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A finite-population dynamic evolutionary model is presented, which shows that increasing the
individual capacity of sending pre-play signals (without any pre-defined meaning), opens a route for
cooperation. The population dynamics leads individuals to discriminate between different signals and
react accordingly to the signals received. The proportion of time that the population spends in different
states can be calculated analytically. We show that increasing the number of different signals benefits
cooperative strategies, illustrating how cooperators may take profit from a diverse signaling portfolio to
forecast future behaviors and avoid being cheated by defectors.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In their work on the major transitions of evolution, Maynard-
Smith and Szathmary (1995) show that in each transition, there
are obstacles to the emergence of cooperation that need to
be overcome. Throughout most of the book these problems are
modeled as the Prisoner’s Dilemma (PD) games, but near the end
they remark that in some cases the Stag Hunt (SH) game
(the rowboat) (Skyrms, 2004) may be a better model. Without
precise characterizations of the payoffs involved, it may some-
times be difficult to tell which is the appropriate model. Coop-
erative hunting provides natural examples of SH games (Boesch,
1994; Creel and Creel, 1995; Stander, 1992), but let the opportu-
nities for free riding become ample and they may degenerate into
PD games. Many popular mechanisms put forward to explain the
evolution of cooperation in the PD, such as kin selection, may
transform the PD into a SH (Skyrms, 2004). We treat both games
together here.

Costless pre-play communication with signals that have no
preexisting meaning (also known as cheap-talk) might not, on the
face of it, be expected to do much. But Robson (1990) pointed out
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that such signaling can destabilize the non-cooperative equili-
brium in the PD. Suppose a mutant arises who can utilize an
unused signal as a “secret handshake”. The mutant sends the
signal, cooperates with others who send it, and defects against the
natives—who do not send it. All goes well for the invaders until
another mutant arises who sends the signal and then defects.
Robson’s paper was followed by others using “secret handshake”
arguments to establish stability properties of the efficient Nash
equilibrium in games with multiple equilibria (Kim and Sobel,
1995; Matsui, 1991; Waerneryd, 1991). In the SH game, analysis
of large population (replicator) dynamics shows that pre-play
signaling can not only change the stability properties of equilibria,
but also can create new equilibria, and change the relative size of
basins of attraction of cooperative and non-cooperative equilibria
(Skyrms, 2002). Basins of attraction were there investigated by
computer simulation. Here we are able to give analytical results.
We present a finite population model of evolution with mutation,
in which the proportion of time spent at equilibria can be
explicitly calculated. Signaling has a strong effect. In the SH
without communication it has been long known that evolution
favors the risk dominant equilibrium (Kandori et al., 1993). This is
no longer true with signaling. Where the cooperative equilibrium
differs from the risk dominant one, signaling can favor coopera-
tion. Furthermore, the tilt towards cooperation (in a sense we will
make precise) increases with the number of signals that are
present in the population. Remarkably, this remains true even
for the PD.
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2. The model

Following Skyrms (2002, 2004), if there are ¢ possible signals,
one can define a strategy A as a vector of the form A= {signal,
reaction to signal 1, ... , reaction to signal ¢, creating an overall
set of ng = 627 different strategies. A simple game of cooperation
without signaling can hence be viewed as a game with a single
common signal, o=1. If people can only behave as cooperators
(Cs) or defectors (Ds), when two strategies are paired the outcome
of the interaction can still be described in terms of a symmetric
two-player game of cooperation, with the usual payoff matrix

C D
C/R S
D (T P>
In the following we shall study the role of signaling whenever
R>T>P>S(SH)and T>R>P>S (PD).

Let us consider a finite well-mixed population of Z interacting
individuals and assume that individuals revise their behaviors by
social learning, implemented by means of a stochastic update rule
(Nowak, 2006; Sigmund, 2010; Traulsen et al., 2006, 2007). At
each time step an individual i with fitness IT; (characterized here
by the game payoff) will update her/his strategy by imitating a
randomly chosen individual j with fitness I1; with a probability p
that increases with the increase in payoff difference between j
and i (Traulsen et al., 2006, 2007). Hence, successful individuals
will be imitated and the associated strategy will spread in the
population. This probability may be conveniently written in terms

of the so-called Fermi distribution (from statistical physics)
p =[1+e PULO-IikN-1 in which § (an inverse temperature in

1-n(p1 2+ - +P1n)

NP2

npns,l

physics) translates here into noise associated with errors in
decision making (Traulsen et al., 2006). For high values of § we
obtain pure imitation dynamics commonly used in cultural
evolution studies, whereas for f— 0, selection becomes so weak
that evolution proceeds as random drift. It is noteworthy, how-
ever, that the following results remain robust to the adoption of
other update processes, such as the Moran process, in its birth—
death or death-birth variant (Nowak, 2006).

We further assume that with a probability p individuals
switch to a randomly chosen strategy, freely exploring the space
of possible behaviors. The ensuing analysis is largely simplified if
one takes the limit of y—0 (so-called small-mutation limit)
(Fudenberg and Imhof, 2005; Imhof et al., 2005). In the absence
of mutations, the end states of evolution are inevitably mono-
morphic, as a result of the stochastic nature of the evolutionary
dynamics and update rule(s). By introducing a small probability of
mutation, the population will either end up wiping out the
mutant or witness the fixation of the intruder. Hence, in the
small-mutation limit, the mutant will fixate or will become
extinct long before the occurrence of another mutation and, for
this reason, the population will spend all of its time with a
maximum of two strategies present simultaneously.

Whenever two specific strategies are present in the popula-
tion, say A and B, the payoff of an individual with a strategy A in a
population with k As and Z-k Bs can be written as Ils(k)=
(k/Z)Paa+ ((Z—k)/Z)Pap, Where Paa (Pap) stands for the payoff
obtained as a result of the mutual behavior (C or D) of an A

strategist in a single interaction with a A (B) strategist. This allows
one to describe the evolutionary dynamics of our population in
terms of a reduced Markov Chain of size ng (Fudenberg and Imhof,
2005; Imhof et al., 2005), where each state represents a possible
monomorphic end-state of the population associated with a
given strategy, and the transitions between states are defined
by the fixation probabilities of a single mutant of one strategy
in a population of individuals who adopt another strategy. The
resulting stationary distribution characterizes the average time the
population spends in each of these monomorphic states, and can
be computed analytically (see below). In the above expression of
the payoffs, one is including self-interactions, which introduce an
error, which may be sizeable only in very small populations. In
fact, we checked that all results below hold whether or not self-
interactions are included. Inasmuch as Z > 25 the absence of self-
interactions introduces correction below 1% in the stationary
distributions.

Given the above assumptions, it is easy to write down the
probability to change the number k of individuals with a strategy
A (by +one in each time step) in a population of Z-k
B-strategists: T* (k)= [(Z—k)/Z] (k/Z)[1 +e*/’[”A<">jf”B(">1rl. This
can be used to compute the fixation probability of a mutant with

a strategy A in a population of Z—1 Bs. Following Ewens (2004),
Karlin and Taylor (1975), Nowak et al. (2004) and Traulsen et al.

. -1
(2006), it is given by pj, = ( S ;v-) , where %; =T~(j)/
T+ (). In the limit of neutral selection (f—0), 4; becomes inde-
pendent of the fitness values: pg, = 1/Z. Considering a set {1,...,ns}
of different strategies, the fixation probabilities define n? transi-

tion probabilities of the reduced Markov Chain, with the asso-
ciated transition matrix

npP1,2
1=n(p31+ P23+ +P1ng)

”Ipms
’1P2,n5

1—’1(/0"5,1 +pn5,l + +pn5,n5—l)

with = (ns—1)! providing the appropriate normalization factor.
The normalized eigenvector associated with the eigenvalue 1 of
the transposed of M provides the stationary distribution described
before (Fudenberg and Imhof, 2005; Imhof et al., 2005). It is also
noteworthy that, as the population spends most of the time in the
vicinity of monomorphic states, the fraction of time the popula-
tion spends in states in which individuals cooperate with its own
strategy also corresponds to the fraction of time the population
spends in cooperative scenarios. Consequently the stationary
distribution obtained from the matrix M provides both the
relative evolutionary advantage of each strategy, and also the
stationary fraction of cooperative acts.

3. Results
3.1. Chatting to coordinate: the stag-hunt game

Let us consider a population of individuals interacting through
a SH game (Skyrms, 2001, 2004 ) with the following payoff matrix:

C D
cr1 -05
D\ 0.5 0
Here Cooperation (C) is associated with the coordinated action

required to attain the highest payoff, whereas Defection (D) (or
non-cooperation) counters such collective achievement, such that
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mutual defection leads to coordination into the least beneficial
payoff. In the absence of different signals (that is, o=1), the
evolutionary dynamics associated with this game can be
described by the stationary distribution obtained via the Markov
Chain with two states (Cs and Ds) and a transition matrix defined
via the fixation probabilities of a single mutant. Since p.p=
Pp,c <1/Z, both Cs and Ds are protected against invasion and
replacement by any other strategy. Moreover, for this particular
payoff matrix (T=0.5, R=1, P=0 and S= —T), the population can
be found in a cooperative or defective state with equal probabil-
ities (see below). Hence, both cooperation and defection can be
considered as Evolutionarily Stable in finite populations (so-called
ESSy), as defined in Nowak (2006) and Nowak et al. (2004), such
that the fixation probability of any of the other strategies is
always smaller than neutral fixation, that is, 1/Z.

Let us now introduce a signaling stage before each interaction
(6=2). Individuals can now send one of two signals (“0” or “1”)
without any pre-defined meaning, from which we obtain a
Markov chain with 8 states. As all signals are considered equiva-
lent and perfectly symmetric, all results below remain invariant if
a fixed cost is assigned to each signal, apart from a trivial shift in
all elements of the payoff matrix.

The results are shown in Fig. 1. While the abundance of each
signal in the population remains symmetric (Fig. 1a), strategies
that discriminate between signals prevail (Fig. 1b). The most
successful are those that react cooperatively to their own signal,
promoting a positive feedback of their acts. As noted in Robson
(1990), a mutant can be successful by adopting a signal that is not
used in the population, and use it as a pre-play signal to ensure a
posteriori coordination. This becomes clear if one analyzes the
main transition probabilities between states shown in Fig. 2. The
arrows denote transition probabilities that are larger than
p,=1/Z, i.e., those that are favored by evolution, in the absence
(a) and presence (b) of different signals.

While transitions between strategies of the same signal are not
favored by evolution, the availability of different signals leads to
new transitions between different signalers most of them favored
by evolution. As shown in Fig. 2b, these new transitions turn the
two strategies, which are self-reinforcing and discriminative - i.e.
strategies that react cooperatively to their own signal and defect
when facing a different signal - into the only two ESSy’s, as no
transition from such monomorphic states is favored by evolution.
In addition, as shown in Figs. 1c and 2b, cooperative strategies
(blue circles) are favored by the transitions among different
signals and prevail in the population.

Without different signals, the stationary fraction of coopera-
tive acts is dictated by the size of the basins of attraction of
cooperation and defection (risk dominance). With signaling, this is
no longer true. Whenever different signals are available, even if
costless and meaningless, full cooperation will occur 80% of the
time (for the game parameters described above), contrary to 50%
in the absence of different signals. Consequently individuals are
able to assign a meaning to the signals and, as a result, modify
the original basins of attraction. Conveying a signal “1” may be
understood as, “I will go for Stag, if you signal 1" or, equivalently,
the same meaning conveyed by a signal “0”. In practice, however,
even if in most of the stable monomorphic configurations the
information portrayed by each signal is clear, the meaning of each
signal emerges accidently from the stochastic nature of evolution.
Meanings are therefore transient and frequency dependent, co-
evolving with the strategies present in the population and used at
profit to ensure coordination (Skyrms, 2010). As a result, coopera-
tion will thrive by means of the “secret handshake” (Robson,
1990) needed for coordination, without the necessity of keeping it
“secret”. In fact, deceiving benefits neither the sender nor the
receiver in the SH. As a result, true signalers will perform better
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Fig. 1. Stationary distribution for the Stag-Hunt dilemma with 2 signals (“0” or
“1”): (a) as expected, the evolutionary dynamics is symmetric with respect to each
of the signals, (b) in the limit of rare mutations, the population spends most of the
time in strategies that discriminate between signals and cooperate with their own
signal (patterned bars), and (c) the accumulated frequencies of the four strategies
in which individuals cooperate with each other under a monomorphic scenario,
shows that, in the presence of two signals, cooperation prevails (Z=150, =0.05,
T=0.5, R=1, P=0, S=—0.5).

than any mutant and emerge as ESSy (Nowak et al., 2004),
benefiting from information content enclosed in each signal.

The reasoning above leads naturally to a different but perti-
nent question: If transitions between distinct signals are favored
by evolution and, as a result, cooperation finds a window of
opportunity to thrive, a higher number of signals should enhance
even more the chances of cooperators. Since the transition from
defective to cooperative states demands the adoption of signals
that are not present in the native population, increasing the
number of available signals can only ease such process. Fig. 3
confirms such hypothesis. As the number of available signals
increases, transitions between distinct signals become more
frequent (see Fig. 3b). This will reinforce the flow of probabilities
into cooperative strategies.
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Fig. 2. Transition probabilities favored by evolution (a) in the absence of signaling and (b) with two signals available. With pre-play signaling, strategies that
(i) discriminate between signals and (ii) react cooperatively to their own signal, become the only evolutionary stable strategies in finite populations. Arrows A— B denote
that a mutant B in a population of As will fixate with a probability larger than 1/Z. Blue (red) circles (squares) stand for strategies that opt for cooperation (defection) in a
monomorphic scenario. The percentage values stand for the prevalence of each strategy associated with the stationary distribution (see also Fig. 1b). The equivalence the
role played by the two signals of panel (b), results in a transition graph with a high level of symmetry. The parameters chosen are the same as in Fig. 1. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Dependence in the number of different signals: (a) fraction of time the
population spends in cooperative strategies as a function of the number of signals
available and (b) ratio between the accumulated transition probabilities of
monomorphic states with the same signal and monomorphic states with different
signals, as a function of the available number of signals. The relative change with
the number of signals shows how transitions between distinct signals become
more frequent. The parameters are the same as in Figs. 1 and 2.

As shown in Fig. 4 - where we portray the stationary fraction
of cooperative acts as a function of the temptation to defect T
(with R=1, P=0 and S=-T) - the positive effect of signaling
occurs independently of the particular payoffs of the SH game
matrix. In the absence of different signals, the stationary fraction
of cooperative acts is defined by the ratio p.p/pp. wWhere
Pcp(Ppc) is the fixation probability of a € (D) in a population of
Z—1Ds (Cs). For 0<T<0.5, p- > pp whereas the opposite occurs
for 0.5 <T<1.0. It is noteworthy, that the value of T=0.5 also
indicates the threshold above which defection becomes the risk-
dominant behavior under the SH, i.e., the best option whenever
the opponent is equally likely to play C or D (Nowak, 2006). Yet,
whenever the number of signals increases, this risk-dominance
balance is disrupted in favor of cooperation. It is as if cooperation
becomes the risk dominant strategy for the entire range of
parameters of the SH game. Finally, the transition at T=0.5 -
associated with the change of the risk-dominant strategy of the
SH - becomes sharper with the increase of the intensity of
selection f, likewise to the enhancing effect of cooperation
through signaling (increasing function of f3).
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Fig. 4. Average fraction of time spent in monomorphic cooperative states as a
function the Temptation to defect T for different number of signals. When the
number of signals increases, the original (risk-dominance) balance between
cooperators and defectors in the absence of different signals (black line with open
circles and vertical dashed line) is modified by a game setting in which coopera-
tion becomes dominant for the entire range of the SH game (Z=150, f=0.1,
S=-T, R=1, P=0).

3.2. When deceiving becomes a profitable option: the Prisoner’s
dilemma game

Let us now consider one population of individuals interacting
through a PD with the following payoff matrix:

C D
csr1 -05
D (1.5 0 )
Contrary to the SH dilemma, in the PD cooperators are always
disadvantageous irrespectively of the fraction of cooperators.

Hence, in the absence of different signals, it is not surprising that
defection emerges as the single ESS (and ESSy) (Nowak, 2006;
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Nowak et al., 2004). In the presence of different signals, as mutual
cooperation is no longer the best possible outcome in poly-
morphic populations, deceiving becomes an option. Hence, sig-
nals may have the same effect as in the Stag-hunt game but,
contrary to it, defectors who fake signals may end up advanta-
geous with respect to cooperators and true signalers. Life gets
harder for cooperators as now they can be betrayed at profit to
the traitors.

In Fig. 5 we depict the transition probabilities for the case with
one and two available signals, following the same convention
used in the case of the SH game. For 0 =2 (Fig. 5b), we no longer
have strategies that are ESSy, as in the case of =1 (Fig. 5a).
Defection no longer works as a sink for all transition probabilities.
Similarly to the SH game, the transitions most favored by
evolution are those between states with different signals. How-
ever, now transitions between strategies with the same signal can
be favored by evolution.

Let us consider two mini-games: One (A) in which transitions
take place only between strategies with the same signal (solid
arrows in Fig. 5b) and another (B) in which one considers
transitions only between different signals (dashed arrows lines
in Fig. 5b). Analysis of these mini-games shows that defective
strategies (red squares) are the only possible ESSy (1DD and ODD)
in A whereas cooperative strategies (blue circles) are the only
candidates for ESSy (0CD and 1DC) in B. Thus, the overall level of
cooperation results from the strength and number of transitions
between different signalers, from which one can infer that
increasing the number of signals will favor the prevalence of
cooperative strategies. This is confirmed in Fig. 6 where we show
that cooperation is promoted whenever one increases the number
of signals, over a wide range of parameters of the PD. Cooperation
can emerge as a result of the arms race between (i) the explora-
tion of new signals by cooperators (to avoid being cheated by
defectors) and (ii) the search of cooperative signals by defectors
(to deceive cooperators). By increasing the number of signals,
cooperators have a larger portfolio of signals to pick from, some-
thing they learn to use to their own advantage.

Fig. 5. (a) Stationary probability distribution for the PD dilemma with (a) 6=1
and (b) 6=2. As before, arrows denote transitions favored by evolution and blue
(red) circles (squares) denote strategies that lead to full cooperation (defection)
under a monomorphic scenario. In the absence of different signals (a), defection is
the only stable strategy. Yet, whenever two different signals are available (b),
those strategies that opt invariably to defect are no longer stable. The overall level
of cooperation results from the interplay between the mini-game between
different signalers (pictured in solid arrows and where both cooperative strategies
0CD and 1DC are stable) and the mini-game played between strategies of the same
signal (dashed arrows, where the four strategies that lead to defection are stable).
Parameters: T=1.5, S=—-0.5, R=1, P=0, Z=150, =0.05. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 6. Average prevalence of cooperative strategies as a function of the tempta-
tion to defect T in the PD for different number of signals. Cooperation is enhanced
in the entire PD regime whenever one increases the number of signals available.
These results were obtained with same parameters as in Fig. 5, and with R=1,
P=0and S=1-T.

4. Conclusion

We have shown analytically how pre-play signaling leads to
profound changes in the evolutionary dynamics of cooperative
games, favoring cooperation. As kin-discrimination, beard chro-
modynamics or phenotypic diversity (Antal et al., 2009; Gardner
and West, 2010; Jansen and van Baalen, 2006; Sigmund, 2009;
Traulsen and Nowak, 2007), pre-play signaling represents an
important correlation device, under which cooperation may
prevail. Yet, here cooperation freely emerges from the co-evolu-
tion of signals and actions which are not built-in in the individual,
addressing in a general framework the study of central aspects of
Human evolution, from the self-organized drive towards an
individual adoption of a given signaling system to the emergence
of the latter (Skyrms, 2002, 2010). We analyze two important
metaphors of cooperation: The Stag-Hunt (SH) (or coordination)
game and the Prisoner’s dilemma (PD). In coordination dilemmas,
individuals willing to cooperate learn how to use the information
encoded in each signal to identify other cooperators, reducing the
risk of facing defection upon a cooperative act. In addition, the
existence of a large number of signals enhances the tendency to
cooperate, as it enlarges the portfolio of available signals that
cooperators may use at profit to coordinate. Since mutual coop-
eration is always the best possible outcome, cooperators who are
able to discriminate between their own strategy and the one of
others are robust against the invasion of mutants. Consequently,
the emergence of ESSy requires that these strategies are
(i) cooperative, (ii) discriminative and (iii) self-reinforcing, that
is, they cooperate with individuals who adopt the same signal.

Remarkably, the enhancement of cooperation through signal-
ing also applies to games where deception constitutes a profitable
option, and where defection is the only stable strategy, as in the
PD. In the presence of pre-play signaling, those strategies that opt
invariably to defect are no longer stable in the PD. However, the
same remains true for any type of cooperative strategy. Thus, in
the absence of any stable strategy, the fate of cooperation
emerges from the conflict between deception by fake signaling
and development of reliable “secret handshakes” (Robson, 1990).
These features are strongly dependent on the number of signals
available, and illustrate the advantages of a complex signaling
system.
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