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Indirect reciprocity is the most elaborate and cognitively 
demanding1 of all known cooperation mechanisms2, and is the most 
specifically human1,3 because it involves reputation and status. By 
helping someone, individuals may increase their reputation, which 
may change the predisposition of others to help them in future. 
The revision of an individual’s reputation depends on the social 
norms that establish what characterizes a good or bad action 
and thus provide a basis for morality3. Norms based on indirect 
reciprocity are often sufficiently complex that an individual’s 
ability to follow subjective rules becomes important4–6, even in 
models that disregard the past reputations of individuals, and 
reduce reputations to either ‘good’ or ‘bad’ and actions to binary 
decisions7,8. Here we include past reputations in such a model and 
identify the key pattern in the associated norms that promotes 
cooperation. Of the norms that comply with this pattern, the one 
that leads to maximal cooperation (greater than 90 per cent) with 
minimum complexity does not discriminate on the basis of past 
reputation; the relative performance of this norm is particularly 
evident when we consider a ‘complexity cost’ in the decision 
process. This combination of high cooperation and low complexity 
suggests that simple moral principles can elicit cooperation even in 
complex environments.

Under indirect reciprocity, an individual expects a return not from 
someone whom they have helped directly but from a third party. 
Helping (or not helping) the ‘right’ individuals can increase the 
chance of being helped by someone else at a later stage9,10. Ohtsuki 
and Iwasa7,8,11 defined a binary world in which an individual’s  
reputation can be either ‘good’ or ‘bad’. Even in such a simple world, an 
arbitrarily large set of associated social norms can be used to classify 
decisions made in a donation game. In each instance of this donation 
game, involving a ‘donor’ and a ‘recipient’, the donor may either coop-
erate, helping the recipient at a cost c to themselves while conferring a 
benefit b to the recipient (with b >  c), or defect (not providing help), in 
which case neither player incurs any costs or distributes any benefits. 
Everyone in the population uses the same social norm to assign public 
reputations to individuals. This reputation is attributed (errors aside; 
see Methods) and disseminated12–14 by a bystander who witnesses a 
pairwise interaction. In this context, if all that matters for assigning a 
new reputation to the donor is their action towards the recipient10, then 
we have a first-order norm. If the current reputation of the recipient 
matters as well as the action of the donor, then we obtain a second-order 
norm. A third-order norm additionally includes the current reputation 
of the donor.

Most norms studied so far reach up to third order (see ref. 15 for 
an exception) and therefore rely, at most, on the action of the donor 
and on the current reputations of both the donor and the recipient. 
For a norm of a given order, the information used by an observer to 
assign a new reputation is the same information that a donor may 
use to decide how to act towards a recipient. Consequently, studies 
of indirect reciprocity involving norms of increasing order typically 

use behavioural strategies (often designated action rules) and strategy 
spaces that also increase (exponentially with order). For this reason, 
a combination of a norm and a strategy that promotes cooperation in 
the space of nth-order norms does not necessarily perform equally 
well in a space of higher-order norms because the availability of more 
complex  behaviours (together with those for lower-order norms) often 
has non-trivial effects on cooperation16. Furthermore, the performance 
of a complex social norm can be constrained by an individual’s  ability 
to  follow complex subjective rules4–6. This raises two fundamental 
questions: (1) whether the moral principles that underlie successful 
strategies and norms in the space of third-order norms remain valid 
within a larger space, and if so which ones; and (2) how the cognitive 
skills associated with social norms and strategies impair individuals’ 
performance. Using the donation game and binary reputations we 
answer these questions by investigating the cooperative capacity of 
social norms in a space that encompasses norms of up to fourth order 
and that span a wide range of cognitive complexities4,17,18. Increasing 
the number of possibilities to consider when assigning a good or a 
bad reputation to individuals enables us to identify the key pattern 
of social norms that provides the necessary conditions for promoting 
cooperation.

Fourth-order norms additionally incorporate (on top of the  
features of third-order norms) the previous reputation of the recip-
ient, requiring individuals with increased memory capabilities and 
that are therefore able to enact more elaborate behaviours. We encode 
norms up to fourth order and corresponding strategies as 16- and 8-bit 
tuples, respectively; consequently, there are 216 different norms and 28 
different strategies that individuals may use when playing the dona-
tion game described above (see Methods for details). Furthermore, we 
define the complexity of a norm using the index κ, which describes 
the number of literals (that is, the logic variables and their comple-
ments) in the shortest logical expression that can define the norm (see 
Methods). This index has been used previously to describe an individ-
ual’s ability to learn a concept4,17. Here, the simplest norm has κ =  0 
and the most complex norm has κ =  32. In Fig. 1 we illustrate norms of 
different orders and complexities, providing intuitive  representations 
of the raw information in Supplementary Table 4. Norms of the same 
order may have different complexities, as demonstrated for second- 
order norms in Fig. 1: different reputation tables (corresponding 
to different norms) translate to different numbers of literals in the 
corresponding minimal logical expressions. Moreover, similarly to 
norms, strategies also exhibit an intrinsic complexity (κs) that can 
influence their adoption. Equipped with these tools, we investigate 
which norms promote the emergence of cooperation. In Methods, 
we describe computer simulations of the evolutionary dynamics, in 
which individuals in a population, each starting with a random stra-
tegy, play the  donation game with their peers. Throughout the game, 
the players change  strategies via social learning19, whereby strategies 
with higher fitness are adopted more frequently20. The simulations 
return the cooperation index η, a real number between 0 and 1 that 
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describes the average number of interactions that lead to donations as 
a fraction of the total number of interactions observed in a population 
that evolves under a given social norm.

In Fig. 2 we compare η for the leading eight norms shown7,8 to stabi-
lize cooperation (in the sense discussed in Supplementary Information, 
section 1.4) under indirect reciprocity at third order, in the space of 
third-order (blue bars) and fourth-order (red bars) norms. The results 
show that when more elaborate strategies become possible (when up to 
fourth-order norms are considered) only a subset of the leading eight 
norms still fosters similar levels of cooperation as in the third order 
space. Overall, about 0.2% of the 216 norms in fourth-order space lead 
to η >  0.9, compared to about 2% of the 28 norms in third-order space 
(Extended Data Fig. 1). Many ‘new’ fourth-order norms (that is, those 
that cannot be represented in lower-order spaces) foster high levels of 
cooperation. Of the leading two second-order norms21,22 (stern judging  
and simple standing; see Supplementary Information for details), 
only stern judging remains highly cooperative in fourth-order space.  

This norm can be stated as: “help good people and refuse help other-
wise, and we shall be nice to you; otherwise, you will be punished.”23

Next, we investigate the role of norm complexity in promoting coop-
eration by plotting the cooperation level (η) of the norm that leads to 
maximum cooperation for a given complexity (κ). Figure 3 demon-
strates that the highest values of η are attained by norms with complex-
ities as low as κ =  4. The same happens even when individuals incur a 
complexity cost cc =  γκs when using a strategy of complexity κs (where 
γ is a real constant; see Extended Data Figs 2 and 3 and Supplementary 
Information for details; we also demonstrate that these results remain 
valid when the past reputation of the donor instead of the recipient is 
used in defining fourth-order norms).

Figure 3 demonstrates that for κ >  4 only fourth-order norms maxi-
mize η, despite the fact that the complexity of norms of the same order 
can vary substantially (see Fig. 1). Consequently, taking complexity 
into account opens up new questions regarding the features that make 
fourth-order norms successful, and the features of the third- and 
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Figure 1 | Norm complexity. A norm is represented by a ‘reputation table’. 
Each entry in each table indicates the new reputation of the donor (good, 
G; bad, B), assigned on the basis of their current reputation (RD ∈  {G, B}), 
their action (A ∈  {C, D}, where C denotes cooperation and D defection), 
and the current (RA ∈  {G, B}) and past (RP ∈  {G, B}) reputations of the 
recipient. Rows are ordered, from top to bottom, as (G,G), (G,B), (B,B), 
(B,G) and columns are ordered, from left to right, as (G,C), (B,C), (B,D), 
(G,D). The complexity κ is determined by counting the number of literals 

of the shortest logical expression (the minimal disjunctive normal form 
(DNF), where A denotes A =  C and A  denotes the complement =A( D), 
and similarly RA,D and RA,D denote G and B; see Methods) that can be 
used to prescribe a donor reputation of ‘G’. Alternatively, κ can be 
determined by counting the number of blocks of 2k ‘G’s30 (where k is 
chosen to be as large as possible and blocks can overlap; see coloured 
squares and rectangles): each block of 2k ‘G’s increases κ by 4 −  k (starting 
from κ =  0). See Supplementary Information for further details.
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Figure 2 | Cooperation index of leading norms. When the space of the 
norms (and strategies) is extended from third-order (blue bars) to fourth-
order (red bars), some of the leading eight norms of cooperation8 (in 
third-order space)—and particularly simple standing (which, together 
with stern judging, make up the leading two norms in second-order 
space21)—no longer promote cooperation. See Extended Data Fig. 1 for 
results involving all norms. The model parameters used (see Methods for 
definitions) are Z =  50, ε =  α =  χ =  0.01, µ =  1/Z, b =  5, c =  1 and γ =  0. 
The results are qualitatively insensitive to the ratio b/c, to the population 
size, to any errors in assessment or assignments made by individuals and 
to different mutation schemes (see Methods and Extended Data Figs 4, 5). 
See Fig. 1 and Supplementary Table 4 for definitions and characterization 
of norms; unnamed norms are defined by their binary representation in 
third-order space (see Methods).
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Figure 3 | Cooperation index versus norm complexity. Maximal levels 
of cooperation (η >  0.9) are attained under the simple norm stern judging 
(κ =  4). More complex norms (κ >  4) do not lead to higher levels of 
cooperation. Some well-known norms that maximize η for a given κ are 
identified. In Extended Data Fig. 2 we show the dependence of η on κ 
when a complexity cost is imposed on strategies and the past reputation 
of the donor is considered instead of that of the recipient. The model 
parameters used (see Methods for definitions) are Z =  50, ε =  α =  χ =  0.01, 
µ =  1/Z, b =  5, c =  1 and γ =  0. See Extended Data Figs 4 and 5 for 
robustness analysis. See Fig. 1 and Supplementary Table 4 for definitions 
and characterization of norms.
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 second-order norms that ensure (or not) their capacity to sustain coop-
eration in the more complex fourth-order space.

To address these questions, we conducted an exhaustive search in the 
space of fourth-order norms and identified (for a specific set of model 
parameters) a recurrent pattern common to the fourth-order norms 
that promote cooperation (see Supplementary Tables 1 and 2). This 
 pattern states that the bystander assigns a ‘good’ label to donors that 
either (i) cooperate with enduring good individuals or (ii) are already 
good and defect against enduring bad individuals, and assigns a ‘bad’ 
label to those who act otherwise in these contexts (that is, who defect 
against enduring good individuals or who are good but cooperate with 
enduring bad individuals). Here, enduring individuals are those who 
retain the same good or bad label in the present and in the past. The 
pattern can therefore be summarized by the following rule: “donors 
become good (bad) if they help (refuse to help) an enduring good 
 individual; they maintain (lose) their good label if they refuse to help 
(help) an enduring bad individual.”

This rule has immediate implications at lower orders. Only four 
of the leading eight norms8 in third-order space comply with this 
fourth-order rule—those that promote the highest levels of cooperation 
(Fig. 2). Not surprisingly (see Fig. 3), stern judging is the only one of 
the leading two21 norms in second-order space that complies (simple 
standing violates the rule by prescribing a good reputation whenever a 
player helps an enduring bad individual).

In Fig. 3 we show that stern judging leads to a maximal value of η 
(η >  0.9), while having a κ value less than that of any third- or fourth-order  
social norm that leads to comparable values of η (see also Extended 
Data Fig. 2). Furthermore, strategies that prevail under stern judg-
ing are remarkably simple. We demonstrate this by first comput-
ing the complexity κs of the prevalent strategies under each norm. 
Subsequently, we compute the (norm-dependent) fraction of time 
that each individual spends adopting each strategy and calculate the 
weighted average complexity of the strategies used, which we designate 
by the average behavioural complexity (ζ). In Fig. 4 we depict all norms 
in fourth-order space by plotting η as a function of ζ. Stern judging  
(a second-order norm), judging and score judging (third-order norms; 
see Supplementary Table 4) lead to high η using strategies with low  
ζ (Fig. 4a)—a feature that is maintained in the presence of a complexity 
cost cc =  γκs (Fig. 4b).

Our results show that cooperation under indirect reciprocity can 
emerge even when the cognitive capacity of individuals is limited. 
In this context, it becomes clear why stern judging proves to be so 
robust, remaining the most successful norm (in terms of the combi-
nation of high cooperation and low complexity) in all norm spaces 
studied even when considering populations of different sizes (from 
small-scale societies to large communities of individuals22). It is the 
norm of lowest order and complexity that is compatible with the 
pattern described here, requiring little cognitive skill both in assign-
ing reputations and in inducing behaviours that lead to high levels 
of cooperation. It is therefore not surprising that the fingerprint of 
stern judging is present in the moral judgment of toddlers (as young 
as five months old24), who show a preference not only for individuals 
who helped others, but also for individuals who harmed those who 
hindered others25.

The modelling approach used here can also be informative when 
designing pervasive reputation systems26, in which optimality should 
be combined with simplicity. Game-theoretical models have been used 
to study reputation systems in the context of trading platforms, crowd-
sourcing markets and peer-to-peer systems27–29. It has been shown 
that very simple and intuitive social norms may suffice to promote 
cooperation28 and that publicizing a detailed account of a seller’s feed-
back history—as compared with only the most recent rating—does 
not improve cooperation in online trading platforms27. Both of these 
features—simplicity and the irrelevance of history—bear similarity to 
the results presented here, despite the fact that our model would need to 
be modified to be applicable to reputation systems in online platforms.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
Here we summarize the model and mathematical methods; further details are 
provided in Supplementary Information.
Actions conditional on reputations. The action of the donor in each interac-
tion depends on the current reputation of the donor (RD) and the recipient (RA), 
together with the past reputation of the recipient (RP). Assuming binary reputations 
(1 =  ‘good’ =  G or 0 =  ‘bad’ =  B), the strategy used by each player is an 8-bit string 
that prescribes an action (1 =  ‘cooperate’ =  C or 0 =  ‘defect’ =  D) on the basis of the 
aforementioned reputations. We extend previously used notation7,8,21 to denote 
each strategy by a tuple P =  (p0, p1, p2, p3, p4, p5, p6, p7), in which pi ∈  {0, 1} denotes 
the action of the donor for each of the possible combinations of reputations R in 
the order RP, RD, RA (that is, with RP (RA) being the most (least) significant bit 
when defining a position within a strategy), and with Ri =  1 considered before 
Ri =  0 (that is, for example, p0 corresponds to RP =  RD =  RA =  G =  1 and p7 to 
RP =  RD =  RA =  B =  0); this yields 28 different strategies. We consider execution 
errors (ε) that represent the inability of individuals to act in the way that their 
strategy dictates31. It is common practice to consider errors in the form of ‘failed 
intended cooperation’21,32 due, for instance, to an individual’s lack of resources, 
time or energy available to donate in their role as donor33. Our results remain 
valid even if the execution errors additionally induce defectors to involuntarily 
cooperate.
Social norms. We consider that the new reputation of an acting individual follows 
a norm that can be written as a tuple d =  (d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, 
d12, d13, d14, d15), in which di ∈  {0, 1} denotes the new reputation assigned to the 
donor for each of the possible combinations of action A and reputations R in the 
order RP, RD, RA, A (that is, with RP (A) being the most (least) significant bit when 
defining a position within a norm). For convenience, we use RP, RD and RA both 
as the names of a reputation layer in a norm (see Extended Data Fig. 3 and 
Supplementary Table 3) and as a Boolean variable that can assume the values 
1 =  G =  R and = =B R0 . Similarly, 1 =  C =  A and = =A0 D . As stated in the main 
text (see Fig. 1), there are 216 social norms up to fourth order. We consider assign-
ment errors8 α that occur when the observer fails to assign the correct reputation. 
We assume that, once the reputation of an individual is assigned, it is widely 
 disseminated throughout the population (for example through gossiping11–14), so 
that everyone shares the same opinion regarding the reputation of others. However, 
we include errors at the level of individuals, when retrieving the public reputation 
of others, which occur with a probability χ: whenever these errors occur, an indi-
vidual may perform the wrong action as a donor or assign the wrong (public) 
reputation as a bystander.
Complexity. Social norms and individual strategies can both be regarded as 
Boolean functions that determine: (1) when an individual has a good reputation 
(G; social norms), or (2) when the appropriate action is to cooperate (C; strategies 
or action rules). These functions take the Boolean inputs A (action of the donor is 
C), RA (current reputation of the recipient is G), RP (past reputation of the recipient 
or donor is G) and RD (current reputation of the donor is G). For instance, the 
well-known second-order discriminator strategy whereby an individual cooperates 
with only those players who have a G reputation is given by P =  (1, 0, 1, 0, 1, 0, 1, 0),  
or by the Boolean function RA. The fourth-order discriminator strategy, whereby 
an individual cooperates only if an opponent has a G reputation both in the  present 
and in the past, can be written as P =  (1, 0, 1, 0, 0, 0, 0, 0) or RA ∧  RP. In the context 
of social norms, the ‘image score’ norm d =  (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) 
corresponds to RA, and the ‘stern judging’ norm d =  (1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 
1, 0, 0, 1) can be written as ∧ ∨ ∧R A R A( ) ( )A A . The complexity of a norm or 
strategy (κ or κs) is the length of the shortest Boolean formula (here in disjunctive 
normal form (DNF); that is, a sum of products) that is logically equivalent to the 
corresponding Boolean function4,17. This quantity is also known as the Boolean 
complexity4,17. To calculate the Boolean complexity of a norm or strategy, we 
 generate and simplify the corresponding DNF and count the number of literals 
that it includes. We apply a standard algorithm to minimize Boolean functions (the 
Quine–McCluskey algorithm18), using the version implemented in Mathematica 
(Wolfram) through the function BooleanMinimize. This algorithm generates a 
DNF with a minimum number of literals but that is logically equivalent to the 
original (full) DNF—the minimal DNF (see Fig. 1). Here we focus on the minimal 
DNF representation of a logic expression. However, other representations could 
be devised in which, in some cases, there is departure from a minimal DNF and 
the number of literals is reduced slightly—such as by applying De Morgan’s laws 
and/or the distributive law of Boolean algebra18. In fact, reaching a minimal 
Boolean function is a computational challenge34, and for this reason it is often 
calculated as an approximation4,35,36. By adopting a complexity measure based on 
the number of literals of a minimal DNF form, we provide an upper bound on the 
Boolean complexity of each social norm, while ensuring computational tractability  
and an easy generalization to norms of higher order. In Supplementary Information 

we define (and provide an example of) the three-step process that we use to  
compute κ for any norm (and κs for any strategy).

In Fig. 1 we also provide an alternative visual method to determine κ. It relies on 
counting the number of different blocks of ‘G’s of size 2k, a method that is associated 
with so-called Karnaugh maps30 (a graphical method for simplifying logic circuits): 
a size-23 block contributes 1 to the complexity; a size-22 block contributes 2; a 
size-21 block contributes 3; and a size-20 block contributes 4. In general, a 2k-size G 
block contributes 4 −  k to κ. Some rules apply when defining G blocks37: they must 
contain only G values, being formed by joining adjacent cells (diagonal links do 
not count); torus boundary conditions apply; and they must be the largest possible 
size. Importantly, the choice of row and column order in defining the reputation 
table in Fig. 1 is not arbitrary: the entries in two adjacent rows or columns must 
differ only by one bit.

It is also worth pointing out that Fig. 1 provides visual cues that show the 
 symmetries of a reputation table that are associated with a norm of a given order; 
for example, for norms of order one, all of the entries of the left and right eight- 
entry blocks are identical. In all cases in Fig. 1, blocks of entries are delimited by 
solid lines: norms of second order have four blocks that each contain four identical 
entries; norms of third order have eight blocks that each contain two identical 
entries; and norms of fourth order have no such blocks in which multiple identical 
entries can be identified.
Evolutionary dynamics. In the computer simulations, evolution proceeds in 
 discrete steps. At the beginning of one simulation (or run), each individual adopts 
one of the 28 (256) possible strategies, chosen using a uniform probability distri-
bution (UPD). Individual reputations, both present and past, are also assigned 
using a UPD. Each simulation is executed for a large number g of generations. In 
each generation, Z individuals selected using a UPD revise their strategy. After 
selecting one of the Z individuals (say, individual X), strategy revision can happen 
through mutation or imitation. Mutation38 happens with probability µ: a new 
strategy is adopted randomly (UPD) out of the 256 possible. This approach allows 
us to study the evolutionary robustness of strategies against the invasion of 
 others39–42 (see Supplementary Information). Alternatively, we consider a bit-wise 
(or local) mutation (see Extended Data Fig. 5), which leads to similar results. 
Imitation happens with probability 1 −  µ: a new individual (say, individual Y, the 
role model) is selected randomly, and individual X is given the opportunity to 
update their strategy. The fitness of both individuals (FX and FY) is calculated as 
the average payoff earned in g =  2Z games played against individuals in the popu-
lation selected randomly using a UPD. This number of games is adequate to obtain 
a clear assessment of the average payoff, given the number of strategies, and to 
account for the dynamic reputation assignment described below. After each game 
is played, a reputation update occurs according to the social norm and subject to 
the assessment (α) and private (χ) errors described above. Individual X adopts the 
strategy of individual Y with probability + + −(1 e )F F 1X Y —the so-called Fermi 
update or pairwise comparison rule43.
Cooperation index. The cooperation index η for a given social norm is computed 
as the fraction of cooperative acts that take place out of the total number of acts 
during the simulation time. Thus, η reflects both the dependence of strategy adop-
tion on the relative frequency of strategies present in the population (frequency- 
dependent selection) and the evolution of reputations given the fixed social norm 
in the population. More details on the computer simulations are provided in 
Supplementary Information and in Extended Data Fig. 6. The full set of  parameters 
explored is summarized in Supplementary Table 2.
Code availability. A comprehensive description of the standard algorithms that 
we implemented to compute the evolutionary dynamics of strategies is provided 
in Supplementary Information and Extended Data Fig. 6. Code that exemplifies 
the calculation of Boolean complexity is available at https://doi.org/10.5281/
zenodo.1041379.
Data availability. The raw data generated, which were used to create Figs 2–4 and 
which support our conclusions, is available with the online version of the paper 
as Source Data.
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Extended Data Figure 1 | Cooperation index of third- and fourth-order 
norms. In the space of fourth-order norms (red bars), only a small fraction 
of norms (about 0.2% of 216) foster high levels of cooperation (η >  0.9), as 
conveyed by the complementary cumulative distribution function (CCDF; 

see inset for a close-up of the tail). In the space of third-order norms 
(blue bars), about 2% of norms (of a total of 28) promote high levels of 
cooperation (η >  0.9). Other parameters: Z =  50, ε =  α =  χ =  0.01, µ =  1/Z, 
b =  5, c =  1, γ =  0.
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Extended Data Figure 2 | The most cooperative norms.  
a, c, e, g, Data from simulations in which individuals pay a complexity 
cost cc proportional to the complexity κs of the strategy that they employ 
(cc =  cκs/10 =  γκs). b, d, f, h, Data when no complexity cost is involved. 
Irrespective of whether the previous reputation of the recipient (a–d) or 
the donor (e–h) is used as the fourth consideration (as the fourth-order 
bit; see Extended Data Fig. 3), or whether there is a complexity cost 
involved, the highest levels of cooperation are already achieved for κ =  4. 

Moreover, when we plot norm performance (in terms of the cooperation 
index), separating norms according to their complexity κ (for κ ≤  5;  
c, d, g and h) it becomes apparent that fourth-order norms are generally 
outperformed by lower order norms. Furthermore, paying a complexity 
cost is most detrimental to the more sophisticated fourth-order norms, 
which no longer promote cooperation under indirect reciprocity. Other 
parameters: Z =  50, ε =  α =  χ =  0.01, µ =  1/Z, b =  5, c =  1.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 3 | Alternative ways of defining a social norm. 
a, b, We consider norms that attribute a new reputation (outer ring) on 
the basis of (i) the action of the donor (first-order bit; blue ring); (ii) the 
current (actual) reputation of the receiver (second-order bit; yellow ring); 
(iii) the current (actual) reputation of the donor (third-order bit; pink 
ring); and (iv) the previous reputation of either the recipient (a) or the 

donor (b) (fourth-order bit; green ring). In a and b, there are 216 norms 
in total. c, Number of bits (layers, l) used for each norm order, and the 
corresponding number of possible strategies (s) and norms. Because 
actions are taken using the same information used by a norm to attribute  
a new reputation, we consider 28 different strategies for norms up to 
fourth-order.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 4 | Robustness of results to parameter variations. 
A full list and detailed description of all model parameters is provided 
in Supplementary Information. a–d, Norm performance (in terms of the 
complexity index) as a function of population size Z (a), the benefit-to-
cost ratio b/c in the donation game in which individuals interact (b), the 
private assessment error probability χ (c) and the reputation assignment 
probability τ (d). Here we use the previous reputation of the recipient 
as the fourth-order bit (as in the main text) and investigate, within the 

space of fourth-order norms, the performance of the (second- and third-
order) leading eight norms together with the (first-order) image score 
and (zeroth-order) all good norms. The norms ‘ss’ and ‘sj’ denote simple 
standing and stern judging; ‘ss +  sj’ has the first 8 bits equal to the third-
order representation of simple standing and the last 8 equal to the third-
order representation of stern judging; and ‘sj +  ss’ is defined similarly; 
see Supplementary Table 4 for details of these norms. Other parameters: 
Z =  50, ε =  α =  χ =  0.01, µ =  1/Z, b =  5, c =  1, γ =  0.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 5 | Global versus local mutation schemes.  
b, We consider a mutation scheme in which a new strategy is adopted  
with probability µ (drawn from a UPD) when a mutation occurs39–42.  
c, Alternatively, we consider a local mutation (in each strategy), whereby 

with probability µL (drawn from a UPD) one bit changes. a, For the 
leading eight norms8, we find that the same conclusions are attained 
regardless of the mutation scheme considered. Other parameters: Z =  50, 
ε =  α =  χ =  0.01, b =  5, c =  1, γ =  0.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 6 | Pseudo code for the Monte Carlo 
simulations used to calculate the cooperation index under each 
norm. Given the large number of norms considered, we used Runs =  15 

and Gens =  1.5 ×  104 in Figs 2–4 and Extended Data Figs 1 and 2, and 
Runs =  50 and Gens =  105 in Extended Data Figs 4 and 5.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



1. Supplementary Discussion

1.1. Alternative ways of defining 4th order norms
As already stated in the main text, norms of 4th order incorporate, on top of all information 

contained in norms of 3rd order, either information on the previous reputation of the recipient 

or the previous reputation of the donor. The differences are detailed in Extended Data Figure 3, 

where in panel a we show how an additional layer of information associated with the previous 

reputation of the recipient is organized, while in panel b we show the layout associated with 

encoding the previous reputation of the donor.  

These two possibilities entail the same amount of information processing to the observer 

assigning a reputation to the donor. However, they imply different amounts of information 

management by the donor, as knowledge of the previous reputation of the recipient by the 

donor may be harder to retain – and more prone to be affected by errors – than knowledge of 

her/his own previous reputation.  

In this work, social norms and strategies are represented as bit strings (see Methods). Thus, 

while acquiring a similar form, the two definitions of social norm differ in the meaning 

associated with the position of the bit representing past reputation information. Despite these 

differences, the two formulations of 4th order social norms lead, overall, to results that are 

qualitatively similar. In the following, and using as a reference the discussion carried out in the 

main text in connection with formulation a in Extended Data Figure 3, we summarize the main 

differences found regarding formulation b. 

    In Extended Data Figure 2 we compare directly the results of formulations a (top 4 panels) 

and b (bottom 4 panels) of Extended Data Figure 3 using the format adopted in Figure 3 for 

panels a, b, e and f (for convenience, panel a of Extended Data Figure 2 reproduces the results 

already contained in Figure 3). 

    Comparison of panels a and e shows that, similar to formulation a, the highest values of 

cooperation are attained for κ≥4 in formulation b. Panels b and f, in turn, allow the comparison 

of the results obtained in both formulations whenever individuals incur a complexity cost cc by 

employing a strategy of complexity κs, with cc=γκs. In both formulations, adding a complexity 

cost hampers cooperation whenever populations operate under norms of high complexity κ. 

These results, in turn, strongly suggest that norms with high κ require, in general, strategies 
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with sizeable complexity to achieve the highest values of η.  Interestingly, one also observes 

that in formulation b the cooperation levels decrease for high values of κ, even in the absence 

of any behavioral complexity cost (γ=0).  

   Panels c, d, g and h in Extended Data Figure 2 provide an alternative view of norm 

performance (for both formulations and in the presence and absence of a complexity cost): We 

plot the distribution of cooperation levels of social norms with a given complexity κ (for all 

norms with κ<6), as a function of η. The results clearly highlight the large number of 4th order 

social norms that are outperformed by lower order social norms in all cases. 

1.2. Robustness of cooperation under well-known norms 

In Extended Data Figure 4 we test the robustness of our results with respect to changes of 

different model parameters: population size, benefit/cost ratio, private assessment error and 

reputation assignment probability. Most of the results we discussed were computed for 

populations of size Z=50 which, as Extended Data Figure 4a shows, reflect the trend observed 

for most of the size interval spanned (from 20 to 120), with the exception of the norms simple-

standing and image-score, whose η-values reverse order for Z≥90. Notwithstanding, the overall 

impact on the cooperation levels is small. In particular, the most cooperative, low-κ social 

norms (stern-judging, judging and score-judging) maintain high levels of cooperation for all 

population sizes. Similar conclusions are obtained if one considers different b/c ratios, as 

shown in Extended Data Figure 4b. We further study the robustness of cooperation under 

leading norms to different private assessment errors (χ, Extended Data Figure 4c) and 

reputation assignment probability (τ, Extended Data Figure 4d). The results are qualitatively 

similar as long as χ<0.1 and τ>0.01. This is particularly impressive given that IR may strongly 

depend on how faithful dissemination of information is. This point has been explicitly 

simulated in Ref. 1  by studying information diffusion in a graph.  

1.3 Numerical analysis of norms bits 

In Table 1 we provide numerical data that summarizes the most common bits that occur in the 

social norms that promote the highest levels of cooperation, and which provide evidence for 

the pattern (discussed in the main text) identified in those norms that successfully promote 

cooperation. 
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Supplementary Table 1 | Common bits in the most cooperative norms 
bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

RP RP  RP  RP  RP  RP  RP  RP  RP  RP  RP  RP  RP  RP  RP  RP  RP  

RD RD  RD  RD  RD  RD  RD  RD  RD  RD  RD  RD  RD  RD  RD  RD  RD  

RA RA  RA  RA  RA  RA  RA  RA  RA  RA  RA  RA  RA  RA  RA  RA  RA  

A A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  
η>0.91 
13 norms 

1.00 0.00 0.38 0.62 1.00 0.00 0.15 0.31 0.62 0.38 0.00 1.00 0.31 0.31 0.31 0.08 

η>0.9 

66 norms 

1.00 0.00 0.49 0.54 1.00 0.00 0.43 0.34 0.55 0.51 0.00 1.00 0.38 0.31 0.42 0.25 

η>0.85 

359 norms 

1.00 0.00 0.45 0.79 0.99 0.17 0.45 0.41 0.48 0.78 0.12 0.94 0.45 0.41 0.47 0.35 

η>0.8 

1413 norms 

1.00 0.00 0.37 0.86 0.71 0.68 0.54 0.49 0.37 0.86 0.39 0.74 0.53 0.49 0.50 0.43 

η>0.5 

6602 norms 

1.00 0.01 0.46 0.68 0.56 0.58 0.52 0.52 0.47 0.69 0.46 0.70 0.52 0.52 0.56 0.50 

The first row of the table enumerates the different bits that form one social norm; The next 4 rows provide 
information of the combination of bits that define each norm. A new reputation of a donor depends on the present 
reputation of the donor (RD) and recipient (RA), together with the past reputation of the recipient (RP) and the 
action by the donor (A). The following rows contain numerical values representing the fraction of norms – among 
those satisfying a given threshold η specified on the left column – that have value G=1 in each bit position. Other 
parameters: Z=50, ε=α=χ=0.01, µ=1/Z, β=1, b=5, c=1, γ=0. Here we consider the previous reputation of the 
recipient. For convenience, we use RP, RD, and RA both as the name of a reputation layer in a social norm 
(Extended Data Figure 3) and as a Boolean variable that can assume value 1 = G = R  or 0 = B =R . Alongside, A 
can assume value 1=C= A  or 0=D=A . 
 
First, we note that all cooperative norms (η>0.8) agree in what concerns bits in positions 0 and 

1 (respectively, columns 2 and 3 in Table 1): anyone that is Good and cooperates with a Good 

opponent (both in the present and past, thereby called enduring Good) should maintain the 

Good reputation; anyone that defects in this scenario should have the reputation updated to 

Bad.  

Regarding the norms that lead to η>0.9 we find that, in addition, 4 bits are remarkably 

constant: In these 66 (distinct) norms, bits 4 and 11 are always 1 and bits 5 and 10 are always 

0. This means that the social norms promoting more than 90% of cooperation all agree that  

1) those that are Bad, and cooperate with someone who is an enduring Good  

and  

2) those that are Good and defect against someone who is an enduring Bad  

should have a Good reputation.  
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Furthermore, all of these norms attribute a Bad reputation to whoever 

1) is already Bad and defected against someone who is an enduring Good

or

2) is Good and cooperated with someone who is an enduring Bad.

All together, these features lead to the following pattern: 

Become G (B) if helped (refused to help) an enduring G; maintain (lose) G 

reputation if refused to help (helped) an enduring B. 

It is worth pointing out that this is a necessary (though not sufficient) pattern to achieve 

cooperation levels higher than 0.9, for the particular set of parameters tested. A more 

comprehensive study should be carried out to unravel those patterns providing sufficient 

conditions guaranteeing high levels of cooperation. Moreover, here we only count the “truly” 

distinct norms since, through mirror symmetry (the Boolean value of Good and Bad can be 

swapped2) there are pairs of equivalent norms promoting the same levels of cooperation. To 

remove the noise effect introduced by those norms we only take into account the ones leading 

to a majority of individuals with reputation Good. 

1.4. Simulation details 

    Several analytical and numerical methods may be employed to assess the performance of a 

social norm. An Evolutionary Stable Strategy (ESS) analysis2-4, elegantly offers information 

about the maintenance of cooperative strategies. Additionally, evolutionary dynamics in finite 

population — e.g., in the limit of rare mutations5,6 — provides an overall description of the 

most likely configurations of the population (or the prevailing strategies), which does not 

necessarily correlate with ESSs. This powerful approach also provides an easy means to study 

the evolutionary robustness of strategies against the invasion of any other7-10, for arbitrary 

intensities of selection. The limit of rare mutations, however, fails to account for possible co-

existence scenarios11, and the performance of social norms under arbitrary mutation rates12 — 

although the recent development of hierarchical methods11 does provide a possible solution to 

this shortcoming. Nonetheless, to have a complete assessment of the performance of each 

social norm, here we resorted to computer simulations. In Extended Data Figure 6 we provide 

the pseudo-code employed in the (standard Monte Carlo) numerical computation of the 

cooperation levels under each social norm. In Table 2 we provide a detailed description of the 

full parameter space considered: 
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Supplementary Table 2 | Model Parameters and parameter space analyzed 

Parameter Symbol Range analyzed Figure 

population size Z {20, 30, …,120} Extended Data Fig 4 

execution error ε {0.01} - 

assignment error α {0.01} - 

private error χ {0, 0.001, 0,002,…,0.01,0.02, …, 0.5} Extended Data Fig 4 

global mutation µ {1/Z, 0.1/Z} Extended Data Fig 5 

benefit/cost (donation game) b/c {0, 1, 2, …, 15} Extended Data Fig 4 

behavioral complexity cost γ {0, 0.1} Extended Data Fig 3 

local mutation µ {0, 0.5/Z, 1/Z} Extended Data Fig 5 

probability reputation assignment τ {0, 0.001, 0,002,…,0.01,0.02, …, 1} Extended Data Fig 4 

2. Calculating social norm complexity: an explicit example

Let us summarize the procedure of calculating the Boolean complexity of a social norm by 

means of an example. In the following, we choose the social norm Judging. Calculating its 

Boolean complexity involves three steps:  

Step 1. Translate the social norm to the corresponding DNF, converting each bit of the 

norm to the corresponding minterm: 

   Table 3 represents a truth table with 4 input variables. The inputs are RP (previous reputation, 

where RP  means Good and RP  means Bad – a notation that we follow throughout this 

section), RD (actual reputation of the Donor), RA (actual reputation of the Recipient) and A 

(action of the Donor, where A  means Cooperate and A  means Defect). The last row of this 

table corresponds to a Boolean function, in this case representing the social norm Judging2. 

That function receives the previous inputs and produces True (or 1) if the next reputation of the 

Donor is Good, and False (or 0) if the next reputation is Bad. This way, we can write Judging 

as a disjunction of minterms (i.e., products of inputs that have value one in exactly one position 

of the previous table). Judging prescribes Good in 6 different situations, so its Boolean 

function will be composed by 6 minterms: 
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RPRDRAA ∨RPRDRAA ∨RPRDRAA ∨RPRDRAA ∨RPRDRAA ∨RPRDRAA . We could also use 

the minterm notation: Σm(0,3,4,8,11,12), where the bits leading to reputation 1 (Table 3) are 

enumerated after Σm. In the next step, we simplify this Boolean function.  

 
Supplementary Table 3 | Truth table of a social norm 

bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

RP RP  RP  RP  RP  RP  RP  RP  RP  RP  RP  RP  RP  RP  RP  RP  RP  

RD RD  RD  RD  RD  RD  RD  RD  RD  RD  RD  RD  RD  RD  RD  RD  RD  

RA RA  RA  RA  RA  RA  RA  RA  RA  RA  RA  RA  RA  RA  RA  RA  RA  
A A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  

Judging 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 

Here we provide the example of computing the DNF form for the social norm Judging, identified by the 6 Good 
(represented by 1) entries in the last row. We use the same format of Table 1 for the first 5 rows. 
 

 

Step 2. Apply a DNF minimization algorithm (QM algorithm): 

The Quine-McCluskey (QM) algorithm13 constitutes a computationally friendly algorithm to 

minimize a Boolean function. First, this algorithm proceeds by finding the redundant literals in 

the different products. In the example above, we note that the products RPRDRAA  and 

RPRDRAA  only differ in RD  and thus the terms can be combined into RPRAA  (the consensus 

theorem). After applying a similar procedure iteratively, one can compute the terms that can no 

longer be combined with other terms, which are called prime implicants (i.e., terms that are not 

redundant). If every minterm is covered by a prime implicant, the method returns the 

disjunction of the prime implicants as the minimized DNF, with a minimum number of terms. 

Additional procedures (such as the Petrick's method) can be used to generate a minimal DNF 

from the obtained prime implicants. In the example of Judging, QM would return the minimal 

DNF RAA ∨RDRAA . 

 

Step 3. Count the number of literals: 

Once a minimal DNF is obtained, we simply count the number of literals. The minimal DNF 

RAA ∨RDRAA  is composed by 5 literals, which translates into a Boolean complexity κ of 5.  
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Another simple example is simple-standing, whose minimal DNF is A ∨RA , which translates 

into a Boolean complexity of 2. In Table 4 we provide the minterm notation, minimal DNF and 

Boolean complexity of most of the well-known social norms found to date. 

Supplementary Table 4 | The Boolean function of some of the most well-known social norms 

Decimal Name minterm notation Minimal DNF κ Order 

0 All-Bad Σm() False 0 0 

65535 All-Good Σm(0,1,2,3,4,5,6,7,8,9, 
10,11,12,13,14,15) True 0 0 

34952 Shunning Σm(0,4,8,12) RAA 2 2 

39064 Judging Σm(0,3,4,8,11,12) RAA ∨RDRAA 5 3 

39321 Stern-
Judging Σm(0,3,4,7,8,11,12,15) RAA ∨RAA 4 2 

39578 Score-
Judging Σm(0,3,4,6,8,11,12,14) RAA ∨RDRAA ∨RDA 7 3 

39835 SJ+SS Σm(0,3,4,6,7,8,11,12,14,15) RAA ∨RAA ∨RARD 6 3 

43690 Image-Score Σm(0,2,4,6,8,10,12,14) A  1 1 

47288 Strict-
Standing Σm(0,2,3,4,8,10,11,12) RAA ∨RARD 4 3 

47545 SS+SJ Σm(0,2,3,4,7,8,10,11,12,15) RAA ∨RAA ∨RARD 6 3 

47802 Standing Σm(0,2,3,4,6,8,10,11,12,14) A ∨RARD 3 3 

48059 Simple-
Standing Σm(0,2,3,4,6,7,8,10,11,12,14,15) A ∨RA 2 2 

From the Boolean representation of a social norm, we can compute the Boolean complexity (κ) of a norm as the 
number of literals in its minimal DNF form. Norms in boldface represent the leading-eight norms of cooperation 
identified by Ohtsuki and Iwasa2,3.  Interestingly, we find another 3rd order leading-eight norm (a variant of Stern-
Judging, named above as Score-Judging) that is able to foster high levels of cooperation, combined with a low 
average behavioural complexity ζ. This norm is shown in Figure 4 to perform almost as well as Stern-Judging and 
Judging (see black circle in the vicinity of these norms), yet exhibiting a higher Boolean complexity (κ=7). 
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