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Abstract. Measuring the inner characteristics of financial markets risks
have been proven to be key at understanding what promotes financial
instability and volatility swings. Advances in complex network analy-
sis have shown the capability to characterize the specificities of finan-
cial networks, ranging from credit networks, volatility networks, and
supply-chain networks, among other examples. Here, we present a price-
correlation network model in which Standard & Poors’ members are
nodes connected by edges corresponding to price-correlations over time.
We use the average degree and the frequency of specific motifs, based on
structural balance, to evaluate if it is possible, with these simple mea-
sures, to identify financial volatility. Our results suggest the existence of
a significant correlation between the Index implied volatility (measured
with the VIX Index) and the average degree of the network. Moreover,
we identify a close relation between volatility and the number of balanced
positive triads. These results are shown to be robust to a wide range of
time windows and correlations thresholds, suggesting that market insta-
bility can be inferred from simple topological features.
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1 Introduction

In recent years, it is undeniable how interconnected financial markets are becom-
ing [2,12,19,21,26]. Modern economic agents and their institutions can operate
globally in a interdependent and connected market. Proof is the most recent
financial crises, in which we observed the growing importance of accounting for
systematic risk, where a single financial institution can affect the global market
and all its agents [4-10,28]. As a result, financial systems are a natural play-
ground for network science. It is both convenient and insightful to describe the
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various connections between financial assets and institutions in the form of a
graph. In Allen et al. [2], it is detailed the vital role of network connections in
the interbank market. Banks are exposed to their peers, both by holding crossed
positions (mutual exposure in their balance sheets) as well as sharing similar
market portfolio, assets and liabilities (as creditors and depositors) [2,12,19].
Those so-called markets represent market players exchanging cash-flows and
goods between them, being responsible for managing one of the most complex
multi-agent systems humanity have ever created, permanently connecting every
corner of the globe [27,29].

In this context, it remains to a large extent an open question how one
can extrapolate from network properties to commonly used measures to detect
risk [1,3-10,17,19,28]. At a firm level, as detailed by Onnela et al. [22], it is
possible to assess firms’ performance, looking at their stock price time series. It
is believed that firms’ valuation is based on all the available information [11,16].
This concept of “pricing” is understood as the current fair value of all com-
pany assets and the present value of future expected income flows from the cur-
rent asset allocation. In other words, it measures how much the firm is worth.
Nonetheless, these companies are not isolated. They are interacting with one
another by exchanging cash-flows, products, clients, among others [12,20,22].
Despite the fact that is not straightforward to measure the nature of all this
inner relations, stock price variations are the closest to public information it can
be used to study this complex system [22,27].

Some prior studies tried to capture financial stability (or risk), looking to
the inner characteristics of the network. Battiston and Caldarelli et al. seminal
work gave us the insights of how it is possible to detect systemic risk looking
at interbank network, in the context of asset-liabilities relations [4-10,28]. They
studied the impact of several types of networks (from random to scale-free)
and sources of information (the degree at which nodes can accurately measure
the risks of his peers), to access the likelihood of a bankruptcy cascade effect
in a distress financial period [6-9,28]. Moreover, these authors proposed some
network measures, like the debt rank [4,10], to better capture the importance
of each single node in a financial network in a crisis context. Boss et al. [12]
presented some encouraging results in the Austrian Interbank Market proving
that network metrics can explain structural changes in the environment as in
many other scientific fields. In Onnela et al. [22,23], important steps were made
when it was introduced the time dependence, calling for a detailed study of
the co-movement between network characteristics and an external validation.
However, by having the opportunity of using US financial data, namely the
companies that are part of the most relevant Stock Market Index (S&P 500),
it is possible to check if the network metrics mimic the volatility and financial
systematic risk, by comparison to the “Fear Index”, the so-called “VIX Index”.
This index measures the implied market risk and accounts for the short-term
implied-volatility derived from all the S&P stocks and its options and structured
products [15]. Despite the difficulty at fully characterize VIX Index pricing (due
to the complexity of its calculations and the amount of different products the
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computation uses), it measures the instability of the S&P Market and it is widely
used by the industry. Thus, if by using simple network measures it is possible
to capture the same daily movements, we may argue that complex science can
give a quicker and easy to understand answer about financial instability.

In this work, we aim to study the financial systematic risk through complex
networks (simple) measures, resorting to both weighted and signed networks
representations. Using as framework real US data, we build a network from price
correlations among companies and measure the likelihood of capturing volatility
shifts looking at the time variation in: (i) the network (weighted) average degree
(or strength) and in (ii) particular three-node motifs (triads). On one hand, the
average degree is the simplest measure capturing the level of interdependence
among companies, and pictures a global and macro view of how price variations
affect network connectedness. On the other hand, because structural balance
theory [13,18] has already been used to study financial networks [14], we are
interested in the identification of specific motifs to perceive network shifts and
their impact on network volatility. This way we are able to analyze the volatility
of a network with a global network measure and with specific local patterns.
In both cases, we find a statistical significance when it comes to explain and
replicate what happen to the VIX Index in a given period of time.

2 Methods: Using Node Degree and Motifs to Analyze
Financial Networks

2.1 Financial Markets Structure

Let us now build our financial networks based on correlation matrices, as intro-
duced before. We consider a price time series from 1992-2018, whose source is
Bloomberg database!, for a security set of 500 companies. Let us define P;(7) as
the closing price of stock ¢ at time 7 and the daily logarithmic return of stock 4
as:

ri(1) = In[Py(7)] — In[P;(T — 1)] (1)

Then, by defining a time grouping window of bulk size T, one obtains a cube
of correlations, where p(x, y)j; +477 is the returns correlation between firm 2 and
firm y between ¢ and ¢t + T (giving n data points), defined as:

Vi (@i = 1) (y; — 7)?

Having built the correlation cube, two independent studies were made. First,

a weighted time-varying network was built, whose nodes were the constituents
of the S&P 500 Index and their links were the correlations throughout time. By

this it is meant that whenever two firms have a correlations different from zero
(and ranging between —1 and 1), they will share an edge whose value is their

(2)

! Which is one of the most accurate database when we are dealing with financial data.
The dataset has, on average, 252 days per year during 26 years.
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correlation. As an example, if firm A has a price correlation in a given set of
days (lets say 0.75) with firm B, the network will display two independent nodes
(A and B) whose edge between them has a linkage (during this time-frame) of
0.75. From this stage, in order to capture network connectedness, we compute
the time-dependent network average degree [24] as the average of the sum of the
weights attached to each node (see below).

In the second study we build a signed network, in which every pair of nodes
that share a correlation above a given threshold X will have a positive sign,
whereas a negative sign is defined whenever the correlation value is below —X.
The links with values between —X and X were not considered to avoid adding
noise or spurious edge relation for very low correlations.

Relation Between VIX and Average Degree. Given its simplicity, we chose
the network average degree to obtain a global view of the network, being easy
to acknowledge the strength of each node with its peers. Since that, in this case,
we are dealing with a weighted network, for simplicity we extend the notion
of degree of a node, to its weighted degree or strength, i.e., the sum of the
relative weights of all its links [24]. Using the correlation matrix as the network
adjacency matrix A (the network is relatively close to a fully-connected graph),
summing row-wise (neglecting self-correlations) gives us the (weighted) degree
z;++7 of a node 4, in the time frame ¢ 4+ T', as displayed in Eq. 2.

N .o
Zj:l A(%J)[t,t-&-T] -1
Zi+T = N (3)

By averaging over all nodes degree, we obtain the network average degree, < z >,
for a given time window, [t + T'|. The degree of a node can be seen as a measure
of the impact of a single node in the network. Nodes with higher degree can
easily spread a good or a bad economic movement, being potentially responsible
for generating instability in the network. Moreover, higher values of the average
degree will mean that companies are increasingly connected and interdependent,
while lower values reflect independent firms price movements. Here we try to
correlate the time-evolution of the network average degree with the financial
volatility, which can be independently assessed through the VIX index.

Relation Between VIX, Motifs and Structural Balance. Signed networks
have been used in the past to study financial portfolios (see, e.g., [14]). One of the
main observations is that usually a portfolio presents high values of structural
balance, being rare to have unbalanced relations. This concept of balance and
unbalanced networks come from the structural balance theory [13,18]. A given
network is considered to be balanced if all the cycles are balanced, otherwise
it is considered unbalanced. A cycle is balanced if the product of the signs of
its edges is positive (see Fig.1). One can evaluate the “degree of balance” of a
signed network as the ratio of the number of positive cycles to the total number
of cycles. Let G be a signed graph, ¢(G) be the number of cycles of G, ¢4 (G)
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be the number of positive cycles of G, and b(G) be the degree of balance of G.

Then: o
He) = = 0

In this work we use this measure to evaluate structural balance with cycles of
size 3, following the same approach as in [14].

£5 85 85 4

balanced balanced unbalanced unbalanced

Fig. 1. Triads considered balanced and unbalanced by the structural balance theory of
Harary [13,14,18].

Let G = (V, E) be an undirected and signed network, with n = |V| vertices
(individuals) and m = |E| edges (ties), and with edges labels w = {-1,1}
between two assets (a,b): w(a,b) = w(b,a) = 1, if it is a positive correlation,
w(a,b) = w(b,a) = —1 if it is a negative correlation. To calculate the degree of
balance of a network we first use gtrieScanner [25]? to obtain all triads of the
network. Then, for each triad, we calculate the product of its signs and in the
end we obtain the degree of balance.

As was already observed by Harary [14] financial networks tend to have high
values of structural balance. We are able to observe the same in our datasets,
see Fig. 6. Given this, and because when trying to relate to the VIX we want
to extract the most discriminatory network characteristics effect, we removed
the unbalanced triads, focusing only on those that are balanced. Additionally,
since in our edge definition it was chosen firms’ prices correlations we could
not differentiate triads whose components were trending up versus those that
were jointly falling apart, we added into each node a positive or negative sign
respectively to their performance in the time horizon in study, looking for the
frequency of specific motifs in the form of Fig. 2.

Therefore, as we calculate the product of the signs of each triad, we also
gather the frequency of each different motif. The goal is to analyze if some specific
motif can relate to VIX, always maintaining the notion of structural balance
in the signs of the edges and using the signs of the nodes as supplementary
information. Within such context, it is now possible to split those balanced
triads with a positive impact on the network from those whose performance was
poorly, relative to its peers.

2 http://www.dcc.fc.up.pt/gtries/.
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Fig. 2. Balanced triads with signs on the nodes. Those signs correspond to the perfor-
mance of the firms represented by the nodes. A positive sign (+) is inputed whenever
for the given time-frame node value has gone up, whereas a negative sign (—) is given
when a given node lost value for the same period.

3 Results and Discussion

To answer our baseline question, which is the study of the interplay between
network metrics and degree of risk or volatility, we considered the data from the
S&P constituents to input in the network previously explained, as well as the
VIX Index, as our exogenous and independent variable.

First, we performed one set of 1000 runs to acknowledge the sensitivity of our
variables in the predictability of the average degree (summary of the results can
be found in Table1). Those variables — size of the bulk, T and the correlation
cut-off threshold — are relevant to perceive if this macro view of the network
can capture short or long term trends in volatility as well as if nodes with lower
correlation (being responsible for lower impacts in the network) add value in the
model predictability. As it is possible to picture from Table 1, the degree of a
node matters at mimic financial instability. Only 8% of the tested variables were
not able to accomplish at least 50% of replication, being 59.29% of the simu-
lations statistically significant, show as proof that the network average degree
was correct more time stamps than wrong (rejecting, with 95% confidence inter-
val, the hypothesis that the measurements were different from a toss of a coin)
(Fig.4).

Moreover, it is relevant to add that even the lowest tier ranked nodes are
important to increase model replication power. This can be inferred from the
replication levels in Table 1 regarding the correlation cut-off threshold: as the
model gets pickier at choosing the strongest relations between nodes, the model
loses its capability of following the volatility index trend.

Also, Fig. 3 enlightens a very important remark: as the volatility index gets
higher, network average degree tends to spike. When the fear in financial markets
grows, firms specific price variations tend to be forgotten and prices move all
in a similar manner. Thus, we move towards a highly connected financial struc-
ture (we can argue that the networks shrink) when instability and volatility are
present, and get less connected and “relaxed” in the presence of a low systemic
risk.

In our second analysis, we measure the correlation between the fraction of
different motifs/triads and the volatility index VIX throughout time. We see
that these time-evolving networks portray high levels of balance (Fig. 6), as has
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a replication power of 61.82%).

Table 1. Sensitivity analysis: Z-Scores from statistical tests (green values are sta-
tistical significant with 95% confidence).

Statistical significance (Z-Score) ‘ Accuracy (Avg. Degree Vs. Vix Index)
Correlation cut-off threshold

Number of days | 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

5 0.9597 | 0.9597 | 0.9048 | 0.7402 | 1.2342 | 51.31% | 51.31% | 51.24% | 51.01% | 51.69%
6 54.28% | 54.28% | 54.46% | 53.92% | 53.02%
7 0.4865 | 50.58% | 50.79% | 50.89% | 50.16% | 50.79%
8 1.5973 | 56.37% | 56.13% | 55.41% | 54.81% | 52.76%
9 56.49% | 56.35% | 55.54% | 55.81% | 54.46%
11 61.82% | 61.98% | 60.99% | 60.17% | 58.84%
C;..--s&sﬁ% 58.74% | 57.84% | 57.66% | 56.76%
13 |1.7735 | 1.7735 | 1.8628 | 1.3283 | 0.6190 | 53.91% | 53.91% | 54.10% | 52.93% | 51.37%
14 57.35% | 57.35% | 58.19% | 57.56% | 56.09%
15 1.5229 | 55.63% | 55.63% | 55.41% | 55.41% | 53.60%
17 1.8265 | 57.14% | 57.40% | 57.40% | 57.14% | 54.59%
19 62.39% | 62.39% | 62.68% | 62.68% | 60.97%
21 58.68% | 58.68% | 57.41% | 58.68% | 55.84%
23 60.69% | 60.34% | 60.69% | 60.69% | 60.00%
25 1.5373| 1.5373 | 1.6616 | 1.6616 | 1.1661 | 54.68% | 54.68% | 55.06% | 55.06% | 53.56%
29 59.13% | 59.13% | 58.70% | 60.00% | 60.43%
31 1.3015 | 0.7514 | 0.4777 | 56.74% | 56.74% | 54.42% | 52.56% | 51.63%
33 | 1.5581 | 1.5581 | 1.2722 | 11208 | 0.2815 | 55.45% | 55.45% | 54.46% | 53.96% | 50.99%
35 60.73% | 60.21% | 59.69% | 60.73% | 58.64%
37 1.6535 | 1.6535 | 1.8066 56.11% | 56.11% | 56.67% | 59.44% | 58.89%
39 0.3826 | 0.2295 | -0.0765 | -0.0765 | -0.2294 | 51.46% | 50.88% | 49.71% | 49.71% | 49.12%
41 1.02211.1807 | 1.1807 | 1.0221 | 0.2350 | 53.99% | 54.60% | 54.60% | 53.99% | 50.92%
13 PSR EETE BRI EEEEY 15703 59.35% | 59.35% 58.71% | 50.35% | 57.42%
45 0.9903 | 0.8243 | 1.1568 | 1.1568 | 0.8243 | 54.05% | 53.38% | 54.73% | 54.73% | 53.38%
50 |PEoEs B BB 12172 [59.70% 60.45% | 60.45% | 59.70% | 55.22%
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positive edges variation (with 11 Days
and 0 correlation Cut-off Threshold, we
got a replication power of 67.85%).

been previously found [14]. Given the observed levels of social balance, balanced
triads tend to overweight the unbalanced ones, being the latter even in lower
number in the presence of large volatility swings, meaning that whenever Market
instability is at its highest, financial networks tend to be mostly connected and
balanced. This outcome leads us to perform, within the same reasoning already
developed and explained with the degree of network, a set of 50 runs to test if
the likelihood of balance and the different motifs replicate the uncertainty of the
market. From Table 2, we conclude that only the correlation between triads with
three positive edges and the VIX index is statistically significant, and portray
an Index replication consistently higher than 50%, (as displayed in Table 3).

Due to fact that only triads of fully positive edges seem to matter when
mimicking the “fear Index”, we split those triads whose nodes were positive in a
given time-frame, from the ones that were negative in the same period of time.
In Fig. 5 we show that looking to the node performance (where performance is
the price variation for the time window considered), we may gain gain some
additional explanatory power. In Table2 we show the p-values from the sensi-
tivity analysis run within the present context. As a matter of fact, we obtain
significantly higher results using nodes performance for the considered period.
Without having a correlation cut-off threshold and a grouping size-window of 5
trading days, triads with positive edges and positive performance of their nodes,
VIX index is replicated at a rate of 70%.

The present results seem to be in line with our empirical reasoning that
whenever there are times where all firms are moving together, is not because of
their fundamental or intrinsic value, but mostly because of something exogenous
in the financial world that spreads out into the entire network, despite its pos-
itive or negative impact. Our results suggest that when the VIX Index tend to
spike, the number of triads with three positive edges and nodes tend to reduce,
increasing otherwise, as shown in Fig. 5.
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4 Conclusions and Future Work

In the present work, we propose two new approaches to strengthen the connec-
tion between network science and financial markets. We show that there is a
close relationship between financial network characteristics and its performance.
Without taking into account VIX complex pricing of volatility, network inner
characteristics seem to emerge in the same fashion and magnitude. At a macro
and global level, simple measures, as the average degree (or average strength),
can help to replicate the short-term implied-volatility of the financial market
network. As the network average degree rises, the VIX Index tends to produce a
similar movement showing that in times of crisis firms get more connected and
investors tend to bear their market valuation on the global macro data, leaving
apart the firm intrinsic value. Reversely, when instability is lower, nodes tend
to move more independently, meaning that nodes’ strength is weaker, leading a
less connected network. On the other hand, despite its greater complexity and
time constraints, motifs are also a viable source of mimic power, giving the com-
bination of balanced triads with knowing the performance of its constituents an
out-performance considerably higher relative to the other attempts. Preliminary
results indicate that the combination of multiple network features may further
increase our understanding and predictive power. Work along these lines is in
progress.

Further studies must be pursued for a better understanding of the financial
world. In our view, there is the need to study whose firms are more often in
the motifs that accurately replicate the VIX index and also to acknowledge the
impact and stability of such ties throughout time. Each of these sub-graphs,
define a particular kind of interactions between vertices, reflecting a meso-scale
pattern that will later lead to global financial observables. In particular, it is rel-
evant to identify or engineer sub-graphs that are more resilient and stable than
the rest of the financial network, creating a portfolio with a lower likelihood of
suffering in times of crisis or crashes. As future work, it seems relevant to under-
stand if those measures are still reliable at anticipating and predicting future
swings in market instability, and what are the main contributors of financial
volatility and their relation with size, sector, cumulative performance, among
others. Secondly, correlation networks may be spurious, i.e. induced by other
variables not included in the analysis. Therefore, a deeper study is required to
partial out the effect of network structure. Furthermore, producing similar stud-
ies in other markets, regions of the globe or joining them together, might be
enlightening at detailing the origins of global movements or those that, despite
its characteristics, easily spread throughout the financial market network.
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