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a b s t r a c t

In the animal world, performing a given task which is beneficial to an entire group requires the
cooperation of several individuals of that group who often share the workload required to perform the
task. The mathematical framework to study the dynamics of collective action is game theory. Here we
study the evolutionary dynamics of cooperators and defectors in a population in which groups of
individuals engage in N-person, non-excludable public goods games. We explore an N-person
generalization of the well-known two-person snowdrift game. We discuss both the case of infinite
and finite populations, taking explicitly into consideration the possible existence of a threshold above
which collective action is materialized. Whereas in infinite populations, an N-person snowdrift game
(NSG) leads to a stable coexistence between cooperators and defectors, the introduction of a threshold
leads to the appearance of a new interior fixed point associated with a coordination threshold. The
fingerprints of the stable and unstable interior fixed points still affect the evolutionary dynamics in
finite populations, despite evolution leading the population inexorably to a monomorphic end-state.
However, when the group size and population size become comparable, we find that spite sets in,
rendering cooperation unfeasible.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Evolutionary game theory has been widely employed in the
study of the evolution of cooperation at different levels of
organization (Axelrod and Hamilton, 1981; Maynard-Smith,
1982; Boyd and Richerson, 1985; Hofbauer and Sigmund, 1998;
Skyrms, 2001, 2004; Macy and Flache, 2002; Hammerstein, 2003;
Nowak and Sigmund, 2004; Santos and Pacheco, 2005; Santos
et al., 2006; Ohtsuki et al., 2006; Nowak, 2006; Santos et al.,
2008). Special attention has been paid to two-person dilemmas
such as the prisoners dilemma (PD), the snowdrift game (SG)
(Sugden, 1986) and the stag-hunt (SH) game (Skyrms, 2004),
which constitute powerful metaphors to describe conflicting
situations often encountered in the natural and social sciences
(Macy and Flache, 2002; Skyrms, 2004). Many real-life situations,
however, are associated with collective action based on joint
decisions made by a group often involving more than two
individuals. This is the case, for instance, in the upper primates,
where problems of collective action are recurrent (Boyd and
Richerson, 1985; Boehm, 1999). This type of problems are best
dealt with in the framework of N-person games (Hauert et al.,

2006a, 2006b, 2007; Schelling, 1973; Dawes, 1980; Boyd and
Richerson, 1988; Kollock, 1998). Describing the evolutionary
dynamics of many-person games provides a richer scenario of
possibilities, as captured by the words of late Hamilton (1975) in
connection with three-person games:

‘‘The theory of many person games may seem to stand to that
of two-person games in the relation of sea-sickness to a
headache.’’

Here we investigate the evolutionary dynamics of N-person
generalizations of the SG. In the standard SG, two individuals are
driving on a road which is blocked by a snowdrift. To proceed with
their journey home, the snow must be removed. Three possibi-
lities occur: No one shovels, and hence no one gets home: The two
drivers cooperate and shovel, and both get home, each one sharing
the workload of shoveling the snow. If only one driver decides to
shovel, both get home despite one driver incurring the entire cost
of snow shoveling. If we define the benefit of getting home as b
and the cost of shoveling as c, then if both drivers cooperate and
shovel, each gets b! c=2. If both defect, no one gets anything !0.
If one cooperates and the other defects, the cooperator (C) gets
b! c while the defector (D) gets b. Assuming, as usual, that the
benefit is greater than the cost, we get a payoff ranking
characteristic of a chicken, hawk-dove or snowdrift dilemma
(Maynard-Smith, 1982). The generalization of this game to a
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public goods game involving N players is straightforward. To
remain with the previous example, we can imagine that the
snowdrift occurs at a cross-road where N drivers meet. Again, all
want to go home (getting all the same benefit b), but perhaps not
all are willing to shovel. If all shovel, then each gets b! c=N. But if
only k individuals shovel (C), they get b! c=k whereas those who
defect by refusing to shovel get home for free and get b.

There are many examples in our everyday life and throughout
our history, where instances of N-person snowdrift games (NSG)
are or have been at stake (see below). Moreover, in some of these
instances, it is often the case that no common benefit is produced
unless its cost is shared by a minimum threshold of cooperating
individuals. In keeping with the metaphor introduced above, the
fact that individuals have a finite capacity of clearing the snow,
combined with the risk that a new snowdrift may happen, further
blocking the road, implies that a minimum threshold of people
must cooperate (shovel) so that the road is cleared before the next
snowdrift eventually happens.

The existence of thresholds in NSG abounds. For example, not
all Amish need to participate in the construction of a church for
the church to be built (Weir, 1985). Yet, the more contribute the
better, since the effort to be invested by each member of the
construction group will be smaller. On the other hand, the cost of
building a church cannot be provided by a single individual. In this
example, the public good is the church, so once it is built all get
access to this non-excludable public good. However, the more
Amish help building the church, the less effort (cost) is required to
each of them to produce the public good, given that the minimum
threshold of individuals required to build the church is met. In
addition, the size of the church, or the benefits of having one, do
not necessarily increase with the number of individuals that
worked on it.

Similarly, when steady and heavy rain signals the possibility of
large floods, the set up of protection via sandbag levees requires
the coordinated action of a minimum threshold of people for the
flood to be prevented letting all enjoy the same benefit. Once this
threshold is surpassed, the more people help, the less the
individual cost of each of the contributors.

A feature of these examples which is common to all tasks of
collective action captured in the framework of a NSG is the fact
that a given cost is required for a benefit to be produced. Unlike a
N-person prisoners dilemma (Bach et al., 2006; Pacheco et al.,
2009), all individuals in the group get a benefit which does not
depend on the number of contributors and on the size of the
groups, to the extent that they manage to pay the necessary cost.
In this case, the cost of producing the benefit is shared among all
those who cooperate.

For a given group of size N, we define a threshold 1rMrN
such that only when the number k of Cs in the group is at least M
ðkZMÞ a public good is achieved. Since a cost c is required to
produce a benefit b, this means that, whenever kZM, each C pays
a cost c=k. On the other hand, whenever koM no benefit is
produced, despite each C ‘‘giving her best’’ to achieve such goal.
Hence, the maximum cost each C may expend is c=M. Back to the
church example, M is the minimum number of equally apt
individuals required to build a church. In the case of flood
protection, M equally capable individuals must be able to set up
an artificial dam using sandbag levees in time before the water
level surpasses the critical point. Clearly, the assumption that all
individuals are equally capable of contributing to the public good
is a simplification. Relaxing it will be deferred to future work.

In Table 1 we summarize the payoffs of Cs and Ds in any case
(as usual in N-person games, k ¼ 0 means no cost is expended and
no benefit is produced).

We shall assume a population of size Z, from which groups
of size N are randomly sampled. We shall first study the

conventional limit in which Z-1, under deterministic replicator
dynamics. Subsequently, we shall consider stochastic dynamics in
finite populations. The fitness of individuals is determined by
their payoff collected when engaging in an N-person SG, requiring
at least 0oMoN individuals to produce any public good at all. We
shall find that requiring a minimum threshold of cooperators to
produce a benefit leads to the appearance of coordination features
in an otherwise coexistence game. Hence, we obtain a richer
evolutionary dynamics scenario in infinite populations. We find
that this scenario remains qualitatively valid whenever we
remove the approximation of assuming infinite populations,
although the stochastic dynamics only ends whenever a mono-
morphic population is reached. Nonetheless, and similar to what
was found for the N-person stag-hunt game (Pacheco et al., 2009),
for small populations and/or group sizes spanning nearly the
entire population, we observe the ‘‘spite’’ effect first noted by
Hamilton (1970) which works against cooperation.

2. Evolutionary dynamics of the N-person SG in infinite
populations

Let us assume a very large population ðZ-1Þ, a fraction x of
which is composed of Cs, the remaining fraction ð1! xÞ being Ds.
Let groups of N individuals be sampled randomly from the
population. Consequently, the average fitness of Ds in this
population is given by

fD ¼
XN!1

k¼0

N ! 1

k

! "
xkð1! xÞN!1!kPDðkÞ ð1Þ

whereas the average fitness of Cs is given by

fC ¼
XN!1

k¼0

N ! 1

k

! "
xkð1! xÞN!1!kPCðkþ 1Þ ð2Þ

Indeed, such random sampling leads to groups whose composi-
tion follows a binomial distribution. Individual payoffs PCðkÞ and
PDðkÞ are listed in Table 1. Let us start by assuming that one
individual can bear the cost c of producing the public benefit b
ðM ¼ 1Þ. From the replicator equation (Hofbauer and Sigmund,
1998)

_x ¼ xð1! xÞðfC ! fDÞ ð3Þ

it follows that there exists an interior stable fixed point x&,
satisfying

fCðx&Þ ! fDðx&Þ ¼ 0 ð4Þ

where x& is the real solution of the equation (Zheng et al., 2007)
c
b
ð1! x&ÞN þ Nx&ð1! x&ÞN!1 !

c
b
¼ 0 ð5Þ

which, for arbitrary group size N, can be solved numerically as
shown in Fig. 1.

Similar to the 2-person game, the NSG provides conditions for
the stable coexistence of Cs and Ds. As shown in Fig. 1, the
equilibrium abundance of cooperators decreases with increasing
group size N and decreasing benefit-to-cost ratio b=c.

Table 1
Payoff values for the N-person snowdrift game.

Payoff obtained C D

1rkoM !
c
M

0

kZM b!
c
k

b
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Let us now consider the case in which, only when kZMZ1,
a public benefit b will be available to all in the group. Similarly, to
the M ¼ 1 case, collective benefit will be achieved whenever all
contributions sum to c, i.e., when at least M individuals contribute
c=M. We may formally write the payoffs in Table 1 in the form

PDðkÞ ¼ byðk!MÞ ð6Þ

for the payoff of a defector in the group and

PCðkÞ ¼ PDðkÞ !
c
k
yðk!MÞ !

c
M

ð1! yðk!MÞÞ ð7Þ

for the payoff of a cooperator in the same group, where the
Heaviside step function yðxÞ satisfies yðxo0Þ ¼ 0 and yðxZ0Þ ¼ 1.
Since the public good is only achieved when kZM, only in this
case the total cost is shared among cooperative individuals.
Otherwise, each individual contributes the most without succeed-
ing in producing the required cost. In other words, cooperators
may expend a cost in vain. Such scenario leads to a SG when N ¼ 2
and M ¼ 1, whereas N ¼ M ¼ 2 leads to a SH dilemma (see
below). Hence, we expect that introducing a threshold in the NSG
may lead to some type of coordination dynamics.

Substituting Eqs. (6) and (7) into Eqs. (1) and (2) leads to

fC ! fD ¼
c
xN

N
b
c

N ! 1

M ! 1

! "
xMð1! xÞN!M

#

! 1þ
XM!1

k¼0

N

k

! "
xkð1! xÞN!k k

M
! 1

! "
'

" )
ð8Þ

For M ¼ 1, we re-obtain Eq. (5). When N ¼ M ¼ 2, we find that
x& ¼ c=2b is an unstable fixed point, hence we have a SH.

For N42 and M41 there is no analytic solution. Similar to the
case when M ¼ 1, we can easily solve Eq. (8) numerically, as
shown in Fig. 2. For most values of the benefit-to-cost ratio b=c,
the existence of a threshold M41 provides sufficient conditions
for a completely new evolutionary dynamics. In addition to a
stable fixed point also present in the M ¼ 1 case, there is an
emerging new unstable equilibriumwhich divides the system into
two well-defined basins of attraction (see below). Depending on
the benefit-to-cost ratio b=c, the system will always end up either
in full defection or in a equilibrium where cooperators and

defectors coexist. As shown in Fig. 2, the fraction of cooperators in
the co-existence equilibrium increases with the value of the
threshold M. This can be understood given that the individual cost
of each cooperator decreases with increasing M. In addition, the
relative size of each basin of attraction, defined by the position of
the unstable equilibrium, reflects the difficulty to achieve
collective coordination whenever M41, creating distinct games
and dynamics with different risk-dominant strategies. We can
prove some general properties of Eq. (8) which warrant that the
behavior depicted in Fig. 2 is always valid. More precisely, we
prove in Appendix A that there exists a critical value of the cost-
to-benefit ratio c=b—referred as g below—and a critical fraction of
cooperators x, depending only on N and M such that

1. Whenever c=b4g the evolutionary dynamics exhibits no
interior fixed points.

2. Whenever c=b ¼ g there is only one interior fixed point, which
we denote by x, corresponding to an unstable fixed point.

3. Whenever c=bog there are two interior fixed points xLoxoxR,
such that xL is unstable and xR is stable.

We are not able to provide an explicit expression for x, except
when e ¼ ððN !MÞ=NÞ51, in which case we derive in Appendix A
the asymptotic approximation

x ¼
M
N

þOðeN!Mþ1Þ ð9Þ

In the main panel of Fig. 3 we show the accuracy of Eq. (9) in
estimating the location of the critical fraction x for several
combinations of the ratio M=N.

It is noteworthy that, in item 1 above, nothing prevents that
g41, which leads to situations in which cooperation is feasible
even when boc. Numerical results show that the critical benefit-
to-cost ratio, for 1oMoN, is a decreasing function of M: For small
M, the critical value satisfies cob; however, for larger values of M,
we observe that we might have a critical value with c4b, as
illustrated in the inset of Fig. 3 (see also Fig. 2). The reason for this
seems to be that, for large M, the individual effort required to
maintain a collective benefit is spread more evenly among the
participants, thus helping to promote cooperation. Indeed, the
maximum individual contribution of cooperators is given by c=M,
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Fig. 1. Stable equilibria of the N-person SG in infinite populations. In the main panel we show the location of the stable interior equilibrium of the replicator dynamics
equation as a function of the benefit-to-cost ratio b=c for group sizes N ¼ 2 (dotted black line), 5 (dashed red line), 10 (solid yellow line) and 20 (dash–dot blue line). The
stable nature of this interior fixed point is illustrated in the inset on the lower right. In the small panel in the upper right we show how the location of the interior stable
fixed point scales with group size for the three different benefit-to-cost ratios b=c indicated. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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a decreasing function of M. On the other hand, as shown in Fig. 2,
for larger M the minimum coordination among cooperators ðxLÞ
necessary to produce such collective goal increases, thus reducing
the chances of cooperators.

Fig. 2 shows results for a fixed group size of N ¼ 20 and
variable threshold values of M (main panel). For each value of M
there is a critical benefit-to-cost value b=c above which two
interior fixed points emerge. These can be found in Fig. 2 by
drawing a horizontal line at a fixed b=c—its intersection with the
appropriate curve for a given threshold M provides the location of
the points. As shown in Fig. 2, one root corresponds to an unstable
fixed point ðxLÞ and the other to a stable fixed point ðxRÞ inducing a

coexistence between Cs and Ds (see Appendix A for a general
proof). This means there is a range of values of x ðxLoxoxRÞ, in
which Cs are favored against Ds ðfCðxÞ4fDðxÞÞ. When x4xL, the
system will always evolve to the mixed configuration given by xR,
and below xL all individuals will end up refusing to contribute to
the public good.

3. Evolutionary dynamics in finite populations

The evolutionary dynamics in large, finite populations, has
been pioneered in economics by Young (1993) and by Kandori
et al. (1993), in the limit where mutations are rare. Here we focus
on a well-mixed population of finite size Z in the absence of
mutations. The fraction of cooperators (k=Z) is no longer a
continuous variable, varying in steps of 1=Z. Also, sampling of
individuals is no longer binomial, following a hypergeometric
distribution and can now be written as (Pacheco et al., 2009)

fCðkÞ ¼
Z ! 1

N ! 1

! "!1XN!1

j¼0

k! 1

j

 !
Z ! k

N ! j! 1

 !
PCðjþ 1Þ ð10Þ

and

fDðkÞ ¼
Z ! 1

N ! 1

! "!1XN!1

j¼0

k

j

 !
Z ! k! 1

N ! j! 1

 !
PDðjÞ ð11Þ

respectively, where we impose that the binomial coefficients
satisfy ðkjÞ ¼ 0 if ko0.

We adopt a stochastic birth–death process (Karlin and Taylor,
1975) combined with the pairwise comparison rule (Traulsen
et al. 2006, 2007a, b) in order to describe the evolutionary
dynamics of Cs (and Ds) in a finite population. Under pairwise
comparison, two individuals from the population, A and B are
randomly selected for update (only the selection of mixed pairs
can change the composition of the population). The strategy of A

0 0.2 0.4 0.6 0.8 1
0

4

8

12

16

0 0.2 0.4 0.6 0.8 1
equilibria

0

20

40

60

80

100

N

f C
 (x

)-f
D

 (x
)

x 10

xL xRequilibria

M = 1
M = 5
M = 10
M = 15
M = 20

b/
c

xL xR

b/c=2
b/c=5
b/c=10

x

x

Fig. 2. Equilibria of the N-person Snowdrift Game with threshold. We assume infinite, well-mixed populations, fix the group size at N ¼ 20 and vary the thresholdM above
which cooperation leads to a common benefit b. The total cost involved is c. In the main panel we show how the occurrence of a threshold leads to the appearance of at most
two interior fixed points xL and xR , which can be found via the intersection of a horizontal line with the appropriate curve (illustrated for M ¼ 10); in this case, the leftmost
root is always an unstable fixed point whereas the rightmost corresponds to stable fixed point, as illustrated in the small panel in the lower right (see main text for details).
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will replace that of B with a probability given by the Fermi
function (from statistical physics)

p ¼
1

1þ e!bðfA!fBÞ
ð12Þ

The reverse will happen with probability 1! p. The quantity b,
which in physics corresponds to an inverse temperature, controls
the intensity of selection: For b51 selection is weak, and one
recovers the replicator equation in the limit Z-1 (Traulsen et al.
2006, 2007a, b). For arbitrary b , the quantity corresponding to the
right-hand side of the replicator equation, specifying the gradient
of selection, is given in finite populations by Traulsen et al. (2006,
2007a, b)

gðkÞ ( TþðkÞ ! T!ðkÞ ¼
k
Z
Z ! k
Z

tanh
b
2
½fCðkÞ ! fDðkÞ'

# $
ð13Þ

The right-hand side of gðkÞ is similar to the replicator equation,
only that the (non-linear) pairwise comparison (Traulsen et al.

2006, 2007a, b) defined in Eq. (12) leads to the appearance
of the hyperbolic tangent of the fitness difference, instead of the
fitness difference. This has implications in the characteristic
evolutionary times, which now depend on b (Traulsen et al. 2006,
2007a, b), but not in what concerns the roots of gðkÞ. Importantly,
the evolutionary dynamics in finite populations will only stop
whenever the population reaches a monomorphic state (k ¼ 0
or Z). Hence, the sign of gðkÞ, which indicates the direction
of selection, is important in that it may strongly influence
the evolutionary time required to reach any of the absorbing
states.

In Fig. 4, we show how the qualitative behavior of selection
under stochastic dynamics in finite populations mimics closely
that already encountered in the previous section (c.f. Fig. 2),
associated with deterministic dynamics in infinite populations.
Although the population will always fixate in one of the two
absorbing states (k ¼ 0 and Z in the absence of mutations),
selection will act to drive the population toward a compo-
sition reflecting the rightmost root of gðkÞ, which constitutes the
deepest point of the basin of attraction of the evolutionary
dynamics.

On the other hand, as the group size approaches the population
size the previous basin of attraction is reduced. In Fig. 5 we show a
typical behavior of gðkÞ as a function of the fraction of cooperators
k=Z for fixed population size Z ¼ 50, thresholdM ¼ 5 and different
group sizes N. As N increases, cooperation becomes increasingly
unfeasible—in the limit when N-Z, cooperators have no chance
and defectors dominate unconditionally. Moreover, for a given b=c
ratio, the existence of a finite population analogue of a stable root
of gðkÞ (in infinite populations) occurs for values of the frequency
k=Z of cooperators which decrease as N increases (see inset of
Fig. 5). This has been first noted by Hamilton (1970) and reflects
the occurrence of ‘‘spite’’ which works against cooperation, as
illustrated in Figs. 4 and 5.

4. Conclusion

In this paper we considered public goods dilemmas in which
collective action leads to a coexistence of cooperators and
defectors in infinite populations. We extend such a N-person
snowdrift game to situations in which a minimum of coordinated
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collective action is required to achieve a public good. In infinite,
well-mixed populations, the existence of a threshold opens the
possibility for the appearance of an additional fixed point, creating
a complex dynamics with two interior fixed points in the
replicator equation. The one at lower frequency of cooperators is
always an unstable fixed point, which determines a threshold for
cooperative collective action and triggers the appearance of
coordination effects in an otherwise co-existence evolutionary
game. The other, at higher frequency of cooperators, is a stable
fixed point, and hence determines the final frequency of
cooperators in the population, assuming the coordination thresh-
old is surpassed. For the same individual capacity, larger groups
are capable of generating larger public benefits. For fixed benefit-
to-cost ratio, increasing M leads to evolutionary coexistence for
increasing fractions of cooperators. On the other hand, as shown
in Fig. 2, the coordination barrier also becomes more difficult to
overcome.

Once the simplifying assumption of an infinite population size
is abandoned, the evolutionary dynamics of the N-person
snowdrift game shows, qualitatively, a behavior which is similar
to that found in infinite populations in what concerns the
direction of selection. However, the finite population size leads
the evolutionary dynamics to stop only when the population is
monomorphic. On the other hand, whenever the population size is
small or the group size approaches the population size, coopera-
tors are always disadvantageous, irrespective of the benefit-to-
cost ratio of cooperation, in accord with the so-called ‘‘spite’’
effect first described by Hamilton. In this context, it is worth
referring that in the Amish example provided in the introduction,
the entire community is called to participate, as well as the entire
community benefits from the public good. Consequently, our
model predicts that spite will be effective here. Perhaps not
surprisingly, community enforcement (not dealt with here) is
often used to ensure collective action.

In the N-person snowdrift game addressed here, and in the
presence of a threshold M41 we assumed that, whenever the
number of cooperators was koM, each cooperator was contribut-
ing an individual cost c=M which, when aggregated, would
not be sufficient to produce a benefit. Qualitatively, however,
nothing changes in the evolutionary dynamics of the population
if, instead of c=M, cooperators contribute individually a cost
c=k—in fact, the algebra is considerably simplified—or if we
state that individual contribution is just a fraction 1=a of the total
cost c.

Overall, the necessity of coordination in N-person snowdrift
game dilemmas is shown to increase the equilibrium fraction of
cooperators. However, this enhancement comes together with a
strong dependence of the initial level of coordination, since
coexistence between cooperators only emerges when a minimum
number of cooperators is already present in the population.
Moreover, our results re-inforce the idea (Kollock, 1998; Pacheco
et al., 2009) that even minor differences in the nature of collective
returns and/or costs can have a profound effect on the final
outcome of cooperation. We believe that, in public good
dilemmas, the existence of thresholds constitutes the rule, rather
than the exception. Our results show that, as a result, the
evolutionary dynamics is enriched, enhancing the beauty and
complexity of N-person social dynamics.
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Appendix A. Equilibria results for N-person snowdrift game in
infinite populations

From Eq. (8), we have that the problem of determining interior
roots of the replicator equation can be reduced to the study of the
roots of the polynomial

pðxÞ ¼ N
N ! 1

M ! 1

! "
xMð1! xÞN!M b

c
! 1þ

XM!1

k¼0

N

k

! "
xkð1! xÞN!k k

M
! 1

! "" #

Let g ¼ c=b. We find that it will be more appropriate to study

pðx; gÞ ¼ N
N ! 1

M ! 1

! "
xMð1! xÞN!M ! g 1þ

XM!1

k¼0

N

k

! "
xkð1! xÞN!k k

M
! 1

! "" #

which has the same roots as pðxÞ, and where we made the
dependence on g explicit. Notice also that pðx; gÞ implies the same
dynamics for the Replicator that the one implied by pðxÞ up to a
time rescaling.

We then have the following result

Theorem 1. There exists 0og and 0oxo1 such that, if

1. g=go1, then the evolutionary dynamics has no interior equilibria.
2. g=g ¼ 1, then x is a unique interior equilibrium.
3. g=g41, then there are two interior equilibria xLoxoxR. More-

over, xL is always an unstable equilibrium point, while xR is always
a stable point.

In order to prove Theorem 1, it turns out that is more convenient
to determine what g will render a given x 2 ð0;1Þ an interior
equilibrium point, rather than determining what x are equilibria
for a given g. The reason for this is that the introduction of a
threshold breaks the combinatorial structure of the binomial
sample, which precludes a more direct calculation as found, for
instance, in Hauert et al. (2006b).

Let us define

GðxÞ ¼

0; x ¼ 0

N
N ! 1

M ! 1

! "
xMð1! xÞN!M

1þ
PM!1

k¼0 ð
N
k
Þxkð1! xÞN!kð

k
M

! 1Þ
; 0oxr1

8
>>><

>>>:

ð14Þ

Then G : ½0;1'-R is continuous in ½0;1' and differentiable in ð0;1Þ.
Also, by solving for g the equation pðx; gÞ ¼ 0, it is straightforward
to verify that we have the identity

pðx;GðxÞÞ ¼ 0 ð15Þ

As mentioned above, GðxÞ is responsible for the existence of a cost-
to-benefit ratio at which a given interior x can become an
equilibrium of the replicator dynamics. The critical value x
corresponds to the first interior equilibrium which emerges when
c=b ¼ g and which divides the unit interval into two pieces, in
which the stable and unstable equilibrium remain confined
whenever c=bog. The thrust of the argument is to study the
number of solutions of GðxÞ ¼ g, for a given g, which then can be
used to prove Theorem 1. In order to achieve our goal, we establish
a series of results about G. In what follows, we shall assume N42
and 1oMoN.

Proposition 1. There is a unique x 2 ð0;1Þ such that G0ðxÞ ¼ 0. Such
x will be the unique point of global maximum for G.

Proof. We compute G0 and, after extensive manipulation, we find
that

G0ðxÞ ¼ N
N ! 1

M ! 1

! "
xM!1ð1! xÞN!M!1GðxÞ=D2
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where

GðxÞ ¼ M ! Nx!
1
M

XM!1

k¼0

N

k

! "
xkð1! xÞN!kðM ! kÞ2

and

D ¼ 1þ
XM!1

k¼0

N

k

! "
xkð1! xÞN!k k

M
! 1

! "
:

Since

XM!1

k¼0

N

k

! "
xkð1! xÞN!k k

M
! 1

! "
Z!

XM!1

k¼0

N

k

! "
xkð1! xÞN!k4! 1;

we have that D is never zero. Hence, it is easy to see that, in ð0;1Þ,
the sign of G0 will be the same as that of G, the same being the
case for the roots of G0 and the roots of G. Now, Gð0Þ ¼ 0 and an
easy calculation shows that G0ð0Þ; hence G is positive near zero.
Also, we have that Gð1Þ ¼ M ! N40. So G has at least on root in
ð0;1Þ, since it is continuous.

We now prove that this root is unique by showing that G00 is

single signed. Let z ¼ x=ð1! xÞ and

S ¼
XM!1

k¼0

N

k

! "
zkðM ! kÞ2

Then, after some manipulation, we can write

G00ðxÞ ¼ !
1
M

ð1! xÞN!4½NðN ! 1ÞS! 2ðN ! 1ÞSz þ Szz'

where Sz ¼ @S=@z and Szz ¼ @2S=@z2. The expression inside the

square brackets can be written as

ðM ! 2Þ2N2ðN ! 1Þ2

2
z2 þ ðN ! 1ÞNðM ! 1Þ2ðN ! 2Þz

þ
XM!1

k¼3

N

k

! "
zkðM ! kÞ2½NðN ! 1Þ ! 2ðN ! 1Þkþ kðk! 1Þ'

It is straightforward to see that the quadratic and linear terms in z

are positive, since N42. Finally, we observe that the last

expression in brackets, interpreted as a polynomial in k has the

roots k ¼ N ! 1 and N. Since koM ! 1oN ! 1, it is positive. This

implies that G00ðxÞo0. Hence G has a unique root, x. Since, as we

have already shown, G is positive near zero, we have that G0ðxÞ40,

for 0oxox and that G0ðxÞo0, for xoxo1. Hence, G has a

maximum at x. Since it is unique, and positive, it is the global

maximum. &

Proposition 2. Let g ¼ GðxÞ, with x given above. Then the equation
GðxÞ ¼ g has

1. two solutions, xL and xR, for gog. Moreover xL 2 ½0; xÞ and
xR 2 ðx;1';

2. one solution for g ¼ g;
3. no solution for g4g.

Proof. The cases g4g and g ¼ g are immediate. For the remaining
case note that, for x 2 ½0; xÞ, we have G0ðxÞ40. Thus G is monotonic
increasing in ½0; xÞ and hence there is a unique xL 2 ½0; xÞ such that
GðxLÞ ¼ gog. The argument for x 2 ðx;1' is analogous, the only
change being that G is now monotonic decreasing in ðx;1'. &

Proof of Theorem 1. As for the number of equilibria, we observe
that a pair ðx; gÞ satisfies pðx; gÞ ¼ 0 if, and only if, GðxÞ ¼ g. Hence,
there is a bijection between the solution sets of each problem, and
the results follows from Proposition 2.

Concerning the stability of the fixed points, when gog, let us

write identity (15) as

N
N ! 1

M ! 1

! "
x

1! x

% &M
!GðxÞ 1þ

XM!1

k¼0

N

k

! "
xkð1! xÞN!k k

M
! 1

! " !
¼ 0:

Differentiating the above identity, without expanding, yields

N
N ! 1

M ! 1

! "
x

1! x

% &M
Þ0 !GðxÞ 1þ

XM!1

k¼0

N

k

! "
xkð1! xÞN!k

  

+
k
M

! 1

! ""
0 ¼ G0ðxÞ 1þ

XM!1

k¼0

N

k

! "
xkð1! xÞN!k k

M
! 1

! "
Þ

 

which can be written, using the notation set in Proposition 1, as

p0ðx;GðxÞÞ ¼ G0ðxÞD

Thus, at a root, p0ðxÞ has the same sign as the right-hand side,

which is the sign of G0ðxÞ, since D40. We have already seen that

G0ðxLÞ40 and G0ðxRÞo0. Thus, xL is an unstable point and xR is a

stable point.

Let us now address the case g ¼ g. We must have

lim
g-g!

xL ¼ x and lim
g-g!

xR ¼ x

with xLoxR, for gog. Also, as a consequence of the stability results

for gog, we have that pðxÞo0 for xoxL, and pðxÞo0 for x4xR. Thus,

at g ¼ g, we must have that x is a maximum of p and, hence that

pðxÞr0. Therefore, x is an unstable point. &

Finally, we present a result concerning the location of x.

Proposition 3. Let x0 ¼ M=N and assume that

0oe ¼ N !M
N

51

Then, we have that

x ¼ x0 !
xM0
M

N

M ! 1

! "
eN!Mþ1 þ OðeN!Mþ2Þ

Proof. Recall that x satisfies GðxÞ ¼ 0. We rewrite GðxÞ ¼ 0 as

x0 ! x ! ðeþ x0 ! xÞNM!1
XM!1

k¼0

N

k

! "
x

eþ x0 ! x

! "k

ðM ! kÞ2 ¼ 0

From the Proof of Proposition 1, we know that G0ðxÞa0. Since G is
smooth, the implicit function theorem implies that x ¼ xðeÞ is
smooth. Hence, we can find its Taylor expansion by formal
substitution. By simple scaling arguments, we find that

x ¼ x0 þ x1eN!Mþ1 þ OðeN!Mþ2Þ:

By formal substitution, we then find

x1 ¼ !
xM0
M

N

M ! 1

! "
&
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