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Introduction

Being an essential ingredient of evolution, cooperation

has played a key role in the shaping of species, from the

simplest organisms to vertebrates (Hammerstein, 2003).

In this context, one of the most fascinating challenges has

been to understand how cooperation may survive in

communities of self-regarding agents, a problem which

has been typically formalized in the framework of

Evolutionary Game Theory (Maynard-Smith, 1982;

Hofbauer & Sigmund, 1998; Gintis, 2000), adopting the

Prisoner’s Dilemma (PD) as a metaphor for studying

cooperation between unrelated individuals (Axelrod &

Hamilton, 1981; Axelrod, 1989; Milinski, 1987; Nowak &

Sigmund, 1992; Nowak & May, 1992).

A community is efficiently modelled as a set of n

agents, each one endowed with one of two strategies –

cooperator or defector. In the one-shot PD, each pair of

agents interacts only once. A defector exploiting a

cooperator gets an amount T and the exploited cooper-

ator receives S, both agents receiving R upon mutual

cooperation and P upon mutual defection, such that T >

R > P > S. Therefore, it is best to defect regardless of the

opponent’s decision. In well-mixed populations, in

which each agent interacts with all other agents, evolu-

tion under replicator dynamics (Hofbauer & Sigmund,

1998; Gintis, 2000) shows that cooperators are unable to

resist invasion by defectors. The fate of cooperators is

somewhat alleviated whenever the PD evolves on a

spatially structured population (Nowak & May, 1992),

such that agents are constrained to play with their

nearest–neighbours. Indeed, in spatially structured pop-

ulations cooperators are now able to resist invasion by

defectors, but only for a very limited range of game

parameters (see discussion in connection with Fig. 3).

Nevertheless, the impact of topological constraints is

known to induce profound evolutionary effects, as

beautifully demonstrated experimentally in the study of

the evolution of different strains of Escherichia coli (Kerr

et al., 2002).

The two scenarios described above may be naturally

associated with regular graphs (Fig. 1a), in which agents
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Abstract

The Prisoner’s Dilemma (PD) constitutes a widely used metaphor to investi-

gate problems related to the evolution of cooperation. Whenever evolution

takes place in well-mixed populations engaged in single rounds of the PD,

cooperators cannot resist invasion by defectors, a feature, which is somewhat

alleviated whenever populations are spatially distributed. In both cases the

populations are characterized by a homogeneous pattern of connectivity, in

which every individual is equivalent, sharing the same number of neighbours.

Recently, compelling evidence has been accumulated on the strong hetero-

geneous nature of the network of contacts between individuals in populations.

Here we describe the networks of contacts in terms of graphs and show that

heterogeneity provides a new mechanism for cooperation to survive. Specif-

ically, we show that cooperators are capable of exploring the heterogeneity of

the population structure to become evolutionary competitive. As a result,

cooperation becomes the dominating trait in scale-free networks of contacts in

which the few highly connected individuals are directly inter-connected, in

this way contributing to self-sustain cooperation.

doi: 10.1111/j.1420-9101.2005.01063.x



occupy the vertices and the Network Of Contacts (NOCs)

is defined by the edges linking the vertices. They

correspond to homogeneous NOCs, in the sense that all

agents are topologically equivalent, having the same

number of neighbours, such that the associated graphs

exhibit a characteristic single-peak shape for the degree

distribution d(k), defined and illustrated in Fig. 1.

Recently, compelling evidence has been accumulated

that a plethora of natural, social and technological real-

world NOCs are heterogeneous (Barabási & Albert, 1999;

Amaral et al., 2000; Albert & Barabási, 2002; Dorogotsev

& Mendes, 2003), exhibiting multi-peaked degree dis-

tributions (Fig. 1), reflecting the diversity of connections

of different agents. Moreover, they often portray the

coexistence of local connections (spatial structure) with

nonlocal connections (or shortcuts). The celebrated

small-world graphs (Watts, 1998) and scale-free graphs

(Barabási & Albert, 1999) illustrated in Fig. 1 provide

examples of such NOCs, which have been recently

associated with realistic NOCs.

The heterogeneity of NOCs is known to have a strong

impact in different fields, notably epidemiology, the case

of AIDS constituting a paradigmatic example (May et al.,

2001). At the heart of the theory, heterogeneity leads to

an ubiquitous modification of the basic reproductive

number R0, which ultimately defines the threshold for

epidemic outbreaks (Anderson & May, 1991; May &

Lloyd, 2001; May et al., 2001). Compared to its homo-

geneous counterpart, the modified R0 grows proportion-

ally to the second moment of the degree distribution, so

that on extreme heterogeneous NOCs, such as scale-free

NOCs, the likelihood of epidemic outbreaks dramatically

increases. This, in turn, is associated with the fact that,

since now different individuals undergo different num-

bers of contacts, highly connected individuals will nat-

urally acquire higher chance of infecting others

(becoming infected) whenever they are infected (sus-

ceptible).

How does heterogeneity affect the co-evolution of

defectors and cooperators under natural selection?

In heterogeneous populations, different agents will

typically undergo a different number of interactions,

which in turn will proceed along different patterns of

connectivity. Since the payoff accumulated by each agent

throughout one generation (see below) will be used as its

fitness, dictating the success with which the agent’s

strategy will be replicated in the next generation, hetero-

geneity will certainly have an impact on the co-evolution

of defectors and cooperators.

Figure 2 illustrates a detail of a typical heterogeneous

community. We concentrate on two focal agents, a

cooperator with N1 neighbours (N1 ¼ 7), and a defector

with N2 neighbours (N2 ¼ 5), and let us imagine that

(a) Regular (b) Small-world

(c) Random (d) Scale-free

Fig. 1 NOCs (a) Regular graph with n ¼ 12 vertices and z ¼ 4 edges

each. z ¼ n ) 1 leads to a complete graph. (b) Small-World graphs,

obtained by rewiring all edges in (a) with probability pSW ¼ 0.2 (see

main text). (c) Random graph, the limit pSW ¼ 1. (d) Scale-free

graph, generated using model of Barabási–Albert for m ¼ m0 ¼ 2;

Histograms: Degree distributions d(k) computed for each type of

graphs and n ¼ 104 ; d(k) ¼ nk/n, where nk gives the number of

vertices with k edges. In all cases the average connectivity z of the

graphs is 4.

Cooperators

Defectors

Payoff matrix

Fig. 2 Individual interactions in heterogeneous NOCs. Fitness cor-

responds to the payoff accumulated after each agent interacts with

all neighbours, which maybe different in number and kind (coop-

erators, circles or defectors, squares) for different agents. The focal

cooperator and defector, connected via the solid edge have both two

defector neighbours among a total of seven and five, respectively

(dashed edges). At the end of a generation their fitness is indicated.

Depending on the payoff matrix, the cooperator may end up with a

higher or lower fitness than the defector. In a homogeneous

network in which both agents would have the same number of

defectors as neighbours, defectors would always have a fitness

advantage.
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both have the same number of defectors, say (ND ¼ 2).

After interacting with all their neighbours, the cooper-

ator accumulates a payoff of PC ¼ (N1 ) ND)R + NDS

whereas the defector ends up with PD ¼(N2 ) ND)T + ND

P. If the NOCs were homogeneous, all one needs to do is

to make N1 ¼ N2 ¼ z, the average connectivity of the

population, in the previous expressions. This, however,

leads to very different outcomes in what concerns the

accumulated payoffs in homogeneous and heterogene-

ous NOCs. Indeed, whereas in homogenous NOCs the

answer to whether PD > PC relies exclusively on the

relative ordering of (T, R, P, S), in heterogeneous NOCs

the answer depends now on the fact that N1 „ N2. In

other words, the pattern of connectivity also contributes

to define the accumulated payoff of each individual, a

feature, which, being natural, is absent in homogeneous

NOCs. Indeed, heterogeneity embeds the intuition that

agents pertaining to different neighbourhoods are in-

volved in different patterns of connectivity, opening a

new route to the evolution of cooperation: Cooperators

will increase their fitness to the extent they succeed in

maximizing their amount of cooperative interactions per

generation. However, defectors will also increase their

fitness by exploiting more cooperators per generation.

Therefore, it remains an open problem who – defectors or

cooperators – will be able to profit from heterogeneity,

and to which extent.

Because no analytic solutions exist for this problem,

agent-based simulations (Nowak & May, 1992; Hauert &

Doebeli, 2004) provide a viable alternative to study the

evolution of cooperation in realistic populations, a

framework we shall adopt here.

Methods

Networks of contacts

The histogram degree distribution d(k) illustrated in

Fig. 1 is defined, for each particular graph with n vertices,

as d(k) ¼ nk/n, where nk gives the number of vertices

with k edges. In terms of the degree distribution, the

average connectivity can be written as z ¼ R k d(k). We

shall consider two basic types of heterogeneous NOCs:

Watts–Strogatz NOCs (Watts, 1998), for which hetero-

geneity is moderate, and scale-free NOCs, for which

heteregeneity is strong. Starting from a regular ring

(Fig. 1a) with a fixed number N of vertices with z

connections per vertex, we generate a Watts–Strogatz

graph by rewiring, with probability pSW, each edge of the

graph (Fig. 1b). Rewiring means here replacing the

original edge maintaining its origin and choosing

randomly the ending vertex, such that self-connections

– loops – and double connections are excluded. For pSW ¼
0, we have a regular graph, whereas for pSW ¼ 1 we

obtain a graph very similar to a random graph, except

that there are no vertices with connectivity smaller than

z/2. The larger the probability pSW, the more heteroge-

neous is the associated graph, and we shall carry out

simulations on Watts–Strogatz NOCs with maximized

heterogeneity (pSW ¼ 1, Fig. 1c).

In order to study scale-free, strongly heterogeneous

NOCs, characterized by many vertices of small connec-

tivity and a few highly connected vertices (so-called

hubs) we shall make use of the simple scale-free model of

Barabási & Albert (1999), illustrated in Fig. 1d. The

construction of such a scale-free graph involves two

processes: 1 – Growth: starting with a small number (m0)

of vertices, at every time step we add a new vertex with

m £ m0 edges that link the new vertex to m different

vertices already present in the system; 2 – Preferential

attachment: When choosing the vertices to which the new

vertex connects, we assume that the probability pi that a

new vertex will be connected to vertex i depends on the

degree ki of vertex i: pi ¼ ki/R ki. Preferential attachment

corresponds to well-known mechanisms of overwhelm-

ing importance in other areas of science, namely the ‘rich

get richer’ effect in economics (Simon, 1955), as well as

the ‘Matthew effect’ in sociology (Merton, 1968). After

t time steps this algorithm produces a graph with n ¼
t + m0 vertices and mt edges. Because vertices appear at

different moments in graph-generation time, so-called

age-correlations arise (Albert & Barabási, 2002;

Dorogotsev & Mendes, 2003). In order to single out the

role of heterogeneity in evolution, we subsequently

exchange randomly and repeatedly the ends of pairs of

edges of the original graphs (Maslov & Sneppen, 2002;

Molloy & Reed, 1995), in this way eliminating any type
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Fig. 3 Evolution of cooperation in heterogeneous NOCs. The frac-

tion of cooperators in the population which survive evolution is

plotted as a function of the temptation to defect b for random NOCs

(solid circles) and two types of scale-free NOCs: random (solid

squares) and age-correlated (solid triangles), according to the model

of Barabási–Albert. Results for regular, homogeneous NOCs are

shown with a solid line. In all cases and z ¼ 4 and n ¼ 104 .

Heterogeneity generally promotes cooperation, which may domin-

ate via introduction of special correlations among the agents in the

population.
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of correlations between the vertices, without changing

the scale-free degree-distribution. In our study, scale-free

graphs with n individuals have been generated, starting

with m ¼ m0 ¼z/2 vertices and iterating the appropriate

number of time-steps until n vertices are created. It is on

top of these graphs that we initiate the evolutionary

studies with the PD.

In all our simulations, the NOCs will be associated with

static graphs (that is, topology remains unchanged

throughout evolution) with as many vertices as agents

in the population, each agent adopting a well-defined

strategy – cooperator or defector. Since we fix the size n

and the average connectivity z, in all cases the number of

edges of all graphs will be the same.

The prisoner’s dilemma game

Following Nowak & May (1992), we shall adopt a

simple one-parameter formulation of the PD such that

2 ‡ T ¼ b > R ¼ 1 > P ¼ S ¼ 0, b representing the temp-

tation to defect.

Given a population of n agents (the n vertices of the

graph), inter-connected following the edges of the graph,

during each generation (which constitutes our unit of

discrete evolutionary time), all pairs of individuals x and

y, directly connected, engage in a single round of the

game, their accumulated payoff being stored as Px and Py,

respectively. This means that during one generation,

there will be as many rounds of the game as edges in the

NOCs. At the end of a generation, after all individuals

have played once with all their partners, all strategies are

updated synchronously, that is, one selects which strat-

egy will occupy each vertex in the next generation

simultaneously for all vertices.

Individual fitness

At the end of a generation agents will have an accumu-

lated payoff resulting from their one-round interactions

with each of their immediate neighbours. This accumu-

lated payoff is associated with the individual fitness,

which in turn dictates whether the strategy located in a

given vertex will be replicated to the next generation or,

instead, will be replaced by the strategy of a better fit

neighbour.

In their seminal work Foster & Young (1990) introduce

stochastic effects in order to account, among other

features, for the ‘…variability in the number of individuals

of a given type who meet individuals of another type in any

given time period…’. Clearly, in biological terms not only

quality but also quantity actually matters (Hammerstein,

2003). As such, the accumulated payoff provides a

natural choice for the individual fitness of these agents

at the end of their life-cycle (one generation) and, due to

the heterogeneity of the NOCs, accounts for the fact that

different individuals interact at different rates throughout

their life span. Such a choice for fitness goes in line with

recent studies on cooperation (Abramson & Kuperman,

2001) economics (Jackson & Wolinsky, 1996) social

learning (Young, 1998) and the recently developed

evolutionary graph theory (Lieberman et al., 2005). In

this way agents have the opportunity to explore hetero-

geneity to increase the chance of survival of their strategy

to the next generation. We make no discrimination

whatsoever with respect to who may benefit from that:

both cooperators and defectors may profit from such a

possibility.

A more realistic model, on the other hand, should not

overlook that individuals who interact more may expend

more energy in doing so, which would likely act to

effectively diminish their fitness. The work of Jackson &

Wolinsky (1996) provides a feasible pathway towards

inclusion of such refinements. A simpler (and cruder)

model would be to impose a cutoff in the maximum

number of interactions that each individual may engage

on per generation, in this way redefining the underlying

NOCs.

Other studies, on the other hand, have adopted

the criterium of dividing the accumulated payoff by the

number of interactions that each agent engages on. The

rationale behind such a procedure may be generally

related to the assumption that agents interact at a similar

rate, a feature which would favour such averaging.

Although we believe this reasoning is not in accord

with what happens in realistic settings, both biological

and social, we shall also study the evolution of coopera-

tion making use of such artificial procedure. Clearly, the

previous discussion in connection with Fig. 2 may be

easily extended to the case in which averaging of

accumulated payoffs is performed, showing that even in

this case heterogeneity plays a role, in spite of its natural

attenuation due to the partial cancellation resulting from

averaging.

Evolution

At the end of a generation, the strategy associated with a

given vertex x will be replicated or not to the next

generation according to the following transition proba-

bilities, which constitute the finite population analogue

of replicator dynamics (Gintis, 2000; Hauert & Doebeli,

2004), to which the results of our simulations converge

in the limit of well-mixed populations (a complete,

regular graph with z ¼ n ) 1).

We first select a neighbour y at random among all kx

neighbours of x. If Py £ Px the vertex x will maintain the

same strategy in the next generation. Otherwise, the

strategy occupying vertex x will be replaced by that

associated with vertex y with a probability p ¼ (Py ) Px)/

[k>(T ) S)], where k> is the largest between kx and ky,

ensuring that 0 £ p £ 1.

The present results are very robust with respect to

changes in the detailed form used for strategy update: no

qualitative changes occur if we adopt an asynchronous
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updating of strategies (Hauert & Doebeli, 2004) as well as

if we replace the denominator k> (T ) S) in p by, for

example, kmax (T ) S), with kmax the maximum degree of

connectivity of the network. However, we believe that

the update rule we adopted is more suitable to describe

the (necessarily) simple biological entities, which may be

modelled as engaging in rounds of such a simple game.

Indeed, the present update rule does not require sophis-

ticated cognitive capabilities at an individual level, since

information processed by each agent is restricted to his

immediate neighbourhood. On the contrary, replacing k>

by kmax implies that individuals must be aware of the

entire network topology, which requires extraordinary

cognitive capabilities in communities with 10 000 indi-

viduals.

Simulations

Individuals are confined to vertices on rings with n ¼
104 vertices, such that each graphs has as many vertices

as agents; we used the values z ¼ 4, and m ¼ m0 ¼
2 (z £ d(k) £ 2m). Following Hauert & Doebeli (2004),

equilibrium frequencies of cooperators and defectors are

obtained by averaging over 1000 generations after a

transient time of 10 000 generations. We confirmed that

averaging over larger periods or using different transient

times did not change the results, although the transient

period depends on z and n. Simulations start with an

equal percentage of strategies – cooperators and defectors

– randomly distributed among the elements of the

population. For different values of the parameters, the

evolution of the fraction of cooperators who survive

evolution as a function of b for the PD has been

computed. To this end, each data point depicted in the

figures corresponds to an average over 100 simulations:

10 realizations of the same type of NOCs specified by the

appropriate parameters (n, z, m ¼ m0) and 10 runs for

each of the realizations.

Results and discussion

The results of our agent-based simulations for Watts–

Strogatz NOCs, whenever heterogeneity is maximized

(pSW ¼ 1, Fig. 1c), are shown in Fig. 3 with solid

circles. When compared with the corresponding results

obtained on homogeneous NOCs for the same values

n ¼ 10 000 and z ¼ 4 (Fig. 1a), shown with a solid

line, it is clear that heterogeneity, though moderate,

strongly affects the evolution of cooperation. Moreover,

the results indicate that cooperators profit more from

heterogeneity than defectors, with a resulting sizeable

enhancement of cooperation, when compared to the

results associated with homogeneous NOCs.

Since the heterogeneity of Watts–Strogatz NOCs is

moderate when compared to real-world NOCs, it is

worth investigating the impact of more realistic scale-

free NOCs in the evolution of cooperation. To this end

let us start with scale-free model of Barabási & Albert

(1999), illustrated in Fig. 1d. However, and in order to

single out the scale-free features of the NOCs, without

introducing any additional age-correlations, let us

randomize the connections without changing the

degree-distribution, as detailed in the previous section.

The results obtained on such random scale-free NOCs

are shown in Fig. 3 with solid squares, and unravel an

additional enhancement of cooperation as a result of

such strong heterogeneous features. Indeed, now coop-

erators are able to resist invasion by defectors for all

values of the temptation to defect b. This remarkable

result shows clearly that cooperators benefit most from

the heterogeneity of the NOCs.

Further insight into the mechanism responsible for

the strong enhancements depicted in Fig. 3 is provided

by the results shown in Fig. 4, in which we plot the

relative distribution of strategies per degree, which

allows one to assess directly which degree is preferred

by which strategy throughout evolution: in the begin-

ning (upper panel), strategies are equally distributed.

Evolution leads to a stationary regime (lower panel) in

which the distribution becomes strongly asymmetric.

Indeed, cooperators occupy all (few) vertices of high

degree, whereas defectors manage to survive only on

vertices of moderate degree.

How can this happen? From an individual agent

perspective, and given two individuals x and y, if x is a

cooperator (defector), y’s strategy which maximizes x’s

payoff in a one-shot PD will be given by max(R,S)
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Fig. 4 Distribution of strategies in random scale-free NOCs. Coop-

erators (C, light bars) and defectors (D, dark bars) initially (upper

panel) populate the same number of vertices in the NOCs. Evolution

under natural selection leads to the scenario depicted in the lower

panel, in which the remaining defectors occupy vertices with low

connectivity. Each bar adds up to a total fraction of 1 per degree, the

dark and light fraction being directly proportional to the relative

percentage of the respective strategy for each degree of connectivity.

Results obtained on random scale-free graphs with z ¼ 4, n ¼ 103

and b ¼ 1.6.

730 F. C. SANTOS AND J. M. PACHECO

ª 20 0 5 THE AUTHORS 1 9 ( 2 0 0 6 ) 7 2 6 – 73 3

JOURNAL COMP I L AT ION ª 2 00 5 EUROPEAN SOC I E TY FOR EVOLUT IONARY B IOLOGY



[max(T,P)] corresponding, in both cases to a cooperator.

In other words, it is better both for defectors and

cooperators to be surrounded by cooperators. As such,

highly connected defectors surrounded by a significant

amount of cooperators will be very successful. The more

successful they become, the easier it will be to invade

most of their cooperator neighbours. However, in doing

so their fitness will tend to decrease, since defector–

defector interactions contribute less to fitness than

defector–cooperator interactions. As a result, highly

connected defectors see their fitness decrease down to

values comparable to those attained by the remaining

cooperator neighbours, which will then get a chance to

invade such a highly connected vertex (hub).

Once cooperators manage to invade such (few) hubs,

the situation changes profoundly. Indeed, as stated

before, cooperators benefit most by interacting with like

cooperators. Therefore, as their fitness increases, so will

increase the fraction of their neighbours, which become

cooperators, a feature which acts to self-sustain the

cooperators sitting on such hubs. In other words, once a

cooperator invades a hub, his fitness will rapidly increase,

making it very difficult to become invaded by a defector.

This, in turn, can only happen to the extent that the

NOCs are heterogeneous, since in this way cooperators

will maximize their fitness by maximizing the number of

cooperative interactions. On the other hand, the previous

discussion exemplifies how heterogeneity may be evo-

lutionary disadvantageous to defectors. Indeed, via this

mechanism cooperators manage to outperform defectors

and endure evolution under natural selection.

This line of reasoning is entirely corroborated by the

results illustrated in Fig. 5, in which we show the

evolutionary dynamics of a single defector in an other-

wise cooperative population in scale-free NOCs.

In the homogeneous limit we know that such an initial

condition will lead to the rapid extinction of all cooper-

ators for the values of b employed in Fig. 5: b ¼ 1.5 and

b ¼ 1.9. For scale-free NOCs, it is easy to convince

oneself that the most advantageous location for placing a

single defector is on the vertex with largest connectivity.

Starting from this scenario, the evolutionary dynamics is

startling, as shown in Fig. 5. The initial defector quickly

invades roughly 80% of the nearest (cooperative)

neighbours. This will reduce his fitness in such a way

that a cooperator nearby suceeds in invading. Cooperator

invasion leads to the steep jump observed in the

percentage of cooperators surrounding the cooperator

hub, providing an impressive account of the self-sustain-

ing efficiency induced by a cooperator-hub. Finally,

Fig. 5 shows that, in what concerns the largest hub in

the NOCS, the actual value of b acts only to delay the

number of generations required for invasion to take

place. This result, however is not general and relies on

the special initial conditions chosen here.

Understanding how cooperators manage to outperform

defectors enables us to design NOCs in which cooperators

may acquire an overall evolutionary advantage. In fact,

the original NOCs of Barabási–Albert provide an excel-

lent means to this end, since growth and preferential

attachment lead to NOCs, which exhibit age-correlations

between vertices, very convenient for this purpose.

Indeed, during graph generation the older vertices are

not only those which exhibit largest connectivity, but

also they become naturally interconnected with each

other. Such direct inter-connections provide an ideal

scenario for highly connected cooperators to self-sustain

each other. Indeed, once hubs are occupied by cooper-

ators, the fact that they are directly connected means that

it will be even harder for defectors to invade cooperator-

hubs. In other words, cooperator-hubs protect each other

from defector invasion, which will naturally result in an

enhancement of cooperation. This reasoning is fully

supported by the corresponding results shown in Fig. 3

with solid triangles, where cooperators now dominate

over the entire range of values of b, whenever popula-

tions exhibit such age-correlation patterns of connectiv-

ity between individuals. Taking into account that the

degree distributions of the NOCs used to generate both

age-correlated and random scale-free results coincide,

the results of Fig. 3 put in evidence the power of this

mechanism. As expected, cooperation will be suppressed

whenever the edges, which directly connect the ‘strong

cooperators’ are artificially clipped by hand. In retrospect,
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Fig. 5 Evolution of cooperators around largest hub. Starting with a

single defector placed in the hub with largest connectivity, the

fraction of direct neighbours who are cooperators is computed

throughout evolution, for a population of n ¼ 104 individuals, and

for the three values of b indicated. The overall behaviour, inde-

pendent of b, shows that the initial defector invades approximately

80% of its immediate neighbours, after which the largest hub is

invaded by a cooperator (originating typically from another hub,

taking place right before each jump), leading to a rapid saturation of

the hub’s neighbours with cooperators.
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the random scale-free NOCs considered before provide

an automatic means to destroy such links.

Finally, we would like to point out that the results

for the evolution of cooperation are affected if, instead

of using the accumulated payoff for each agent, its

fitness is associated with the accumulated payoff

divided by the number of interactions each agent

engages during his life-cycle. The corresponding results

are shown in Fig. 6, which shows that heterogeneity is

still capable of promoting cooperation, in particular

ensuring the survival of cooperators up to larger values

of the temptation to defect, when compared to the

results in homogeneous populations. Nonetheless, it is

clear that by averaging the payoffs, the mechanisms

discussed before will be severely hampered, as such

precluding the clear cut dominance of cooperators over

defectors obtained.

Conclusions

To sum up, the diversity of connectivity patterns in a

population, which translates into heterogeneous NOCs, is

efficiently explored by cooperators to outperform defec-

tors, leading to evolutionary outcomes in which cooper-

ators easily survive and may even dominate. NOCs

exhibiting strong heterogeneities and tight connections

between the few most connected agents favour the

dominance of cooperation.

Throughout evolution, the topology of the NOCs itself

must have evolved, a feature which is not included here.

Nonetheless, it is clear that whatever NOCs one may

envisage or have emerged throughout evolution, they

are certainly heterogeneous, and as such provide a better

ground for cooperators to resist defectors and endure

selection and evolution. In this context, it is worth

mentioning that the impact of heterogeneity in what

concerns cooperation between individuals may possibly

extend beyond the framework considered here. In what

concerns kin-selection, for instance, local dispersal and

population structure play a sizeable role (Rousset &

Billiard, 2000). To the best of our knowledge, hetero-

geneity effects in the population have not been addressed

yet in such a context. We hope our work will stimulate

the study of heterogeneity effects in other areas of

evolutionary biology.
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