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Conventional evolutionary game theory predicts that natural selection favours the selfish and strong even though
cooperative interactions thrive at all levels of organization in living systems. Recent investigations demonstrated that
a limiting factor for the evolution of cooperative interactions is the way in which they are organized, cooperators
becoming evolutionarily competitive whenever individuals are constrained to interact with few others along the edges
of networks with low average connectivity. Despite this insight, the conundrum of cooperation remains since recent
empirical data shows that real networks exhibit typically high average connectivity and associated single-to-broad–
scale heterogeneity. Here, a computational model is constructed in which individuals are able to self-organize both
their strategy and their social ties throughout evolution, based exclusively on their self-interest. We show that the
entangled evolution of individual strategy and network structure constitutes a key mechanism for the sustainability of
cooperation in social networks. For a given average connectivity of the population, there is a critical value for the ratio
W between the time scales associated with the evolution of strategy and of structure above which cooperators wipe
out defectors. Moreover, the emerging social networks exhibit an overall heterogeneity that accounts very well for the
diversity of patterns recently found in acquired data on social networks. Finally, heterogeneity is found to become
maximal when W reaches its critical value. These results show that simple topological dynamics reflecting the
individual capacity for self-organization of social ties can produce realistic networks of high average connectivity with
associated single-to-broad–scale heterogeneity. On the other hand, they show that cooperation cannot evolve as a
result of ‘‘social viscosity’’ alone in heterogeneous networks with high average connectivity, requiring the additional
mechanism of topological co-evolution to ensure the survival of cooperative behaviour.
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Introduction

Conventional evolutionary game theory predicts that
natural selection favours the selfish and strong [1], in spite
of existing evidence showing that cooperation is more
widespread than theory predicts [2]. When cooperation is
modelled in terms of the prisoner’s dilemma [3] (PD), the
solution of the replicator dynamics equation in infinite, well-
mixed populations [4–6] dictates the extinction of coopera-
tors by defectors. Cooperators become evolutionarily com-
petitive, however, whenever individuals are constrained to
interact with few others along the edges of sparse graphs as
recently concluded in two independent studies [7,8]. Both
studies place individuals on the nodes of a static graph, and
associate their social ties with the vertices linking the nodes
such that, throughout evolution, every individual has the
possibility of changing her strategy, but not her social ties. In
[7] it has been shown that, under strong selection (fitness is
determined by the game payoff), heterogeneous graphs lead
to a significant increase in the overall survivability of
cooperation, modelled in terms of the most popular social
dilemmas, played on networks of different degrees of
heterogeneity [9]. For the classical PD in which the act of
cooperation involves a cost c to the provider, resulting in a
benefit b (b . c) for the recipient, a simple relation has been
obtained in [8] for a single cooperator to have a chance to
survive in a population of defectors, whenever selection is

weak (game payoff introduces a small perturbation onto
fitness): b/c . z, where z stands for the average number of ties
each individual has (z is the average degree of the graph).
Both studies show that games on graphs open a window for the
emergence of cooperation, showing how ‘‘social viscosity’’
alone [8] can contribute to the emergence of cooperation.
However, recent data shows that realistic networks [10–16]

exhibit average connectivity values ranging from 2 to 170,
with an associated heterogeneity intermediate between
single-scale and broad-scale [11], which differs from the
connectivity values typically used in previous studies [7,8]. For
instance, the network of movie actors exhibits an average
connectivity of 30 [17], whereas collaboration networks based
on co-authorship of published papers vary from average
values of 4 (mathematics), to 9 (physics) up to 15 (biology)
[13]. In terms of the simple rule for the evolution of
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cooperation for graphs, the reported values of z require
benefits to often exceed costs by more than one order of
magnitude for a single cooperator to survive [8]. None of the
previous results on strong [7] and weak [8] selection on graphs
is capable of explaining how cooperation thrives on such
social networks. Other mechanisms have to be at work here
that allow for the survival of cooperation.

In most evolutionary models developed so far, social
interactions are fixed from the outset. Such immutable social
ties, associated naturally with static graphs, imply that
individuals have no control over the number, frequency, or
duration of their ties; they can only evolve their behavioural
strategy. A similar observation can be made on studies related
to the physical properties of complex networks [10–16]. The
analyzed networks constitute but one static snapshot of
networks that have been typically produced by some growth
process. Yet, networks have naturally evolved before and will
continue to evolve after the snapshot has been taken. Indeed,
recent longitudinal studies of evolving social networks [18]
indicate that global properties seem to remain rather stable,
whereas individual patterns of social ties remain evolving in
time. Hence, assuming a fixed population size and global
average connectivity, one may ask: What role do changes in the
interaction framework play in the evolution of cooperation and to
which extent will the social dilemmas influence the topology and
heterogeneity of the evolving network?

Using a minimal model that combines strategy evolution
with topological evolution, and in which the requirements of
individual cognitive capacities are very small, we investigate
under which conditions cooperation may thrive. Network
heterogeneity, which now emerges as a result of an entangled
co-evolutionary dynamics, will be shown to play a crucial role
in facilitating cooperative behaviour.

A Minimal Co-Evolutionary Model
Let us consider two types of individuals—cooperators and

defectors—who engage in several of the most popular social
dilemmas of cooperation (see below). They are not required to
accumulate information on all other players, only those they are
immediately connected with. Moreover, they are able to
decide, on an equal footing with all players, those ties that
they want to maintain and those they want to change. Given
an edge with individuals A and B at the extremes, we say that
A (B) is satisfied with the edge if the strategy of B (A) is a

cooperator, being dissatisfied otherwise. If A is satisfied, she
will decide to maintain the link. If dissatisfied, then she may
compete with B to rewire the link (as illustrated and described
in Figure 1), rewiring being attempted to a random neighbour of
B. The intuition behind this reasoning is the following: simple
agents, being rational individuals with limited information,
tend to interact with other agents that are close by in a social
manner [18]. In this sense, agent A is more likely to encounter
one of the friends of B and become a friend with B’s
neighbour. Moreover, selecting a neighbour of an inconven-
ient partner may turn out to be a good choice, since this
partner also tries to establish links with cooperators, making
it more likely that the rewiring results in a tie to a cooperator.
Indeed, for all social dilemmas described below, a link with a
cooperator maximizes the fitness of any individual, irrespec-
tive of its (fixed) strategy. Consequently, all individuals
naturally seek to establish links with cooperators. Hence,
rewiring to a neighbour of a defector is certainly a good
choice for individuals with local information only.
The social dilemmas of cooperation examined in this work

are modelled in terms of symmetric two-player games, where
the players can either cooperate or defect upon interaction.
When both cooperate, they receive the payoff R (the reward
formutual cooperation). On the other hand, when both defect,
they both obtain the payoff P (the punishment for mutual
defection). The two remaining possibilities occur when one
defects and the other cooperates, resulting in the payoff T (the
temptation to cheat) for the defector and S (the disadvantage
of being cheated) for the cooperator. Depending on the
relative ordering of these four payoff values and assuming that
mutual cooperation is preferred over mutual defection, three
well-known social dilemmas emerge [9]—the snowdrift game
(SG) (T . R . S . P), the stag-hunt game (SH) (R . T . P . S)
and the prisoner’s dilemma (PD) (T . R . P . S). The dilemma
follows from the players’ payoff preferences. In the SG game,
the players are referred to as greedy since they prefer
unilateral defection to mutual cooperation (T . R). In the
SH game, mutual defection is preferred to unilateral cooper-

Figure 1. Evolving the Neighbourhood

Cooperators and defectors interact via the edges of a graph. B (A) is
satisfied (dissatisfied), since A (B) is a cooperator (defector). Therefore, A
wants to change the link whereas B doesn’t. The action taken is
contingent on the fitness P(A) and P(B) of A and B, respectively. With
probability p¼ [1þ e�b[P(A) � P(B)]]�1 (where b¼ 0.005, (see Materials and
Methods)), A redirects the link to a random neighbor of B. With
probability 1� p, A stays linked to B. Other possibilities occur: whenever
both A and B are satisfied, nothing happens. When both A and B are
dissatisfied, rewiring takes place such that the new link keeps attached to
A with probability p and attached to B with probability 1� p.
DOI: 10.1371/journal.pcbi.0020140.g001
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Synopsis

In social networks, some individuals interact with more people and
more often than others. In this context, one may wonder: under
which conditions are social beings willing to be cooperative?
Current models proposed in the context of evolutionary game
theory cannot explain cooperation in communities with a high
average number of social ties. Santos, Pacheco, and Lenaerts show
that when individuals are able to simultaneously alter their
behaviour and their social ties, cooperation may prevail. Moreover,
the structure of the final networks corresponds to those found in
empirical data. Their article concludes that the more individuals
interact, the more they must be able to promptly adjust their
partnerships for cooperation to thrive. Consequently, to understand
the occurrence of cooperative behaviour in realistic settings, both
the evolution of the complex network of interactions and the
evolution of strategies should be taken into account simultaneously.

Co-Evolution of Strategy and Structure



ation (S , P), resulting in an intrinsic fear for the players to
cooperate. Finally, both dilemmas are combined in the PD
game, making it the most difficult situation for cooperation to
arise. We adopt the convention of [7] and normalize the
difference between mutual cooperation (R) and mutual
defection (P) to 1, making R¼ 1 and P¼ 0, respectively. As a
consequence, we investigate all dilemmas, summarized in
Table 1, in a 2-D parameter space, depicted in Figure 2, where
the payoff T (temptation to cheat) satisfies 0 � T � 2 and the
payoff S (disadvantage of being cheated) satisfies�1 � S � 1.
The fitness of each individual corresponds to the total
accumulated payoff resulting from pairwise interactions (see
Materials and Methods) with all her neighbours.

The fact that in our model cooperators and defectors
interact via social ties they both decide upon establishes a
coupling between individual strategy and population structure:
the game payoff induces now an entangled co-evolution of
strategy and structure (for different approaches specific to the
PD see [19–22], and to the SH see [23]). Such an adaptive
individual behaviour introduces a new time scale (sa), not
necessarily equal to the time scale associated with strategy
evolution (se). Depending on the ratio W¼ se / sa , different fates
may occur for cooperation. Indeed, whenever W ! 0, we
recover the results of [7,8]. On the other hand, with increasing
W, individuals become apt to adapt their ties with increasing
efficiency. In general, however, one expects the two time scales
to be of comparable magnitude in realistic situations (see
Figures 2 and 3). W provides a measure of individuals’ inertia
to react to their rational choices both at strategy and
topological levels: large values of W reflect populations in
which individuals react promptly to adverse ties, whereas
smaller values reflect some overall inertia for topological
change (compared with strategy change). In general, the type
of response will change from individual to individual. Hence,
W reflects here an average characteristic of the population.

Results/Discussion

Co-Evolution of Strategy and Structure
The contour plots in Figure 2 show how cooperators survive

for different values of the ratio W in networks with high
connectivity. For the most popular social dilemmas of
cooperation, we plot the fraction of cooperators who survive
evolution, and averaged over 100 independent realizations for
the same values of the temptation to cheat T, the disadvantage
of being cheated S, and W. For W¼ 0 and moderate selection
intensity, tuneable by the inverse temperature of selection b (see
Materials and Methods), the results reproduce, as expected [7],
the predictions for finite, well-mixed populations [7,24]

Table 1. Games Studied and Their Parameter Range

Game Relative Order of Payoffs Dilemma

Snowdrift game (SG) T . R . S . P Players prefer unilateral defection to mutual cooperation.

Stag-hunt game (SH) R . T . P . S Players prefer mutual defection to unilateral cooperation.

Prisoner’s dilemma (PD) T . R . P . S Both dilemmas listed above are combined into this dilemma.

For each game, we list its name and abbreviation, the relative ordering of the payoff values, and the form of the social dilemma.
DOI: 10.1371/journal.pcbi.0020140.t001

Figure 2. Co-Evolution for Different Dilemmas and Time Scales

Results for the fraction of successful evolutionary runs ending in
100% cooperation for different values of the time-scale ratio W. We
study the most popular social dilemmas of cooperation: the
prisoner’s dilemma (PD) (T . 1 . 0 . S), the snowdrift game
(SG) (T . 1. S . 0), and the stag-hunt game (SH) (1 . T . 0 . S).
For W ¼ 0 (N ¼ 103, z ¼ 30 and b ¼ 0.005), the results fit the
predictions from well-mixed populations. With increasing W the rate
at which individuals readjust their ties increases, and so does the
viability of cooperation. Above a critical value (Wcritical ’ 4.0, detailed
in Figure 3), cooperators efficiently wipe out defectors. According to
[8], only when b/c . 30 would cooperation be favored. Co-evolution
leads to full cooperation even when b/c ¼ 2 (T ¼ 2, S ¼ �1).
DOI: 10.1371/journal.pcbi.0020140.g002
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(whereas here N¼ 103 and z¼ 30). Yet, with increasing W we
observe a ‘‘wave of cooperation’’moving ‘‘southeast’’ towards the
lower right corner of each contour plot. Hence, the PD for T¼
2 and S¼�1 constitutes the hardest challenge for cooperation
within the parameter space studied. Nonetheless, for suffi-
ciently large values of W, one obtains as a result of the
entangled co-evolution of strategy and structure a full
cooperative scenario. The swifter the response of individuals to
the nature of their ties, the easier it gets for cooperators to
wipe out defectors. Similar conclusions have been obtained
with different co-evolutionary models, both in the context of
the SH game [23], and in the context of the PD game [18,25],
supporting the robustness of the current results. Indeed, both
models use different rules for structural updating as well as for
strategy updating, leading to results in accord with the general
findings reported here. Additional insight is provided in
Figure 3 (upper panel), where we investigate how cooperation
wins over defection as a function of W for the PD when T¼ 2
and S ¼�1 (corresponding to b/c ¼ 2 in the classical PD) and
different values of z 2 [10,40]. For small W, cooperators have

no chance. Their fate changes asW approaches a critical value
Wcritical—which increases monotonically with z—cooperators
wiping out defectors aboveWcritical (the increase ofWcritical with
z is expected, since there are more links to be rewired). Thus,
the survival of cooperation relies on the capacity of
individuals to adjust to adverse ties, even when the average
connectivity is high.
Figure 3 also provides evidence of the detailed interplay

between strategy and structure. On the one hand, strategy
updating promotes a local assortment of strategies, since
cooperators ‘‘breed’’ cooperators and defectors ‘‘breed’’
defectors. On (static) heterogeneous graphs, and for specific
values of T and S, the population will evolve into a
cooperative state [7], and the transient dynamics associated
with the approach to such a cooperative state, starting from
an equal fraction of cooperators and defectors, has been
examined in detail in [26]. On the other hand, under
structural updating, however, one is promoting local assor-
tative interactions between cooperators and disassortative
interactions between defectors and cooperators, which
constitute ‘‘favourable steps’’ from an individual point of
view. Clearly, when simultaneously active, strategy update will
reinforce assortativity among cooperators, but will inhibit
disassortativity between defectors and cooperators, which
overall will benefit the emergence of cooperation. Further-
more, since for any finite W graph heterogeneity will develop
as a result of structural update (we are starting from
homogenous graphs), it will become easier for strategy
update to promote cooperation. Nonetheless, Figure 3 shows
that, for small W, cooperators become extinct. As W
approaches Wcritical , there will be, overall, only a small
fraction of surviving cooperators. Under structural update
alone, a small number of cooperators will lead to the
emergence of strongly heterogeneous networks of ties. This
is shown in Figures 3 (lower panel) and 4, where we
investigate how the evolved network topology changes with
W, by plotting the overall network heterogeneity. In the
lower panel of Figure 3 we plot the maximum value of the
connectivity (kmax) as a function of W for T¼2 and S¼�1. For
small W, heterogeneity remains low since cooperators react
slowly to adverse ties, being wiped out. As W approaches
Wcritical, heterogeneity develops, exhibiting a peak at ’Wcritical,
where the interplay between strategy and structure is
maximal. Finally, above Wcritical, heterogeneity decreases,
since individual rewiring is fast enough to wipe out defectors.
Indeed, when W ; Wcritical , the small fraction of surviving
cooperators promotes them into natural hubs, since they
attract links from a neighbourhood whose structure is always
evolving due to the sizeable role played by strategy dynamics.
Such an entangled co-evolution results in highly heteroge-
neous graphs. In other words, for W ; Wcritical, structural
dynamics prevents cooperators from becoming extinct,
promoting an underlying heterogeneous network of contacts
which provides a favourable topology for cooperation to
thrive under strategy dynamics. With increasing W, the
structural dynamics is fast enough to prevent the fraction
of cooperators to be reduced to residual values. More
cooperators, in turn, means more competition at sites for
rewiring, which leads to a reduction of the overall network
heterogeneity as compared with that obtained for Wcritical.
For any W . 0, individual choices lead to heterogeneous

graphs in which some individuals interact more, and more

Figure 3. Co-Evolution in the PD for Different Time Scales

PD with b/c ¼ 2 (T ¼ 2,S ¼�1 and b ¼ 0.005).
(Upper panel) Fraction of cooperators at end as a function of W for
different values of z, each drawn with a different color. For each value of
z, there is a critical value of W�Wcritical — above which cooperators wipe
out defectors.
(Lower panel) Maximum value of the connectivity in population as a
function of W. With increasing z, Wcritical increases. In all cases, the
heterogeneity of the associated network becomes maximal at Wcritical,
stagnating for higher values.
DOI: 10.1371/journal.pcbi.0020140.g003
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often than, others. In view of the results shown in Figure 2, we
show in the top-left panel of Figure 4 the cumulative degree
distributions (see Materials and Methods) for the most
difficult challenge to cooperation in our parameter space:
the PD with (T¼ 2,S¼�1), corresponding to b/c¼ 2. Starting
from a distribution exhibiting a sharp cutoff at kmax ¼ z, as
soon asW . 0, the distribution widens, reflecting the increase
in heterogeneity of the pattern of ties in the population,
where one observes both single-scale and broad-scale
heterogeneities in accord with empirical evidence [11]. As
shown explicitly in the contours of Figure 4, the amount of
heterogeneity depends on the underlying social dilemma. In
other words, different challenges to cooperation lead to the
evolution of different societal organization, in which simple-
to-broad–scale heterogeneity is ubiquitous [11].

For large values of the temptation T, the SG game leads (in
well-mixed populations) to a coexistence between coopera-

tors and defectors largely favouring the latter. Consequently,
for low values ofW and large T, the minority of cooperators is
both unable to wipe defectors and not easily wiped out by
defectors. This means that surviving cooperators will accu-
mulate many links, leading to the most heterogeneous co-
evolutionary networks encountered. Clearly, the nature of the
game induces a wide diversity in the emerging topology of co-
evolutionary networks. In general, one may state that the
temptation to cheat (T) induces a more pronounced increase
of the heterogeneity than the disadvantage of being cheated
(S) [7]. Nonetheless, the overall onset of increase of hetero-
geneity qualitatively follows the wave of cooperation shown
in Figure 2. The results shown suggest that the simple
adaptive dynamics of social ties introduced here coupled with
the social dilemmas accounts for the heterogeneities ob-
served in realistic social networks [11].

Figure 4. Co-Evolution and Heterogeneity

We study the same social dilemmas of cooperation as in Figure 2.
(Top left panel) Cumulative degree distributions (see Materials and Methods) for the most difficult challenge to cooperation in our parameter space: the
PD with T¼ 2 and S¼�1, corresponding to b/c¼ 2. Starting from a distribution exhibiting a sharp cutoff at kmax¼ z, as soon as W . 0 the distribution
widens, resulting in both single-scale networks (W¼ 0.5) and broad-scale networks (W . 3), reflecting the increase in the overall heterogeneity of the
pattern of ties in the population.
(Contour plots) The amount of heterogeneity, measured in terms of the variance of the degree distribution (see Materials and Methods), depends on
the underlying social dilemma and the value W. In other words, different challenges to cooperation lead to the evolution of different societal
organization, in which simple-to-broad–scale heterogeneity develops as soon as W 6¼ 0. The red color corresponds to the area of the game where the
conflict between strategy and topology dynamics is the strongest. For small W, heterogeneity is maximal for the SG and large T. For W ¼ 4,
heterogeneity is maximal for the PD with (T ¼ 2, S ¼�1), in spite of the fact that cooperators wipe out defectors for all dilemmas.
DOI: 10.1371/journal.pcbi.0020140.g004
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Role of Selection Pressure on Strategy and on Structure
The pairwise comparison rule [27] based on the Fermi

distribution function (see Materials and Methods), has been
used in updating both strategies and social ties. In general,
selection may be controlled by two independent parameters:
be for strategy update and ba for adjustment of ties, both
ranging from zero to infinity. Up to now we have assumed
that be ¼ ba ¼ b. In the following, we study the influence of
changing the intensity of selection b on the evolution of
cooperation. In a nutshell, reducing the intensity of selection
will decrease the influence of the game, increasing the
survival capabilities of the less fit. In Figure 5 we plot the
fate of cooperators as a function of W, for different
intensities of selection (for fixed T ¼ 2 and S ¼�1, that is, a
classical PD game with b/c ¼ 2).

Clearly, the smaller the value of b, the smaller Wcritical.
Indeed, for small W, although cooperators are in general less
fit, their survival probability increases with decreasing b. This
increased survivability makes it more efficient for structural
updating (W . 0) to favour assortative interactions between
cooperators. As a result, the critical value of W at which
cooperators successfully take over defectors decreases with
decreasing b.

Let us further examine the separate role of be and ba in the
evolution of cooperation. To this end, we imposed T ¼ 1� S
(moving along a diagonal in the PD domain, see Figure 2,
from fS ¼ 0;T ¼ 1g to fS ¼ �1;T ¼ 2g corresponding to a
classical PD in whichþ‘ . b/c � 2), kept a constant W¼ 2.0,
and computed the survivability of cooperators and the
maximum degree of connectivity kmax as a function of T.
The results are shown in Figure 6 for three different values of
be, each associated with a different panel, and, within each
panel, for the three values of ba indicated. Since W . 0, we
obtain heterogeneous populations in all cases (insets). Also, in
all cases a transition from full cooperation to full defection is

observed at a critical value Tc , which depends on be and ba. In
accord with the expectations, small values of be are associated
with smoother transitions from full cooperation to full
defection around Tc. Furthermore, insets show that the larger
the value of be , the sharper is the peak of kmax around Tc. As T
. Tc , heterogeneity reduces to an overall baseline residual
value (associated with single-scale networks), which depends
on be. Figure 6 also sheds light on the role played by ba.
Overall, ba follows the effect of be , shifting Tc in the same
direction. Indeed, the smaller the value of ba , i) the larger the
value of Tc , and ii) the smoother the transition from full
cooperation to full defection. In general, with increasing ba,
the fittest will be favoured, since decisions on link rewiring
will become less ambiguous. As Figure 6 illustrates, however,
these two parameters are not independent of each other, in
spite of their similar role.
Giving individuals control over the number and nature of

their social ties, based exclusively on their immediate self-
interest, leads to the emergence of long-term cooperation
even in networks of high connectivity. As a consequence,
‘‘network adaptability’’ is required next to ‘‘social viscosity’’
to evolve cooperation in realistic social networks. For given

Figure 5. Influence of the Intensity of Selection in the PD for Different

Time Scales

Fraction of cooperators at the end as a function of W for different values
of b¼ be¼ ba , N¼103 and z¼ 30. As depicted in Figure 3, the dilemma
corresponds here to the PD with b/c¼2 (T¼2; S¼�1). Decreasing values
of b increase the viability of the less fit, which in turn makes it easier for
cooperators to wipe out defectors.
DOI: 10.1371/journal.pcbi.0020140.g005

Figure 6. Role of Different b in Evolution of Cooperation

Fraction of cooperators as a function of T for different values of be and
ba. We maintained z¼ 30 and N¼ 103. The dilemma corresponds to the
diagonal in the PD domain from fS ¼ 0;T ¼ 1g to fS¼ �1;T ¼ 2g
corresponding to a classical PD in which þ ‘ . b/c � 2. The insets
provide the maximum degree of the network for the different values of T
and S. Both be and ba contribute similarly (but not independently) to the
evolution of cooperation. The smaller the values of be and/or ba, the
more the less fit will have a chance of survival; hence, the easier it is for
cooperation to thrive.
DOI: 10.1371/journal.pcbi.0020140.g006
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values of connectivity in the population, and selection
pressure, there is a critical value of W above which
cooperators wipe out defectors. Overall, the critical value
grows with increasing intensity of selection b and with the
average connectivity z. The present results convey a simple
yet powerful message for the evolution of cooperation: the
more individuals interact, the more they must be able to
promptly decide upon their partnerships for cooperation to
thrive. And, of course, the less important the game is (weak
selection), the less alert individuals need be.

The present work assumes that population size remains
constant throughout the co-evolutionary process. This is
clearly a simplification, and it remains an open problem: the
role of a changing population size. Yet, the message conveyed
here is powerful and shows that highly interactive, large social
networks can exhibit sustained cooperation even when the
benefits do not significantly exceed the costs. Finally, the
process by which individuals reassess their social ties may
change depending on the social context, the ‘‘game’’ at stake,
and the species under consideration. In other words, other
(perhaps more sophisticated) mechanisms may be envisaged
which will certainly build upon the simple model studied
here. Yet, the prospect is quite optimistic since, as shown
here, simple mechanisms devoid of large information-
processing requirements are capable of promoting sustained
cooperation.

Materials and Methods

Graphs. We place individuals on the nodes (a total of N) of a graph.
Edges (a total of NE) represent the social ties between individuals.
Graphs evolve in time as individuals change their ties. The average
connectivity z ¼ 2NE / N is conserved since we do not introduce or
destroy edges. At all times graphs are required to remain connected.
Weenforce this conditionby imposing thatnodes connectedby a single
edge cannot lose this edge. We also computed the degree of
heterogeneity of the graph h ¼ N �1

P
kk

2Nk – z2 (where Nk gives the
numberof verticeswith k edges) and the cumulativedegreedistribution
D(k)¼N �1

X N�1
i¼k Ni. SinceD(k)¼0 for k . kmax ,with kmax the maximum

value of the connectivity of a graph, both h and kmax provide simple
measures of the heterogeneity of a graph.

Evolution of strategies. WheneverW . 0, evolution of strategy and
structure proceed together under asynchronous updating. Choice of
type of update event depends on W; assuming (without loss of

generality) se¼1, a strategy update event is chosen with probability (1
þW)�1, a structural update event being selected otherwise. A strategy
update event is defined in the following way, corresponding to the so-
called pairwise comparison rule [27]: one node A is chosen at random
andanothernodeB is chosen randomly amongA’s first neighbours. The
individuals A and B interact with all their neighbours (those directly
connected to themby edges) according to the social dilemma specified.
As a result, they accumulate total payoffs P(A) and P(B), respectively.
The strategy of B replaces that of A with a probability given by the
(Fermi distribution) function p¼ [1þ e�b[P(B) � P(A)]]�1. The value of b
(�0), which plays the role of an inverse temperature in statistical
physics, controls here the intensity of selection (b! 0 leads to neutral
drift whereas b ! ‘ leads to the so-called imitation dynamics, often
used to model cultural evolution).

Computer Simulations. We start from a homogeneous random
graph [28], in which all nodes have the same number of edges (z),
randomly linked to arbitrary nodes. Population size is N ¼ 103 and
average connectivities z¼ 10, 20, 30, and 40 (the value z¼ 30 used in
Figure 2 reflects the mean value of the average connectivities
reported in [13] for socials networks). We start with 50% of
cooperators randomly distributed in the population. We run 100
independent simulations for each set of parameters (T, S, W) and
compute the fraction of times that evolution stopped at 100%
cooperation. If, after 108 generations, the population has not
converged to an absorbing state, we take as the final result the
average fraction of cooperators in the population over the last 1,000
generations. Indeed, especially for the SG, the time for reaching an
absorbing state may be prohibitively large [27]. At the end of each
evolution we also computed the heterogeneity h and maximal
connectivity kmax associated with the final graph and the cumulative
degree distribution, which are on the basis of the results plotted in
Figure 3. We have confirmed that our results are valid for N . 500.
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