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Social diversity promotes the emergence of
cooperation in public goods games
Francisco C. Santos1, Marta D. Santos2 & Jorge M. Pacheco2

Humans often cooperate in public goods games1–3 and situations
ranging from family issues to global warming4,5. However, evolu-
tionary game theory predicts4,6 that the temptation to forgo the
public good mostly wins over collective cooperative action, and
this is often also seen in economic experiments7. Here we show
how social diversity provides an escape from this apparent para-
dox. Up to now, individuals have been treated as equivalent in all
respects4,8, in sharp contrast with real-life situations, where
diversity is ubiquitous. We introduce social diversity by means
of heterogeneous graphs and show that cooperation is promoted
by the diversity associated with the number and size of the
public goods game in which each individual participates and
with the individual contribution to each such game. When social
ties follow a scale-free distribution9, cooperation is enhanced
whenever all individuals are expected to contribute a fixed
amount irrespective of the plethora of public goods games in
which they engage. Our results may help to explain the emergence
of cooperation in the absence of mechanisms based on individual
reputation and punishment10–12. Combining social diversity with
reputation and punishment will provide instrumental clues on the
self-organization of social communities and their economical
implications.

The N-person prisoner’s dilemma constitutes the most used meta-
phor to study public goods games (PGGs): cooperators (C) contrib-
ute an amount c (‘cost’) to the public good; defectors (D) do not
contribute. The total contribution is multiplied by an enhancement

factor r and the result is equally distributed between all N members of
the group. Hence, Ds get the same benefit of the Cs at no cost.
Collective action to shelter, protect and nourish, which abounds in
the animal world, provides examples of PGGs, because the coopera-
tion of group members is required. Ultimately, the success (and
survival)5 of the human species relies on the capacity of humans
for large-scale cooperation. In the absence of enforcement mechan-
isms7,13,14, conventional evolutionary game theory predicts that the
temptation to defect leads individuals to forgo the public good4 in the
N-person prisoner’s dilemma. Whenever interactions are not
repeated, and reward and punishment4,8,13 can be ruled out, several
mechanisms were explored that promote cooperation. Individuals
were either constrained to interact only with their neighbours on
spatial lattices4,8,15, or given the freedom to opt out of particip-
ating4,15, leading to a coexistence of cooperators and defectors, even
on spatial lattices.

Here we investigate what happens in the absence of reputation and
punishment and when participation is compulsory. Unlike previous
studies involving PGGs4,8,15, individuals now interact along the social
ties defined by a heterogeneous graph16–18. This reflects the fact that
individuals have different roles in social communities. Empirical
studies show that social graphs have a marked degree of heterogeneity
combined with small-world effects19–21, as illustrated in Fig. 1b.
Hence we introduce diversity in the study of cooperation under
PGGs in the context of evolutionary graph theory22, and in the pre-
sence of spatial and network reciprocity18,23,24.
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Figure 1 | Population structure and local
neighbourhoods. a, Regular graphs studied so
far, which mimic spatially extended systems.
b, Scale-free graphs9 in which small-world effects
coexist with a large heterogeneity in
neighbourhood size. c, The focal individual
(largest sphere) belongs to different groups
(neighbourhoods) of different sizes in a
heterogeneous graph. Given his/her connectivity
k 5 4, we identify five neighbourhoods, each
centred on one of the members of the focal
individual’s group, such that individual fitness
derives from the payoff accumulated in all five
neighbourhoods (a, b, c, d and e).
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Figure 1c shows how diversity is introduced, in which we enume-
rate the different PGGs in which the focal individual (large sphere)
engages. Each PGG is associated with a fixed neighbourhood defined
by the social graph; given the focal individual’s connectivity k 5 4,
he/she participates in five PGGs; that centred in his/her neighbour-
hood a (group size of 5) plus those associated with the neighbour-
hoods centred on his/her neighbours: b (2), c (3), d (5) and e (4).
Hence graph heterogeneity leads individuals to engage in different
numbers of PGGs with different group sizes. Furthermore, there is no
reason for every C to contribute the same amount to each game in
which he/she participates (see below).

Figure 2a shows results for the evolution of cooperation corres-
ponding to the conventional situation in which every C pays a
fixed cost c in every game that he/she plays. We plot the fraction of
cooperators in the population that survive evolution as a function of
the renormalized PGG enhancement factor g 5 r/(z 1 1), where z is
the average connectivity of the population graph (see Methods). In
infinite, well-mixed populations, a sharp transition from defection to
cooperation takes place at g 5 1. Comparison between the results
obtained on regular graphs (Fig. 1a) with those on strongly hetero-
geneous graphs (scale-free; Fig. 1b) reveal the sizable impact of
heterogeneity on the evolution of cooperation. For regular graphs
(in which, from the perspective of a population structure, every
individual is equivalent to any other) cooperators become predom-
inant (their fraction exceeds 50%) at g < 0.7: network recipro-
city18,23,24 leads to an enhancement of cooperation also under
PGGs4,8,15. This number decreases to g < 0.6 on scale-free graphs,
in which individual participation now reflects both a diversity in

the size of each individual’s PGGs and in the different number of
PGGs in which each individual participates.

The contribution of each C in Fig. 2a has been proportional to
k 1 1, where k is the number of neighbours (vertex degree). This may
be unrealistic, because individuals have limited resources and social
rules often accommodate a more egalitarian overall contribution
from individuals25. In the extreme opposite limit, all Cs contribute
the same overall cost, equally shared between all games in which each
individual participates. In this limit, still another new type of diver-
sity is introduced—that of individual contributions to each game.
Real-world situations will naturally fall somewhere between these
limits, as individuals learn26 to cooperate (or defect) in better ways.
In general, however, one expects diversity of contributions from
individuals. Depending on the problem at stake, any contribution
may be necessary and even welcome, however small. Below we show
that, whenever all contributions are interpreted as acts of coopera-
tion, cooperation blooms.

Figure 2b shows the results including this additional diversity in
which Cs contribute c/(k 1 1) for each game, k being their degree in
the social graph. This new model leads to an impressive boost of
cooperation. In all cases, cooperation now dominates for values of
g below 0.4.

What is the origin of such a boost of cooperation? Because each C
now contributes c/(k 1 1) to each game, diversity resulting from
heterogeneous graphs determines a richer spectrum of individual
fitness. In a single PGG, the fitness difference between a C and a D
is no longer constant and proportional to c, as on homogeneous
graphs, but now depends on the social context of the individual. As
shown in detail in Supplementary Information, the highly connected
nodes (hubs) are those that turn most quickly into cooperation. This
is because, under this contribution model, the relative fitness of a
single cooperator increases with its connectivity, as illustrated in
Fig. 3 (derivation details are given in Supplementary Information).
Consequently, heterogeneity confers a natural advantage on hubs. In
practice, Cs survive extinction for values of g about 0.25. Because
z 5 4, g 5 0.25 implies that r 5 1.25, much lower than the size N 5 3
of the smallest group in the entire population. Note that, in those
games for which gk ; r/(k 1 1) . 1 (the smaller groups), the social
dilemma might become relaxed, because in this case it is better to play
C than D. As Fig. 2b shows, cooperation prevails despite gk , 1 in
every PGG played. In fact, the impact of diversity is preserved even
when the social dilemma is transformed such that defection is always
preferred, irrespective of g.

It still remains to explain how a D sitting on a large hub can be
taken over by a C. As shown in the Supplementary Information, Ds
are victims of their own success—successful Ds breed Ds in their
neighbourhood, inducing a negative feedback mechanism that
reduces their fitness27. Consequently, they become vulnerable to
nearby cooperators. Once invaded by a C, a hub will remain C, as
by placing Cs on nearby sites, successful Cs increase their fitness. The
role of Cs is therefore crucial and twofold: they efficiently disseminate
the cooperator strategy across social networks, whereas they get a
stronghold on hubs by minimizing the potential loss from exploita-
tion by free-riding Ds. It is noteworthy that the results shown in
Fig. 2b, in which selection is strong, are robust with respect to the
detailed evolutionary dynamics (pairwise comparison28, birth–
death18, death–birth18), to the updating strategy (synchronous,
asynchronous), and even to errors (mutations cannot destroy
C-dominance).

What about the defectors? They have a minor role as social
parasites when they survive on such graphs. Figure 2b shows that
some residual Ds continue to exploit Cs. In the Supplementary
Information we provide a detailed analysis showing how the evolu-
tionary dynamics inexorably leads cooperators to invade the hubs
quickly, whereas defectors are able to survive only on loosely con-
nected nodes, with low fitness and exploiting cooperators of low
fitness.
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Figure 2 | Evolution of cooperation in networked PGGs. Black lines and
filled circles show results for scale-free graphs; grey lines and open squares
show results for regular graphs. In all cases z 5 4. a, Fixed cost per game. Cs
pay a cost c 5 1 for each PGG in which they participate: diversity in number
of PGGs and size of each PGG associated with scale-free graphs merits a
significant enhancement of cooperation. b, Fixed cost per individual. Each C
contributes a total cost c equally shared between all k 1 1 PGGs in which
he/she engages. This change of model leads to an impressive boost of
cooperation.
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In a more economical perspective, our results also portray differ-
ent evolutionary outcomes even in communities in which all indivi-
duals cooperate. Now we consider populations of 100% cooperators
and look at their ‘wealth’ (fitness) distribution according to different
underlying models. We consider homogeneous (regular) and hetero-
geneous (scale-free) graphs. In Fig. 4 we plot the fraction of the
population that holds a given fraction of the total wealth.

The differences are striking. On regular graphs an egalitarian
wealth distribution is obtained, irrespective of the contribution
model. On scale-free graphs wealth distributions follow a power
law. However, for a fixed cost per individual, the population has
significantly fewer poor and more rich (note the logarithmic scale
in Fig. 4). Given that the emergence of cooperation is easiest in this
case, the results provide an impressive account of the role of diversity
and its implications in both the emergence of cooperation and the
resulting wealth distribution.

In this study any contribution has been identified with coopera-
tion. In communities under the influence of social norms, individual
contributions will be easily classified as acts of cooperation (or not).
In this context, our results suggest the possibility that successful
communities are those in which the act of giving is more important
than the amount given. This may be of particular relevance whenever
the survival of the community is at stake, in which case any help is

necessary14,25. Most probably, in such cases selection is strong, as
considered here.

METHODS SUMMARY

According to Fig. 1c, each individual and his/her k neighbours statically define a

group (of size k 1 1). The fitness of individual i is associated with the accumu-

lated payoff resulting from all PGGs in which he/she participates. Strategy

evolution is implemented by using the finite population analogue of the repli-

cator dynamics: at each time step each individual will adopt the strategy of a

randomly chosen neighbour (if more fit) with a probability proportional to

the fitness difference16,29. Consequently, the results become independent of

the specific value used for the cost of cooperation c (we set c to 1). The results

shown were obtained for communities of 103 individuals starting with 50% of

cooperators randomly distributed on the population graph. The equilibrium

fraction of cooperators results from averaging over 2,000 generations after a

transient period of 105 generations. This procedure was repeated 100 times for

10 different realizations of each class of graph. Finally, the distributions depicted

in Fig. 4 were obtained by averaging the fitness distributions over 50 scale-free

graphs with average connectivity z 5 4 and populations of 103 individuals, all

cooperators.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Population structure. Population structure is represented by a graph; indivi-

duals occupy the vertices of the graph, and social interactions proceed along the

edges. Figure 1 depicts the two topologies considered in this study. Figure 1a

represents one-dimensional lattices, namely communities in which all indivi-

duals (nodes) are topologically equivalent, similar to those previously investi-

gated. In Fig. 1b we provide a diagram of more realistic social structures,

portraying populations in which different individuals have a distinct number

of connections. Such strongly heterogeneous populations were obtained by

means of the Barabási–Albert scale-free model based on growth and preferential
attachment9. As is well known, realistic social structures fall somewhere between

regular and scale-free graphs19. The blue circles in Fig. 2 were obtained on scale-

free populations with 103 individuals generated in this way, with average con-

nectivity z 5 4. This implies that the smallest group in this population has three

individuals9. In all simulations, the networks remain unchanged throughout

evolution and each individual adopts a pure strategy: cooperator (C) or defector

(D).

Public goods games. Every individual participates in all possible PGGs, accu-

mulating the benefits and costs resulting from each of them. The accumulated

value of the payoffs resulting from all possible PGGs contributes to individual

fitness (neighbourhoods a, b, c, d and e in Fig. 1c). In each PGG, the income of

individual x will depend on the size of the group kx 1 1 (defined by the size of the

neighbourhood centred on individual x; see Fig. 1), on the number nC of Cs in

his/her neighbourhood and on the multiplication factor r applied to the group

investment. The incomes of a defector and a cooperator in one group are given

by PD 5 crnC/(kx 1 1) and PC 5 PD 2 c, respectively, in the case where all coop-

erators contribute the same cost c per game, such that the contribution of an

individual is proportional to his/her number of social ties. In the opposite limit,
we considered the case in which C individuals with kx neighbours contribute a

cost c/(kx 1 1) per game, such that the individual contribution of each C equals c

independently of the number of social ties. Hence, the payoff of an individual y

with a strategy sy (1 if C, 0 if D) associated with the PGGs centred in a individual x

is given by

Py,x~
r

kxz1

Xkx

i~0

c

kiz1
si{

c

kyz1
sy

where i 5 0 stands for x, si is the strategy of the neighbour i of x, and ki is his/her

degree.

Evolution. The network structure of the population defines not only the game

interactions but also the structure through which strategy evolution proceeds.

For non-repeated two-player games, this has been shown to constitute the most

favourable model for cooperation30. After engaging in all games, the accumu-

lated payoff is mapped onto individual fitness. After each game round, all strat-

egies are updated synchronously by following the finite population analogue of

the replicator dynamics16,29. When a site x with a payoff Px is selected for update, a

neighbour y (with a payoff Py) is drawn at random between all kx neighbours. If

Px . Py, no update occurs. If Px , Py, x will adopt y’s strategy with a probability

given by (Py 2 Px)/M. M ensures the proper normalization and is given by the

maximum possible difference between the payoffs of x and y. The results are
robust with respect to changes both in the detailed form of the normalization

factor or if we adopt an asynchronous update instead of the synchronous one.

Simulations. The results were obtained for communities with N 5 103 indivi-

duals and an average connectivity of z 5 4. Each equilibrium fraction of coop-

erators was obtained by averaging more than 2,000 generations after a transient

period of 105 generations. We started with 50% of Cs randomly placed on the

graph. Each data point depicted in Fig. 2 corresponds to an average over 1,000

simulations; that is, 100 runs for 10 different realizations of the same class of

graph. Finally, the distributions depicted in Fig. 4 were obtained by averaging the

fitness distributions over 50 scale-free graphs with z 5 4 and populations of 103

individuals, all cooperators.

30. Ohtsuki, H., Nowak, M. A. & Pacheco, J. M. Breaking the symmetry between
interaction and replacement in evolutionary dynamics on graphs. Phys. Rev. Lett.
98, 108106 (2007).
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Evolutionary dynamics of the Rich, the Poor, the Marginally and the 

Centrally connected  

When population structure is associated with a heterogeneous social graph, 

one introduces diversity in the roles each individual plays in the community. In 

particular, when populations are structured following a scale-free distribution, the 

majority of individuals engage only in a few games, while a minority is able to 

participate in many games27. Depending on the size and number of the PGG each 

individual participates, the payoffs of an individual can rise to high values with 

respect to the population average, or may remain very low. In other words, the 

diversity introduced leads to another type of diversity which can be deduced from the 

fitness (or wealth, in a more economical sense) distribution. It is noteworthy, 

however, that the nature of the public good games makes the income of an individual 

depend not only on her number of social ties (her degree in the social graph), but also 

on the “degree” of her neighbors. In this sense, heterogeneous graphs lead to the 

appearance of several classes of individuals, both in what concerns the number of 

games in which they participate and also in what concerns their wealth.  

Let us consider for simplicity, three classes of individuals regarding their 

number of social ties ki on a scale-free network:  

i) Low-Degree class, whenever 

! 

ki < z ;  

ii) Medium-Degree class, whenever 

! 

z " ki <
kmax

3
 and finally  

iii) High-Degree class, whenever 

! 

kmax

3
" ki " kmax , 

encompassing the highly connected individuals (the hubs).  

Let us also distinguish individuals in another group of three classes based on 

their personal wealth (fitness) 

! 

"i
:  
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i) Lower-Class, when 

! 

"i <
" total

3
;  

ii) Middle-Class, when 

! 

1

3
" total # "i <

2

3
" total  and  

iii) Upper-Class, when 

! 

2

3
" total # "i # " total ,  

where 
total

!  is the total wealth of the population at a given time of the evolutionary 

process.  

 

Figure S1. Time-dependence of the fraction of cooperators on scale-free communities.  

 

In Figure S1 we plot the fraction of cooperators in the population for each of these 9 

classes during evolution, when each individual invests the same amount irrespective 

of the number of PGG she participates.  The time-dependent curves in Figure S1 
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provide a representative run for a multiplication factor r=1.7, that is, η=0.34 (z=4). 

For this value of η, cooperators dominate the population while unable to wipe out 

defectors.  

In the upper panel, it is clear that individuals of High-Degree quickly become 

cooperators and remain so for the rest of the evolutionary process. On the contrary, 

Low-Degree and Medium-Degree classes start by adopting defector strategies. The 

more Low-Degree and Medium-Degree individuals adopt the D strategy, the more 

vulnerable they become to the influential role played by C hubs (High-Degree 

individuals). Consequently, the situation quickly reverts to a scenario in which Ds 

survive only as individuals of Low-Degree and Medium-Degree.  

The middle panel shows that high levels of wealth (fitness) – Upper-Class – are 

associated with Cs. Moreover, no Ds survive in the Middle-Class, being all relegated 

to the Lower-Class.  

Finally, the lower panel summarizes together the information provided separately in 

the upper panels, correlating fitness, degree and strategy. Only individuals of High-

Degree classes can achieve the Upper-Class in terms of wealth. On the other hand, the 

presence of Ds in the population, both in the Lower-Degree and Medium-Degree 

classes, renders some High-Degree individuals unable to join the rest of the “hubs”, 

remaining with a low wealth. The survival of Ds is therefore detrimental to the overall 

wealth of the population and, individually, Ds fare pretty badly in strongly 

heterogeneous communities, down to small values of the enhancement factor r. 

Diversity provides indeed a powerful mechanism to promote cooperation.  
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Dependence on population size and average connectivity 

In the main text the discussion relied on simulations carried out for fixed 

population size N and fixed average degree z. Here we investigate how the results 

depend on these 2 quantities. To this end we carried out simulations for N=500,1000 

and 5000 (for fixed z=4) and z=4,16,32,64 for fixed N=500. The results for fixed z=4 

are shown in Figures S2 and S3, whereas results for fixed N and varying z are shown 

in Figure S4.  

 

Figure S2. Dependence of the evolution of cooperation on population size – regular graphs. 

Results show that the evolution of cooperation is independent of population size for fixed average 

connectivity z. Populations are modeled in terms of regular graphs and each point corresponds to an 

average over 2000 runs for populations of sizes N=500,1000,5000. Note that, for regular graphs, the 

results do not depend on the cost paradigm: fixed cost per game, or fixed cost per individual.  

 

Figures S2 and S3 evidence the negligible dependence of our results on the overall 

population size. We have checked that, for small z, the results are valid down to 

population sizes of N≈250, below which the results are less smooth, given the 

increasing role of finite-size fluctuations on the evolutionary dynamics. 
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Figure S3. Dependence of the evolution of cooperation on population size – Scale-free graphs. 

Following the same notation of Figure S2, the results show that the evolution of cooperation is 

independent of population size for fixed average connectivity.  

 

Concerning the dependence of the results on the average connectivity z (the number 

of links of the graph for fixed population size), several factors work against 

cooperative behavior when the average connectivity z increases.    

First, the average size of the groups (z+1) increases. This factor induces an overall 

scaling of the value of the multiplication factor r: Since in Figure S4 we plot the 

fraction of cooperators as a function of η, this scaling is automatically included, which 

means that remaining differences between curves are due to other factors. The results 

of Figure S4 show that, irrespective of the cost paradigm, the critical value of η above 

which cooperators no longer get extinct does not qualitatively change with the 

average connectivity and is equivalent to an overall rescaling of r. This reflects the 

important role played by the average group size (z+1).  
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Figure S4. Evolution of cooperation under PGG in populations with different average 

connectivity z. Figures a) and b) follow the same notation and scheme of Figures 3 and 4. In c) we plot 

the final fraction of cooperators (for fixed η=0.8 in a region of coexistence of defectors and 

cooperators – see Figure S3). With increasing average degree z, results for PGG on graphs follow a 

trend similar to that obtained for simple two-player games on graphs16 as one would expect (see main 

text for details). As z becomes sizeable cooperation will inevitably collapse as average group size 

increases and the overall degree of heterogeneity (on scale-free graphs) also decreases. Each value 

corresponds to an average over 100 runs for 20 network realizations and populations with N=500 

individuals. 

 

Furthermore, changing z towards a fully-connected graph corresponds to the limit 

case of having a PGG with the size of the whole (finite) population. In this limit, the 

presence of a single defector will always lead to the demise of cooperation, 

independently of the value of r. For instance, Figure S4 shows that, on regular 

networks, z =16 is enough to reduce significantly the final number of cooperators, 

even when η>1. Similar to simple 2-player games, spatially constrained populations 

are only able to sustain sizeable levels of cooperative behavior on sparse graphs8, 18, 23 
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– lack of diversity leaves survival of cooperation contingent on the feasibility of 

cooperators to form tight communities. With increasing connectivity, these tight 

communities become increasingly vulnerable to exploitation, favouring defectors.  

Figure S4-c also shows that the significant boost of cooperation obtained for scale-

free graphs compared to regular graphs is a robust feature, being a slowly decreasing 

function of the average connectivity z. The results of Figure S4 correspond to the 

situation of a fixed investment per individual, but the conclusions remain qualitatively 

independent of the investment scheme adopted.  

 

Cooperators and Defectors on the star(s) 

In the scale-free graphs we have used to model heterogeneous populations, 

individuals have never less than 2 neighbors. In Fig. S5-a we provide a detail of such 

a graph. This feature determines the occurrence of short closed loops (for example 

triangles, which are responsible for the small, yet non-zero value of the cluster 

coefficient exhibited by these graphs) that precludes simple analytic treatments.  

Figure S5. The star and generalized star graphs. We shall employ the simple star graph depicted in 

b), in this case 1 center and 5 leaves, as the simplest abstraction of the sub-graph selected in panel a). 

In panel c) we generalize the star such that every leaf has k-1 links, the overall structure exhibiting no 

loops.  
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In order to demonstrate the mechanism responsible for the emergence of cooperation 

in Figure 2-b, we resort here to the simplest possible (and most disadvantageous) 

situation for a cooperator – that of a single C in a population of Ds only. Moreover, 

we shall start by “abstracting” from the connections of the neighbors of this C to other 

Ds, which naturally leads to a star-graph, Figure S5-b. To the extent that the single C 

may have a larger fitness than any of her D-neighbors, the C-strategy will spread.  

The fact that on a star there are only 2 types of nodes - center and leaves - and no 

loops clearly simplifies the mathematical analysis.  

Let us then consider a star of size N : 1 center (h) and N-1 leaves (l) - with the single 

C located on the center (Figure S5-b). In such scenario (if the C is placed on a leaf her 

fitness will never exceed that of a D in the center), the fitness (Π) of the C is given by 

! 

"(h) =
rc
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+ (N #1)
r

2

c

N
# c  

whereas the fitness of any of the Ds (leaves) reads 

! 
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+
rc

2N
 . 

From the expressions above, the C-strategy will spread whenever 

N
rlh

/21

2
0)()(

!
>">#!#  

a decreasing function of N. In other words, not only is it possible for a single C to 

become advantageous, but also the critical value of the multiplication factor r 

decreases with increasing number of leaves. This result suggests that the feasibility of 

the C–strategy to spread increases with the connectivity of the node on which the C is 

located.  
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Clearly, the star is a gross simplification of a realistic population structure; a useful, 

yet simple, structure, is the generalized star depicted in Figure S5-c, in which every 

leaf has k-1 external links to other D-neighbors. In this case we obtain  

N

k
r

/21!
>  

which remains a decreasing function of N (for fixed k). Clearly, invasion is easier the 

larger the difference (diversity) between the connectivities of the center and of the 

leaves. On the other hand, whenever k=N, we obtain the limit of a “homogeneous 

generalized star”, in which we may write for the critical threshold  

! 

r >
N

1" 2 /N
. 

 On scale-free populations, the majority of individuals have few connections, whereas 

a few highly connected individuals ensure the overall connectivity of the entire 

population. Naturally, most of the highly connected individuals (hubs) connect to 

individuals of low connectivity, which provide excellent conditions for a C located on 

a hub to spread to other nodes.  

So far we have seen that Cs can spread more efficiently from centers to leaves on 

heterogeneous graphs. But how do Cs invade a D hub ? Similar to the star-model 

considered above, the double star model below provides a simple illustration of the 

evolutionary dynamics of “hub-invasion”.  

Let us consider the generalized double-star configuration depicted in Figure S6. 
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Figure S6. The double-star graph. In the double star depicted, we have 2 centers (h1 and h2) the left 

one with N-2 leaves and the right one with M-2 leaves. This simple (heterogeneous) structure allows us 

to inspect the conditions under which a single cooperator in h1 may take over a defector in h2. We shall 

in fact consider a generalized double-star, in which case each l1 has k-2 external links (no loops) 

whereas each l2 has j-2 external links.  

 

We have 2 centers (hubs h1 and h2) with N-2 and M-2 leaves respectively, and 1 link 

connecting the two centers. Each of the N-2 leaves has additional k-2 external links, 

whereas each of the M-2 leaves has j-2 external links. Let us place a C on h1 with the 

rest of the nodes as Ds. In this case, the C-strategy will spread to h2 whenever 

!"
#

>$>%#%
2

0)()( 21
N

kN
rhh , 

whereas the C-strategy will spread to the leaves of h1 whenever  

!"
#+

>$>%#%
)3(

0)()( 11
NMk

kMN
rlh  . 

Since !" < (whenever kM > ), it will be easier for the C sitting on h1 to invade h2 

than the leaves of h1. In fact, invasion of h2 depends only on the number of leaves of 

h1 and of their connectivity: the larger the leaf-connectivity the harder it will be to 

invade h2, whereas the larger the connectivity of h1, the easier it will be to invade h2. 

In particular, notice that the invasion condition does not depend on the connectivity of 

h2 ! In other words, even on “generalized” double-stars, Cs will manage to expand to 

the extent that !>r .  
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In the remainder of this section, we would like to use the simple double-star to show 

how Cs resist invasion by Ds. This mechanism is crucial to the survival of 

cooperation27. To this end we introduce a D in h1 in a population of all Cs, as shown 

in Figure S7-a. 

 

Figure S7. The demise of a successful D. Panel a) shows a single D in a sea of Cs. Whenever the D-

fitness is larger than the fitness of any of the Cs, the D-strategy will spread. We show that such 

spreading occurs preferentially to the leaves, which contributes to reduce the fitness of the center D, 

making it vulnerable to a take over by the central C. Such negative feedback mechanism of the Ds 

leads to their own demise.  

 

Whether the single D is the fittest individual in the double star will depend on the 

balance between N and M. Indeed, we obtain 

)2(4
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and to the extent that r satisfies the inequality above,  the C-center will have a larger 

fitness than the D-center and consequently will spread the C-strategy onto the D-star.  

Another interesting condition is the one equating the fitness of both centers if, instead 

of a neighborhood with Cs only, the D-center has only k≤N-2 C neighbors. We may 

write  

MkM

M
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Let us imagine, however, that we start with k=N-2 and (for example) r is such that 

)()( 12 hh !<! . In this case the D strategy will spread. However, unlike the 

symmetric situation discussed before, here we get  

! 

"(h1) #"(l1)[ ] # "(h1) #"(h2)[ ] =
rc

4M
2
4 + M M

2 + M # 8( )[ ] > 0 (M > 2)  

Consequently, it is more likely that D will spread to l1 than to h2, given that each 

player will imitate her neighbor with a probability proportional to the payoff 

difference. This means the neighborhood of h1 will turn into D before h2, creating the 

pattern of Figure S7-b (in practice, it need not reach the configuration in Figure S7-b 

as whenever )()( 12

k

hh !>!  the C-center may actually invade the D-center). In other 

words, Ds are victims of their own success, as they efficiently spread their strategy to 

the “weak” neighbors, reducing their own fitness and becoming prone to be taken 

over by the C-center. 

At this stage (Figure S7-b), the payoffs of both centers are  
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such that h2 easily becomes advantageous with respect to h1 (M>2) 
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In other words, evolutionary dynamics leads the population into the configuration of 

Figure S7-c (or, even better, the D-center will be taken over by the C-center before  

all Cs on the leaves of the left turn into Ds).  At this stage we return to a configuration 

similar to the one of Figure S6, but more beneficial for Cs: The spreading of the C-

strategy to the leaves on the left will take place whenever ({ } 2, >NM ) 
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which clearly favors invasion of the leaves, even for small N and M. In practice, 

simulation results show (Figure S8) that Cs will tend to dominate the population.  

 

Figure S8. Evolution of cooperation under PGG on double stars. Figures a) and b) provide a typical 

scenario for time evolution of the fraction of Cs on the leaves of double-star graphs. a) We start with a 

single D both in the largest center (red line) and in the smallest center (orange line) (configurations A1 

and B1). The overall behavior shows that the D invades the leaves of her star (A2 and B2), after which 

is invaded by the C in the center of the second star (A3 and B3). Subsequently, the remaining defectors 

on the leaves are invaded by Cs (B4) (see Figure S7). As expected, the relative connectivity of both 

centers (C and D) determines the overall time required for invasion (red line: r=1.3, N=20 and M=10 ; 

orange line: r=1.3, N=10 and M=20). b), We start with a single C located in one of the centers in a 

population of Ds (A1 and B1), with r=2.8 (r>β>α, see main text). The C-center starts by invading the 

D-center (A2 and B2), after which the C-strategy spreads to all leaves (A3 and B3). Given that the 

ability of the C-center to invade the D-center increases with the C-center connectivity, N>M leads to a 

faster invasion than N<M.  

doi: 10.1038/nature06940                                                                                                                                                 SUPPLEMENTARY INFORMATION

www.nature.com/nature 14



 

 

Finally, it is worth noting that the introduction of small loops in the double star above 

leads to important changes in the overall evolutionary dynamics; not only the time for 

C-dominance decreases, but also the critical values of r above which Cs dominate 

also decreases, a feature which is difficult to capture analytically. 
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