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Real populations have been shown to be heterogeneous, in which
some individuals have many more contacts than others. This fact
contrasts with the traditional homogeneous setting used in studies
of evolutionary game dynamics. We incorporate heterogeneity in
the population by studying games on graphs, in which the vari-
ability in connectivity ranges from single-scale graphs, for which
heterogeneity is small and associated degree distributions exhibit
a Gaussian tale, to scale-free graphs, for which heterogeneity is
large with degree distributions exhibiting a power-law behavior.
We study the evolution of cooperation, modeled in terms of the
most popular dilemmas of cooperation. We show that, for all
dilemmas, increasing heterogeneity favors the emergence of co-
operation, such that long-term cooperative behavior easily resists
short-term noncooperative behavior. Moreover, we show how
cooperation depends on the intricate ties between individuals in
scale-free populations.

complex networks � evolution of cooperation

Cooperation has played a key role throughout evolution (1).
Self-replicating cells have cooperated to form multicellular

organisms throughout evolutionary history (2, 3). Similarly, we
know that animals cooperate in families to raise their offspring
and in groups to prey and to reduce the risk of predation (4, 5).
Cooperation has been conveniently formulated in the frame-
work of evolutionary game theory, which, when combined with
games such as the Prisoner’s Dilemma, which is used as a
metaphor for studying cooperation between unrelated individ-
uals, enables one to investigate how collective cooperative
behavior may survive in a world where individual selfish actions
produce better short-term results. Analytical solutions for this
problem have been obtained when populations are assumed
infinite and their interactions are assumed homogeneous such
that all individuals are in equivalent positions. Under such
assumptions, noncooperative behavior prevails. Such an unfa-
vorable scenario for cooperation in the Prisoner’s Dilemma
game, together with the difficulty in ranking the actual payoffs
in field and experimental work (6, 7), has lead to the adoption
of other games (8, 9), such as the Snowdrift game (also known
as Hawk–Dove or Chicken), which is more favorable to coop-
eration, and the Stag-Hunt game (10), and to numerical studies
of cooperation in finite, spatially structured populations (11) in
which homogeneity is still retained. Such studies of the role of
structured populations have attracted considerable attention,
originating from fields ranging from sociology to biology, ecol-
ogy, economics, mathematics, and physics, to name a few
(11–19). More recently, however, compelling evidence has been
accumulated that a plethora of biological, social, and techno-
logical real-world networks of contacts (NoC) are mostly het-
erogeneous (20–22). Indeed, analysis of real-world NoC (20) has
provided evidence for the following (heterogeneous) types: (i)
single-scale networks, which are characterized by degree distri-
butions (defined in the Methods) that exhibit a fast, typically
Gaussian, decaying tail; (ii) broad-scale networks, which are
characterized by a power-law regime truncated for large con-

nectivities by a fast-decaying tail; and (iii) scale-free networks,
which are characterized by a distribution that decays as a
power-law. In Fig. 1, we show the distribution of connectivities
associated with both single-scale and scale-free NoC, on which
the results shown in Figs. 2 and 3 were based. To better illustrate
the degree of heterogeneity associated with each NoC, we show
a double logarithmic plot of the cumulative degree distribution,
defined in Fig. 1. Clearly heterogeneity greatly increases as one
moves all of the way from single scale to extreme heterogeneous,
scale-free NoC. In particular, the broad-scale NoC also identi-
fied in ref. 20 exhibit tails that fall off somewhere between the
extreme limits depicted in Fig. 1. All of these different levels of
heterogeneity stand in sharp contrast with homogeneous NoC.

What is the impact of moving from a homogeneously
structured population, in which everyone has the same amount
of interactions, to a heterogeneously structured population, in
which some can interact more than others? In particular, what
is the impact of more realistic NoC in the evolution of
cooperation?
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Fig. 1. Heterogeneous NoC. Shown is the cumulative degree distribution,
D(k) [defined for a graph with N vertices as �i�k

N�1(Ni�N), where Ni gives the
number of vertices with i edges], for two types of NoC for which N � 104. The
first type of NoC are single-scale heterogeneous NoC, depicted with a dashed
line, in which most individuals have a similar number of connections, leading
to a narrow degree distribution. The Gaussian tail (20) of such a distribution
is responsible for the fast decay exhibited by the cumulative degree distribu-
tion depicted. The second type of NoC are scale-free NoC, generated accord-
ing to the Barabási–Albert model and exhibiting a cumulative degree distri-
bution scaling as D(k) � k�2 (solid line). The tail at the end of the solid line
results from the finiteness of the population. For the class of broad-scale
networks identified in ref. 20, the cumulative degree distribution will tail-off
at degree values intermediate from those associated with the single-scale and
scale-free NoC depicted.
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Here we address this problem by examining the emergence of
cooperation in terms of the three popular and extensively studied
dilemmas of cooperation referred to above. It will be shown that
increasing heterogeneity generally favors the emergence of
cooperation, irrespective of the dilemma under investigation.

Games and Social Dilemmas
We shall model interactions among individuals in terms of
two-person games in which both players can either cooperate or
defect when interacting with each other. Mutual cooperation
leads to the reward, R (without loss of generality, we make R �
1), whereas mutual defection leads to the punishment, P (we
make P � 0, thereby normalizing the advantage of mutual
cooperation over mutual defection to 1 in all games). The other
two possibilities occur when one player cooperates and the other
defects, for which the associated game payoffs are S (sucker’s
payoff) and T (temptation) for the cooperator and the defector,
respectively. Provided that mutual cooperation is always pre-
ferred over mutual defection, the three dilemmas arise naturally
(16), depending on the relative ordering of these four payoffs:
The Snowdrift game, for which T � 1 � S � 0; the Stag-Hunt
game, for which 1 � T � 0 � S; and the Prisoner’s Dilemma
game, for which T � 1 � 0 � S. For all dilemmas, mutual
cooperation is also preferred over unilateral cooperation (S) and
over an equal probability of unilateral cooperation and defection
(2 � T � S). Tension becomes apparent when the preferred
choices of each player lead to individual actions resulting in
mutual defection, despite the fact that mutual cooperation is

more beneficial. Indeed, tension will arise when players prefer
unilateral defection to mutual cooperation (T � 1), when players
prefer mutual defection to unilateral cooperation (S � 0), or
when both situations arise, which is precisely what happens in the
Snowdrift game, the Stag-Hunt game and the Prisoner’s Di-
lemma game, respectively. Formally, these dilemmas span a
four-dimensional parameter space. By normalizing mutual co-
operation to 1 and mutual defection to 0, we are left with two
parameters, T and S. We study the behavior of all dilemmas,
summarized in Table 1, in the ranges 0 � T � 2 and �1 � S �
1, which will be shown to be sufficient to characterize the games
under study.

Role of Heterogeneity in the Evolution of Cooperation
Let us consider heterogeneous NoC. Different individuals in the
population may engage in different number of rounds per
generation because of the number of different ties that each
entails. Moreover, the pattern of connectivity may also be
different for different individuals: For example, one individual
may be connected to few immediate neighbors, whereas another
individual may have many connections, some of which may
constitute direct links to far-away individuals.

As an illustration, consider two focal individuals, a cooperator
with N1 neighbors, and a defector with N2 neighbors, and let us
imagine that both have the same number of defectors, say ND.
After interacting with all their neighbors, the cooperator accu-
mulates a payoff of PC � N1 �(S � 1)ND, whereas the defector
ends up with PD � (N2 � ND)T. If the NoC were homogeneous,
all one needs to do is to make N1 � N2 � z, the average
connectivity of the population, in the previous expressions. This
calculation, however, leads to very different outcomes in what
concerns the accumulated payoffs in homogeneous and heter-
ogeneous NoC. Indeed, whereas, in homogenous NoC, the
answer to whether PD � PC relies exclusively on the relative
ordering of the payoffs (T, R, P, S); in heterogeneous NoC the

Fig. 2. Evolution of cooperation in different NoC. Results for the fraction of
cooperators in the population are plotted as a contour drawn as a function of
two parameters: S, the disadvantage of a cooperator being defected (when
S � 0), and T, the temptation to defect on a cooperator (when T � 1). In the
absence of any of these threats (S � 0 and T � 1; upper-left quadrant)
cooperators trivially dominate. The lower-left quadrant (S � 0 and T � 1)
corresponds to the Stag-Hunt domain (SH). The lower triangle in the upper-
right quadrant (S � 0, T � 1 and (T � S) � 2) corresponds to the Snowdrift game
domain (SG). The lower-right quadrant (S � 0 and T � 1) corresponds to the
Prisoner’s Dilemma domain (PD). (Left) Results obtained in complete NoC that
reproduce in finite populations the analytic solutions known for infinite, well
mixed populations. These results provide the reference scenario with which
the role of population structure will be subsequently assessed. (Right) Results
obtained for single-scale NoC, characterized by a moderate degree of heter-
ogeneity. Comparison with the results for finite, well mixed populations (Left)
shows that such small heterogeneity is on the basis of the overall enhance-
ment of cooperation (details provided in main text).

Table 1. Games studied and their parameter range

Game Abbreviation Parameters Tension(s) included in each dilemma

Snowdrift SG T � 1 � S � 0 Players prefer unilateral defection to mutual cooperation
Stag Hunt SH 1 � T � 0 � S Players prefer mutual defection to unilateral cooperation
Prisoner’s Dilemma PD T � 1 � 0 � S Both tensions above are incorporated in this dilemma

For each social dilemma studied, we list the corresponding abbreviation, the parameter range that we consider in this work, and the
tension that leads to the dilemma.

Fig. 3. Evolution of cooperation in scale-free NoC. We use the same notation
and scale as Fig. 2. (Left) Random scale-free NoC. The interplay between
small-world effects and heterogeneity effects leads to a net overall increase of
cooperation for all dilemmas. (Right) Barabási–Albert scale-free NoC. When
highly connected individuals are directly interconnected, cooperators domi-
nate defectors for all values of the temptation to defect T � 1, enlarging the
range of intensities of S � 0 for which they successfully survive defectors,
showing how the intricate ties between individuals affect the evolutionary
dynamics of cooperators. Abbreviations are the same as those in Fig. 2.
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answer depends now on the fact that N1 � N2. In other words,
the pattern of connectivity also contributes to define the accu-
mulated payoff of each individual, a feature that, being natural,
is absent in homogeneous NoC. Indeed, heterogeneity embeds
the intuition that different individuals engage in different num-
bers of interactions with different intensities, which opens a new
route to the evolution of cooperation: Cooperators will increase
their fitness to the extent they succeed in maximizing their
amount of cooperative interactions per generation. However,
defectors may also increase their fitness by exploiting more
cooperators per generation. Results presented as supporting
information, which is published on the PNAS web site, show that
cooperators are able to profit from heterogeneity to outperform
defectors.

Results and Discussion
Well Mixed Populations. Before addressing heterogeneous, struc-
tured populations (results for homogeneous structured popula-
tions are provided in the supporting information), we examine
the effect of the dynamics on the finite population analog to the
infinite well mixed limit, which is well known from the standard
analytical treatment (23): a complete, fully connected graph.
Evolution is implemented via the stochastic dynamics described
in Methods. As usual in evolutionary biology, the fitness of each
individual is associated with the accumulated payoff at the end
of a life cycle. The results are shown in Fig. 2 Left, in which the
Stag-Hunt, Snowdrift, and Prisoner’s Dilemma games span the
three domains that fill the lower-left, upper-right, and lower-
right squares of the contour plot, respectively. Note further that
in the Snowdrift domain, only the lower triangle of the domain
strictly satisfies the requirement 2 � T � S.

The results obtained here for a well mixed population of N �
104 individuals retain all of the features familiar from the
analytical results for infinite well mixed populations: the (i)
dramatic fate of cooperators in the Prisoner’s Dilemma domain,
(ii) a similar fate for cooperators in the Stag-Hunt domain when
the disadvantage of being defected exceeds the temptation to
defect, and (iii) the coexistence of cooperators and defectors in
the Snowdrift domain when only the temptation to defect
undermines mutual cooperation.

Heterogeneous Populations. Let us examine now the evolutionary
dynamics in structured heterogeneous populations. We start
with the single-scale type of populations identified in ref. 20,
in which heterogeneity is small (Fig. 1), exhibiting a Gaussian
tail for the degree distribution. Finite populations exhibiting
such features were generated by using the configuration model
(24), which leads to random graphs compatible with a given
degree distribution (additional details are provided in Meth-
ods). The corresponding results are shown in Fig. 2 Right.
Taking the results for well mixed populations as a reference,
it is clear that cooperation is enhanced for all dilemmas.
Specifically, cooperators now resist invasion by defectors in the
Prisoner’s Dilemma domain. Moreover, only for larger inten-
sities of the temptation to defect will cooperators be out-
weighed by defectors in the Snowdrift domain. Finally, for the
Stag-Hunt domain, cooperators are now able to resist defec-
tors even when the disadvantage of being defected exceeds the
temptation to defect.

The net results shown in Fig. 2 Right and Fig. 3 hide a detailed
interplay of two mechanisms related to the small-world and
heterogeneous nature of the underlying scale-free NoC: the
occurrence of many long-range connections (so-called shortcuts)
in these graphs precludes the formation of compact clusters of
cooperators, thereby facilitating invasion by defectors when S �
0. However, the increase in heterogeneity of the NoC opens a
new route for cooperation to emerge, because, now, different
individuals interact different number of times per generation,

which enables cooperators to outperform defectors. In other
words, whereas the increased difficulty in aggregating clusters of
cooperators would partially hamper cooperation (see the sup-
porting information), heterogeneity counteracts this effect with
a net increase of cooperation. Indeed, the results discussed below
for scale-free NoC show how cooperation is sensitive to the
overall degree of heterogeneity of the underlying NoC, leading
to an increase of cooperation as one evolves from homogeneous
populations (Fig. 2 Left) to extreme heterogeneous populations
(Fig. 3).

The effects of heterogeneity become indeed more prominent
when we consider scale-free NoC.¶ The results for the evolution
of cooperation in populations exhibiting a scale-free degree
distribution such that all connections between individuals are
purely random are shown in Fig. 3 Left. Notice that, despite the
abundance of scale-free behavior identified in real NoC, the
detailed cartographic representation of the ties between indi-
viduals remains to a large extent unknown (25). In this sense,
random scale-free populations, generated in the way described
in Methods provide a general bias-free scenario. The results in
Fig. 3 Left provide further evidence of the determinant role
played by such heterogeneous population structures on the
evolution of cooperation for all dilemmas. Maintaining Fig. 2
Left as a reference, we observe that, over all, scale-free NoC
efficiently neutralize the detrimental role of the temptation to
defect (when T � 1) in the evolution of cooperation, whereas the
disadvantage of being defected (when S � 0) remains a strong
deterrent of cooperation. Indeed, in the Snowdrift domain,
cooperators dominate for all values of T � 1. In the Stag-Hunt
domain, cooperators now survive even when S � T � 1. For the
Prisoner’s Dilemma domain, the region of coexistence between
cooperators and defectors is clearly broadened. Moreover, the
small slope of the borderline between cooperators and defectors
provides further evidence that the disadvantage of being de-
fected (S � 0) constitutes the major threat to cooperation.

The sustainability of cooperation, however, is not affected
solely by the overall heterogeneity of the NoC associated with a
given degree distribution. In fact, cooperation is particularly
susceptible to the detailed and intricate ties between individuals
in a population. Indeed, if we do not randomize the pattern of
connectivity between individuals such that the NoC exhibit the
correlations arising naturally in the Barabási and Albert (21)
model, a different result emerges for the evolution of coopera-
tion, as shown in Fig. 3 Right. Under the presence of such
correlations, the temptation to defect no longer poses any threat
to cooperation, defectors being wiped out from populations in
the entire Snowdrift domain. In the Stag-Hunt domain, coop-
erators now wipe out defectors, where, before (Fig. 3 Left), they
managed to coexist. In the Prisoner’s Dilemma domain, coop-
erators also get a strong foothold up to larger intensities of �S�.

As is well known, the Barabási and Albert (21) model exhibits
so-called age correlations in which the older vertices not only
acquire the highest connectivity but also become naturally
interconnected with each other. These correlations result from
the combined mechanisms of growth and preferential attach-
ment, which lie at the heart of the model (21). As a result, the
formation of compact clusters of cooperators, which was inhib-
ited by the occurrence of many shortcuts in random scale-free
NoC, will be partly regained in such NoC, mostly for the few
individuals that exhibit high connectivity. Of course, such a

¶In ref. 20, a third class of NoC was identified and described as ‘‘broad-scale.’’ The associated
degree distribution of broad-scale NoC exhibits a region of scale-free behavior truncated
by a fast-decaying tail for large values of the connectivity, which leads naturally to
intermediate levels of heterogeneity as compared with those discussed in this work. In
view of the results obtained here, one expects to obtain levels of cooperation interme-
diate from those associated with single-scale and scale-free graphs. Our results (data not
shown) for uncorrelated broad-scale NoC entirely corroborate this picture.
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clustering of cooperators will occur only to the extent that
cooperators are able to occupy such highly connected sites,
which indeed happens. The results shown in Fig. 3 have the
additional feature that the degree distributions of the NoC used
in studying the evolution of cooperation actually coincide, the
difference between the two NoC residing solely in the detailed
pattern of ties between individuals. Finally, we would like to
point out that all our results remain unchanged both for larger
(we have checked up to N � 105) and smaller population sizes,
down to values of N � 102 individuals. For such small population
sizes, stochastic effects resulting from both the graph generation
procedures and the evolutionary dynamics preclude a clear-cut
result for the evolution of cooperation.

Conclusions
The present results demonstrate that, in more realistic, heteroge-
neous populations, the sustainability of cooperation is simpler to
achieve than in homogeneous populations, a result that is valid
irrespective of the dilemma adopted as a metaphor of cooperation.
The results shown in Fig. 2 Right show that heterogeneity constitutes
a powerful mechanism for the emergence of cooperation, because,
even for mildly heterogeneous populations, heterogeneity leads to
sizeable effects in the evolution of cooperation. The results also
show that the disadvantage of being defected (S � 0) constitutes a
stronger deterrent of cooperation than the temptation to defect
(T � 1), a feature found before for the Prisoner’s Dilemma in the
context of homogeneous, infinite populations (26).

The overall enhancement of cooperation obtained on single-
scale and scale-free graphs may be understood as resulting from
the interplay of two mechanisms: (i) the existence of many
long-range connections in random and small-world NoC, which
precludes the formation of compact clusters of cooperators (this
effect acts to inhibit cooperation when S � 0) and (ii) the
heterogeneity exhibited by these NoC, which opens a new route
for cooperation to emerge and contributes to enhance cooper-
ation (which increases with heterogeneity), counteracting the
previous effect. The net result is that cooperation is enhanced,
as shown in Figs. 2 Right and 3.

Finally, the sustainability of cooperation depends also on the
intricate ties between individuals, even for the same class of graphs,
features not accounted for by mean-field or pair approximations.

In this context, it is noteworthy that the present model assumes
a given population structure that remains immutable throughout
evolution. A more realistic model, however, should take into
account that individuals have the capacity to establish new links
as well as to severe others throughout evolution, leading to an
adaptive coevolution of strategy and structure. It remains an
open problem the extent to which such a possibility will naturally
lead to the scale-free populations studied here.

Methods
Homogeneous and Heterogeneous Graphs. In the language of graph
theory, well mixed populations of size N are represented by
complete graphs, which correspond to a regular, homogeneous
graph with average connectivity z � N � 1, because all vertices
share the same number of connections and are topologically
equivalent. Indeed, all homogeneous graphs exhibit the same
single-peak shape for the degree distribution d(k), defined for a
graph with N vertices as d(k) � Nk�N, where Nk gives the number
of vertices with k edges. In Fig. 1, we show the cumulative degree
distribution associated with the heterogeneous types of NoC
explicitly considered in this work [the cumulative degree distri-
bution D(k) is defined in Fig. 1]. Real-world NoC are clearly
heterogeneous, corresponding to populations in which different
individuals exhibit distinct patterns of connectivity, portraying
the coexistence of local connections (spatial structure) with
nonlocal connections (or shortcuts) and often exhibiting regions
with a power-law dependence of their degree distributions

(20–22). When heterogeneity is moderate, such that the con-
nectivities of most individuals do not deviate significantly from
the average connectivity value, the pattern of connectivity has
been classified as ‘‘single-scale,’’ as in ref. 20, where it was found
that such NoC typically exhibit a Gaussian tail. Those NoC
exhibit cumulative degree distributions such as that illustrated in
Fig. 1 with a dashed line. The results in Fig. 2 Right correspond
to populations modeled in terms of such NoC, making use of the
configuration model (24), which provides a maximally random
graph compatible with such a degree distribution.� Scale-free
graphs, in contrast, constitute examples of strongly heteroge-
neous NoC. The Barabási–Albert model (21) provides the best
known model leading to overall scale-free degree distributions,
d(k) � k��, with � � 3, and cumulative degree distributions
scaling as �k�(� � 1), as shown in Fig. 1 with a solid line. The
scale-free features of the Barabási–Albert model result from the
combined effect of the two processes of growth** and prefer-
ential attachment,†† the latter corresponding to the well known
‘‘rich get richer’’ effect in economics (27), which is also known
as the Matthew effect in sociology (28). After t time steps, this
algorithm produces a graph with n � t � m0 vertices and mt
edges. Because vertices appear at different moments in graph-
generation time, so-called age correlations (21) arise. Such
age-correlated NoC with n � 104 vertices and average connec-
tivity z � 4 are on the basis of the results shown in Fig. 3 Right.

The role of heterogeneity in evolution may be singled out by
removing any correlations (including age correlations) in a
graph, which is easily accomplished by randomly and repeatedly
exchanging the ends of pairs of edges of the original graph (29),
a procedure that washes out correlations without changing the
degree distribution (29) of the graphs. The results shown in Fig.
3 Left were obtained on Barabási–Albert scale-free NoC subse-
quently randomized in this way.

Evolutionary Games on Graphs. For R � 1, P � 0, 0 � T � 2 and
�1 � S � 1, evolution is carried out by implementing the finite
population analog of replicator dynamics (18, 30), to which
simulation results converge in the limit of infinite, complete
graphs (well mixed populations). These dynamics are obtained
by defining the following transition probabilities: In each life
cycle (one generation), all pairs of directly connected individuals
x and y engage in a single round of the game, their accumulated
payoff being stored as Px and Py, respectively. At the end of the
generation, all strategies are updated simultaneously (synchro-
nous updating). When a site x is updated, a neighbor y is drawn
at random among all kx neighbors; then, only if Py � Px the
strategy of chosen neighbor y replaces that of x with probability
given by (Py � Px)�[k�D�], where k� � max(kx,ky) and D� �
max(T,1) � min(S,0). This denominator ensures a proper nor-
malization of the transition probability.‡‡ The results obtained

�To generate a graph with the configuration model, one assigns to each vertex a number
of ‘‘stubs’’ that constitute the tips of edges-to-be. The number of stubs must, of course,
conform with the given degree distribution. Subsequently, one chooses, at random, pairs
of stubs and joins them together, in this way generating the edges of the corresponding
graph.

**Starting with a small number (m0) of vertices, at every time step we add a new vertex with
m � m0 edges that link the new vertex to m different vertices already present in the
system.

††When choosing the vertices to which the new vertex connects, we assume that the
probability, pi, that a new vertex will be connected to vertex i depends on the degree ki

of vertex i: pi � ki��ki.

‡‡It is noteworthy that the present stochastic dynamics relies entirely on local information
pertaining to each pair of individuals involved. Furthermore, the update rule is invariant
under translation and rescaling of the payoff matrix, the dynamics converging to the well
known replicator dynamics in the limit of complete, infinite graphs. Such an update rule
typically models cultural evolution, in which individuals tend to imitate the strategies of
those performing better.
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are robust and therefore insensitive to replacement of the
previous expression by a transition probability function W(Py �
Px), being zero when Py � Px and increasing monotonously to 1
when Py � Px. We have also confirmed that replacing synchro-
nous updating by asynchronous updating does not bring any
qualitative modifications to the results presented here.

Simulations. Simulations were carried out on graphs with N � 104

vertices and average connectivity z � 4 (except in Fig. 2 Left,
where z � N � 1). Equilibrium frequencies of cooperators and
defectors were obtained for each value of T and S by averaging
over 1,000 generations after a transient time of 10,000 genera-
tions (we confirmed that averaging over larger periods or using
different transient times did not change the results). Further-
more, final data results from averaging over 100 simulations,
corresponding to 10 runs for each of 10 different realizations of

a given type of NoC specified by the appropriate parameters (N
and z). All simulations start with an equal percentage of
strategies (cooperators and defectors) randomly distributed
among the elements of the population. In this way, all vertices are
initially populated with a strategy, and no initial advantage is
given to cooperators or to defectors. Finally, even when graphs
are generated stochastically, as is the case for the Barabási–
Albert NoC, the evolution of cooperation is studied in full-grown
graphs; that is, the topology of the graph remains frozen
throughout evolution.

We thank two anonymous reviewers whose constructive comments
helped us improve our manuscript. F.C.S. acknowledges support from
COMP2SYS, a Marie Curie Early Stage Training Site funded by the
European Commission through the Marie Curie Human Resources and
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