parallelize write operations on HDFS.

1 https://cloud.google.com/.

https://cloud.google.com/
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Table 1. Running time in seconds for different topologies and network sizes.

Topology Size (N) Mode
Local 2 workers 4 workers 8 workers 16 workers

Clique 100 170 60 53 48 43
200 411 109 74 59 50
500 1052 338 202 118 97
1000 2538 796 485 267 169

Scale-free 1000 916 480 403 221 152
2000 1807 897 519 341 292
8000 6293 3020 1902 1300 912

We consider two different network topologies, cliques (or fully connected
networks) and scale-free networks [2]. Clique topology leads to highest compu-
tational cost while performing exchanges. Scale-free networks are more realistic
for host contact networks, but being very sparse lead to much less work dur-
ing exchanges. We consider random scale-free networks generated with a partial
duplication model, with parameter 0.5 and different number of vertices [3]. Tests
were run for both topologies and different network sizes. The results averaged
over 10 runs are presented in Table 1 and in Fig. 1.

We note that we used a graph partitioning schema available in
GraphX designed specifically for scale-free networks. The PartitionStrat-
egy.EdgePartition2D was proposed by Verma et al. [18] as the best for these

Fig. 1. Speedup as a function of the number of available cores for cliques (left) and
scale-free networks (right), with different network sizes (N). The curves are provided
by Amdahl’s law [1], where the percentage corresponds to the fraction that is infinitely
parallelizable.
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networks. And we confirmed their results while running our experiments and
comparing with other partitioning strategies.

We can observe that the speedup becomes more evident as networks grow in
size. Running in cluster mode, and increasing the number of workers, results in
a significantly boost in the running time. The fact that we can compute the pop-
ulation evolution at each node independently seems to be exploited as expected.
The same happens with the exchange process among nodes populations.

When designing parallel algorithms, one of the analyses that should be done is
to estimate the relation between achievable speedups and the number of workers.
Amdahl’s law is crucial here to both interpret the results and project expected
speedups [1]. On one hand it points out that one should only optimize if the frac-
tion that can be optimized constitutes a large portion of the overall time. On
the other hand, if the optimization is effective the speedup we obtain is largely
determined by the strictly sequential fraction, which cannot be optimized and
initially constituted only a small fraction of the time. Given k workers (cores)
and a program that spends a fraction f of time on operations that are infinitely
parallelizable, and the remaining fraction 1−f on strictly sequential operations,
the overall speedup is given by 1/((1− f)+ f/m). In Fig. 1 we can observe that,
as we increase the size of the clique networks, we obtain a higher speedup as we
increase the number of workers. According to Amdahl’s law, we are observing
about f = 97% for a clique of 1000 nodes. For the scale-free networks, because
they are much sparser than cliques, with less work performed on exchange, we
observe about f = 90% and speedups are small above 16 processing cores. This
seems to point out that the exchange process is highly parallelizable, indepen-
dently of the network size, which is an important observation if simulations with
much larger networks are desirable. We should also note that the running time
grows almost linearly as we increase the number of nodes (see Table 1). This is
expected as the evolution of each population can be done independently and,
even not being fully parallelized due to recombinations as explained before, we
can still benefit from parallelization in simulations over large networks.

As a final remark, we must note that since most real host contact networks
are scale-free, according to Amdahl’s law, using more than 16 processing cores
does not lead to significant improvements for realistic simulations.
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