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Abstract. We propose a generalized framework to analyse constraints
and representations in growing complex networks. We show that the in-
troduction of biological, social and technological information by means
of an additional network of constraints, together with the distinction
between complete potential networks and instantaneous effective ones,
can offer additional insights about the final topological outcome. Specifi-
cally, we study the emergence of exponential cutoffs in broad-scale degree
distributions as a result of high level constraints.

1 Introduction

In the last years, it has been experimentally observed that real-world biologi-
cal, social and technological networks are not structured in a random way [1].
Instead, most of these networks are organized in such a way that a few nodes
are able to interact with a lot whereas many others only interact with a few.
The extreme case is often referred as scale-free networks in which the degree dis-
tribution follows a power-law [2]. However, other configurations showing lower
levels of heterogeneity are also common [3]. Dissections of real world networks
have produced evidence for single-scale networks, characterized by a fast Gaus-
sian decaying tail in the degree distribution, broad-scale distributions, defined
by a power-law with an abrupt truncation for large connectivities [4] and, finally,
the previously referred scale-free class. The ubiquity of such classes of networks
raises many questions of which one is on the origin of these topological properties.
Moreover, in the context of understanding complex social and biological phenom-
ena, it is useful, and in many cases mandatory, to understand the topology of the
underlying networks of interactions [1,5,6]. System’s global properties rely ex-
tensively upon the underlying network and different dynamical outcomes emerge
from different topologies [7,8,9,10]. One way of understanding these topological
features relies on the development and the study (both mathematically and in
software) of abstract models showing the same degree distribution as observed
in empirical observations [2,11,5,12,13,14]. Although these universal mechanisms
provides rules on how to construct networks that belong to the different classes,
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Fig. 1. a) Instance and Types. Instance-based: each node represents an instance of a

certain type represented by a different colour (ex: social and technological networks).

Type-based: each node represents a certain type with concentration equal to the num-

ber of instances of that type. (ex: biological and chemical networks). b) Sexual pref-

erential attachment. Influence of intrinsic features of each node in the final degree

distribution. Black dots stand for the cumulative degree distribution after growing a

network of 1000 nodes using the Barabási and Albert Model of growth and preferential

attachment [2] and the squares show the resulting cumulative degree distribution of the

same model but constraining the preferential attachment rule to nodes of the opposite

sexual tag. Here, we implicitly define a network of constraints with two nodes (without

loops) and one link.

they do not clarify the domain-specific rules that explain the network topol-
ogy in terms of the specific social, biological or technological domain. Since this
explanation is essential for researchers in those particular domains, the models
miss some key properties of the networks they aim at replicating. An incomplete
set of the constructive laws that form the network can only lead to an incom-
plete assessment of the empirical data and of the history that produces them.
This article proposes an enrichment of the modelling vocabulary and practice
used to study growing networks. First we argue that there exists for each net-
work a set of constraints that define its topology. Knowing this type restrictions
will provide insight in how generalised growth functions can be defined. Second,
we discuss that this set of type constraints define the network of all possibili-
ties which is not necessarily the same as the network that is derived from the
data. This differentiation between the potential and the instantaneous network
underlines our argument that fitting generalized models to the data is not the
best strategy since it does not explain the underlying rules of formation. To il-
lustrate our argument we provide a few examples. Note that the examples are
hence only purely illustrative. The main goal here is introduce a slightly richer
common language to characterise complex networks and their evolution in time.
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2 Defining Nodes

In biology, mean-field analysis is often used to attain an understanding of the
complex dynamical system common in natural systems. For instance, in bio-
chemical reaction networks, nodes are often associated to chemical components
and links to chemical reactions [9]. A similar approach is often taken in the
study of protein interaction networks [15,16]. A node is assumed to represent a
certain protein and a link is drawn if binding is empirically observed between
two proteins. Since each individual element, at the atomic or molecular level, is
clustered in a node representing a certain type, a concentration value is often
associated with the node. Similar to the two networks shown in Figure 1-a, nodes
are types with particular physical properties, and a concentration value informs
about the number of instances of any particular type. A similar type/instance
dichotomy can be found in other biological networks such as food web networks,
signal transduction networks, etc. As a rule, biological networks are always rep-
resented as type-based networks. There are two main motivations for this. First,
most of the experimental data can be obtained only in this format. Second, it
would almost be impossible to define such kind of networks at an instance level.
Either it becomes trivial (for instance, it is hard to imagine a lion interacting
with more than one specie at a time t) or too complex. When an instance of a
protein interacts with another one, it will become part of a complex and, as a
result, won’t be able to connect to any other instance. In addition, the intrinsic
properties of such node would no longer be the same. The type-level is indeed
the obvious level of representation for biological networks of interactions.

Is this type/instance dichotomy meaningful in other scientific domains? It
seems not. Social and technological networks are often studied by adopting an-
other perspective. Here every node corresponds to one particular person, com-
puter or HTML page, to give the three most usual examples. The justification
of such a choice is mainly practical. First, this is the way in which empirical
results are obtained. Second, in most of the cases, the consideration of type is
simply meaningless. Defining a type-based network entails a lost in the amount
of information (see Figure 1-a). Nonetheless, types are always there, and for each
case a proper type representation could be found.

In biology, most of the recent modelling of network evolution does not take
this distinction into account. First, types are treated as instances in order to
drop the cumbersome issue raised by the dynamics at the level of the num-
ber of instances/concentration. This might be the best approach for both social
and technological networks but is clearly oversimplified for chemical or biologi-
cal ones. The absence of any biological or chemical information inherent in the
definition of types leaves out some physical constraints certainly decisive in the
network evolution. For instance, some nodes interact because their physical char-
acteristics make such interactions extremely likely. This is definitely not related
with any kind of topological consideration (like the amount of links that each
of agents has). Accordingly, it is hard to accept a system that grows following a
degree-preferential rule as biologically realistic. Some highly connected nodes are
so, because they have intrinsic features that allow them to connect to a higher
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number of partners. Roughly, they are natural hubs or born to be hubs instead of
being hubs just because of their presence in the network during a longer period.
All these special features are included in the definition of each type and in the
way links are defined. By disregarding concentration and the number of instances
of a certain type, we loose one of the possible mechanisms behind the topologi-
cal evolution of a growing network. The dynamics of the concentration/instance
level often produces the necessary feedback for the network growing while this
growing in turn constrains the dynamics. This constant interplay between the
dynamics and the topological dynamics is something not taken into account in
most of the network modelling.

3 Constraint Ties Among Networks

Adding a natural semantic to the definition of nodes entails the presence of an
additional level of representation (we will call it level 1 in the following) that will
constrain what happens at the lower level (called level 0 in the following). This is
true in all kinds of networks. Some nodes, simply are not able to connect to some
other nodes. These additional constraints may be due to all sort of reasons. For
example, in social or economical networks, a European is more likely to interact
with other Europeans. Considering such constraint tags when modelling the
growth of networks, different results will be produced as a function of these
constraints and their strength. Let’s consider a first very simple example of
sexual interaction network, where links and nodes represent sexual interactions
and individuals, respectively. Such an interaction network has been shown to
follow a scale-free degree distribution or at least to be part of a broad-scale class
of interaction networks [17,18]. The evolution of this network is successfully
modelled by a preferential attachment and growth model, proposed in [2]. In
this case, an obvious constraint can be introduced in order to restrain the study
to heterosexual relationships. This additional constraints network (level 1 in
Table 1) is simply defined by two gender nodes (male and female) connected
by a link but without any loop (that would represent homosexual connections).
Considering growth and preferential attachment model and stating that each
node has 50 per cent chance of being part of one of the genders, the preferential
attachment process will be restricted to the subset of nodes belonging to the
opposite gender. The final result reflects precisely that (see Figure 1-b). The
heterosexual constraint introduces an artificial cut-off that is frequently observed
in experimentally derived networks [3].This sexual network example illustrates
how constraints, reflecting intrinsic features of each node, influence the final
outcome of the network. As discussed in the following paragraphs, more complex
constraint networks will produce more complex effects.

In biology, proteins and chemical nodes have often been modelled by a key-
lock mechanism [19,20,21,22,14]. It is assumed that nodes are defined by bit-
strings and links by a pre-defined affinity function as in [14]. In this framework,
the hamming distance between 2 bit-strings and a global or individual connection
threshold have been classically used as affinity function, but many more choices
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Fig. 2. Spatial constraints at different levels of representation. Upper panel: we have

the network of constraints (squares and light grey links) with Nc nodes (16 in this

example) and zc as average degree (we allow loops at the constraints level, allowing

instances of the same type to potentially interact). Each number/colour represents a

different type. On top of the the constraints network, we can observe an example of

an effective instance-based network, with Ni = 42 nodes. This last network helps to

understand the correspondent type-based network in the middle panel, emerging as a

subset of the constraints network. Finally, in the last panel, we see a potential network,

drawn from the constraints network, with a maximum number of Np nodes and zp links

per node. Each node will be part of a certain type, and will connect to all members of

its type and to the ones belonging to types that have a link (at the constraints level)

with its own type.



Networks Regulating Networks 961

Table 1. Two basic distinctions: level 0 vs level 1 and instantaneous vs potential. We

characterize as instantaneous the effective network at level 0 and individual types at

level 1. They are the interactions spotted at a given instant of time and turn out to

samples of all interactions defined as potential ones. The instantaneous network, either

at level 0 or 1, is a subset of nodes and links of the potential one originating from the

structural evolution of the network.

Level 0 Level 1
Potential Potential network Network of constraints

Instantaneous Instance-based Representation Type-Level Representation
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Fig. 3. Cumulative degree distribution (Dk) for different values of average connectivity

at the constraints level (zc). Inset: Maximum degree (kmax) dependence on the average

degree at the potential level, zp = zc
Ni
Nc

− 1, where Ni and Nc represent the number

of instances and the number of types, respectively. The dashed line has slope 1/2

and indicates the expected relationship between zp and the finite-size cut-off given by

qc ∼ N
1

1−γ (see main text).

are possible. As a matter of fact, defining nodes with a specific tag or intrinsic
characteristics, together with a list or a network of all constraints implicitly gives
rise to a set of all possible interactions that can be represented as a potential
network at either level 0 or level 1. The effective or observed network, that will be
called in the following the instantaneous network, boils down to a subset of nodes
and links of this potential scenario. In the Barabási and Albert (BA) model of
growth and preferential attachment [23], no constraint is defined and there is
no need for an extra level of representation. The potential network at level 0 is
just a fully connected graph of size N and average degree zp = N − 1. On the
other hand, in the BA model with sexual constraints described before, the level
1 potential network is simply a two nodes network with no loop. The level 0
potential network turns out to be a fully connected bi-partide graph, reducing
the number of potential links to zp = N

2 inducing a finite-size effect [11] in the
maximum connectivity of network (see below).
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In the previous paragraphs, we introduced different representations and ways
of constraining the network growth. Table 1 attempts at summarising and clar-
ifying these distinctions. At the lowest level, level 0, first appears the instanta-
neous network of interactions between the individual instances currently present
in the network. It is the real physical level at which the interactions take place.
From that one, we can derive the instantaneous network at level 1 reflecting the
current constrained interactions between each type or flag that characterises all
nodes present at level 0. It is impossible to obtain the individual interactions
among instances from the network established at level 1, while the other way
is the only possibility. Finally, all possible interactions at these two levels of
representation are defined by a potential network, both at level 0 and level 1.
While the instance-based instantaneous network represents a time snapshot of
the potential network, similarly the type-based instantaneous network represents
a subset of the potential network of constraints. Some nodes likely to be present
in the instantaneous network may not actually be there. In the sexual network
example, the level 1 potential network coincides with the level 1 instantaneous
network, since both genders are present at the instance level. This is not a gen-
eral feature, though. One can easily devise a model where some of the types are
not present in the instantaneous level 0 network, reducing the size of the level 1
instantaneous network to a very small part of the potential one.

By extending the previous trivial network of gender constraints, a similar
model of growth and preferential attachment can be imagined, but with many
more types and constraints. Let’s start by introducing at level 1 a general graph
of constraints of size Nc and average degree zc. Only instances belonging to con-
nected types are able to interact. We can construe this network as describing
possible interactions among families of proteins, international economical trans-
actions (where each type is a country), or even shaped by religious or spatial
constraints. Each of these examples gives rise to a different network of constraints
with non-trivial topologies. A network with spatial constraints is certainly the
easiest to illustrate. It can be characterized, in its simplest form, by a regular
network [24]. Figure 2 shows how all four kinds of networks (level 0 and level 1,
potential and instantaneous) influence each other. If we consider that every node
of type j can interact with all nodes present in a same square and with all nodes
present into squares in the neighbourhood (see Figure 2), the potential network
is (locally) a fully-connected network among all nodes of the same square and
among all nodes of squares which are positioned side by side. Once again, the
instantaneous networks (at both levels 0 and 1) may differ from the potential
network, regarding the present number of links and nodes, but will always be a
subset of it.

Figure 3 shows the simple implementation of this idea by a generalised con-
straints network, where the effect of a regular network of constraints at level 1
on the final structure of the network at level 0 is studied. A regular network of
constraints of size Nc (102 types) is considered, with an average degree zc = 5,
and Ni = 103 instances (a subset of all possible instances Np) uniformly spread
among all types. At each time step, a new instance is added and connect preferen-
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tially [2] to highly connected instances already present in the network. Depending
on the average degree (zc) of the potential network at level 1, a different average
connectivity will be produced for the potential network at level 0 (zp). Each in-
stance will be restrained to interact with the elements of its own type or flag and
also with the instances belonging to the neighbourhood types. To simplify, we
will consider in the following a finite potential network, in which the number of
instances Ni has reached the maximum number of possible instances Np. Hence,
the potential average degree at level 0 will be given by zp = zc

Ni

Nc
− 1, where Ni

represent the number of instances and Nc the number of types. The fact that
the average degree of the potential network is no longer equal to Ni − 1 (like
in the usual Barabási and Albert model [23] where every node can potentially
connect to every other node), induces typical finite-size effects. The preferential
attachment universe is now reduced to the universe of potential partners (zp),
and the finite-size cut-off that scales up proportionally to N

1
1−γ (γ = 3 being the

resultant slope of the degree distribution dk = k−γ) [11] instead scales up with
z
1/1−γ
p . This result is shown in the inset of Figure 3. These cut-off effects are only

visible for high connectivity levels, though. The network is perfectly scale-free,
but only from a local perspective, and repeats itself throughout the entire net-
work for typical scales above zp [25]. Figure 3 also shows that the obtained level
0 instantaneous network is well represented by a stretched exponential degree
distribution [26] or a power-law with a exponential cut-off for high connectivities
[25,27,28]. The network shows a strong dependence on the amount of links at
level 1. Depending on the strength of the constraints, different cut-offs emerge
from the growing process and the power-law obtained with the Barabási-Albert
model is recovered when zc moves the constraint network to a fully-connected
graph. Moreover, the topology of level 1 may influence the topology of level 0 in
different ways, which may not change the average potential degree. For instance,
suppose each type to be a country or city which some, as a result of social and
economical reasons, interact with more countries or cities than others [29]. To
represent this feature, some degree heterogeneity need to be introduced at level
1, being the regular network replaced by other class of topologies [3]. This might
produce non-trivial results at level 0. The typical cut off could become smoother
and allows some instances to receive more links than others. From the beginning,
there will be nodes that can potentially interact with many more than others –
some nodes are born to become hubs. Such effects will be tackled in a future work.

4 Conclusions

This last example, together with the even more simplified sexual one, sufficiently
illustrates the effects of an extra level of complexity on the growing process of a
network, justifying the need for this enlarged perspective. These conceptual ad-
ditions may contribute to a better understanding of phenomena associated with
the structural evolution of complex networks. To the dynamics of the nodes and
the evolution of the topology, external constraints, coming from intrinsic fea-
tures of the nodes and the way they do interact, need to be added. Moreover,
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the interplay between the two levels of representation and between the instanta-
neous and the potential networks remains an open problem in various scientific
domains. We have tried in this paper to propose an wide perspective, allowing a
better introduction of additional effects which are responsable for shaping net-
works’ evolution. Besides analysing all interacting agents as a whole, different
levels of description need to be accounted and their influence investigated, both
in the experimental data and in simulation. Furthermore, instead of choosing
one unique level of complexity and representation for each problem, a more ex-
tended framework has been demonstrated to produce important results that are
necessary to understand the intricate network of influences that underlie each
complex phenomenon.
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