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The outcome of human interactions is influenced by fair-
ness (Fehr and Fischbacher (2003)), which often stands in
disagreement with typical payoff-maximising — and ratio-
nality — assumptions. In this context, while the dynamics of
fairness in two-person interactions has been given significant
attention, mostly in the context of Ultimatum Games (UG)
(Giith et al. (1982)), the challenge introduced by groups
has not received a corresponding emphasis. In many situ-
ations individuals decide, collectively, to give up some of
their wealth to punish unfair behaviour of others (Fehr and
Schmidt (1999)): collective bargaining of work contracts,
the Chinese concept of tuangou (or group buying), policy-
making by coalitions, international climate summits or the
simple act of scheduling a group dinner are a few examples
where interactions take place in groups in which individual
assessment of fairness contributes to the overall degree of
fairness reflected in the (collective) group decision process.
Also, the fact that individuals often participate in multiple
groups makes it important to understand to which extent our
network ties and the way groups are assembled influence
overall fairness. Here we present a summary of our recent
works in which we employ computer simulations to analyse
the population dynamics arising from Multiplayer Ultima-
tum Game (MUG), where proposals are made to groups, and
interactions take place in complex networks of exchange and
cooperation (Santos et al. (2017, 2016, 2015)).

In MUG, we assume that proposals are made by one in-
dividual (the Proposer) to the remaining N — 1 Responders,
who must individually reject or accept the proposal (Santos
et al. (2015)). Since individuals may act both as Proposers
and Responders, each individual has a strategy characterised
by two real numbers, p and q. The Proposer will try to split
the endowment, offering p to the Responders. Each of the
Responders will individually accept the offer made to the ex-
tent that his/her g-value is not larger than the p-value of the
Proposer. Overall group acceptance will depend upon M,
the minimum fraction of Responders that must accept the of-
fer before it is valid. Consequently, if the fraction of individ-
ual acceptances stands below M, the offer will be rejected.
Otherwise, the offer will be accepted. In this case, the Pro-

poser will keep 1 — p to himself and the group will share
the remainder, each obtaining p/(N — 1). If the proposal is
rejected, no one earns anything (Santos et al. (2015)).

We shall note that the theoretically predicted outcomes
in MUG follow the same forecast as for the 2-person UG.
The maximum payoff of an individual is obtained when p
(value of proposal) is the smallest possible. As any accepted
proposal yields more payoff to a Responder than a rejection,
we anticipate frequent acceptances and very low proposals.
In fact, reasoning in a backward fashion, the conclusions
regarding the sub-game perfect equilibrium of both UG and
MUG anticipate the use of the smallest possible p and g,
irrespectively of IV and M (Santos et al. (2016)).

On top of explicitly considering the role of groups, by us-
ing MUG we also provide an additional path to disambiguate
the true intentions of individuals when playing Ultimatum
Games. It is a long-standing debate whether people propose
fair offers because they fear a rejection — thus earning 0 — or
due to other-regarding preferences and equalitarian motives.
With MUG, increasing M increases the risk in having a pro-
posal rejected, by imposing stricter rules for a group to ac-
cept a proposal. This way, if proposals rise in response of an
increase in M, we may anticipate that people fear their pro-
posals being rejected. Contrariwise, proposals rising with
N increases means that people care about the overall level
of group equality and fairness.

Here we report the results of computer simulations (San-
tos et al. (2015, 2016, 2017)) that were previously built and
executed in order to address some of the previous questions:
1) what is the effect of varying N on the overall fairness in
agents’ societies? 2) What is the effect of varying M? 3)
What is the effect of considering different group arrange-
ments — e.g., groups overlapping to different extents, a prop-
erty that can be formalised through complex networks met-
rics (see below) — in the ensuing levels of fairness? 4) What
are the differences between different types of learning pro-
cesses (e.g., social vs individual learning)?

In the results here reported, we assume that MUG is
played over an underlying network of contacts, considering
the usual group formation process of multiplayer games on
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Figure 1: The levels of fairness when playing MUGS in-
crease with a) the fraction of individuals needed to render a
proposal accepted (M) and b) the level of structural power
(S P) between individuals in the population, a property con-
trolled by the underlying network of contacts. population
size=Z=1000. These results correspond to an average over
100 runs considering 10 different networks for each S P.

networks in which one node defines, together with his/her
direct neighbours, a group (Santos et al. (2008)). This way,
individuals may appear repeatedly in the interaction groups
of others, which may provide increased structural power
(SP) to some individuals over others. We define the SP
of Aover Bas SPyp = %, where I(X) repre-
sents the groups in which individual X appears and |I(X)]
represents the number of groups in 7(X). One may note
that, using the Kronecker 4 p to identify edges between
A and B (e.g, 1 if an edge connects nodes A and B and 0
otherwise), denoting by 04,5 (overlap) the number of com-
mon neighbours between A and B and by k, the number
of neighbours of X, then the SP of A over B is given by
SPyp = %Akf;% Intuitively, if one individual is a di-
rect neighbour of other (64,5 = 1), they will meet in at least
two groups, where each one will be the focal in each group.
They will meet one more time for each of their 04, p com-
mon neighbours. If B has connectivity kg, then this node
participates in kp + 1 groups, providing the proper normal-
isation to SP4 p The average SP of one node is defined
as SPa = |R(A)|7' 3 ,cgea) SPai, where R(A) is the
set of individuals reached by individual A, either directly or
through a common neighbour.

We simulate the evolution of p and ¢ in a population of
size Z=1000, much larger than the group size N (average N
is 7). Initially, we equip individuals with values of p and ¢
drawn from a discretised uniform probability distribution
in {0, 0.01,...,1} containing 101 values. The fitness F; of

an individual ¢ of degree k is determined by the payoffs
resulting from the game instances occurring in &+ 1 groups:
one centred on her neighbourhood plus k& others centred
on each of her k neighbours. Values of p and ¢ evolve
as individuals tend to imitate (i.e., copy p and ¢) those
neighbours that obtain higher fitness values. First of all, we
observe that the values of proposal systematically increase
with M (see Fig. 1a) supporting the idea that stricter group
decision rules augment the levels of fairness in the popula-
tion (Santos et al. (2015)). Preliminary experimental results
with humans (Santos et al., in preparation) also support this
conclusion. In (Santos et al., 2015) we also show that the
effect of IV is contingent on M: fairness increases with
N if M is high. These conclusions are valid if, instead
of imitation, individuals interact with the same probability
with anyone in the population (well-mixed assumption) and
strategies are adopted resorting the agents’ own experience,
following a process of individual reinforcement learning
(Santos et al. (2016)). Also, Fig. 1b shows the average
proposal p and acceptance threshold ¢ that we obtain, as a
function of the network S P (Santos et al. (2017)). Clearly,
high values of SP lead to higher average values of p and g,
in which case individuals adopt fairer strategies. Our results
suggest that a strong interdependence of groups taking part
in collective decisions, here quantified by means of the SP,
may be central in promoting seemingly paradoxical human
features such as fairness.
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