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Social networks pervade our everyday lives: we interact, influence, and are influenced by our friends
and acquaintances. With the advent of the World Wide Web, large amounts of data on social networks
have become available, allowing the quantitative analysis of the distribution of information on them,
including behavioral traits and fads. Recent studies of correlations among members of a social network,
who exhibit the same trait, have shown that individuals influence not only their direct contacts but also
friends’ friends, up to a network distance extending beyond their closest peers. Here, we show how such
patterns of correlations between peers emerge in networked populations. We use standard models (yet
reflecting intrinsically different mechanisms) of information spreading to argue that empirically observed
patterns of correlation among peers emerge naturally from a wide range of dynamics, being essentially
independent of the type of information, on how it spreads, and even on the class of underlying network that
interconnects individuals. Finally, we show that the sparser and clustered the network, the more far
reaching the influence of each individual will be.
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Human societies are embedded in complex social net-
works on which information flow—associated with traits
such as emotions, behaviors, ideas, or fads—is ubiquitous
[1–12]. What determines the patterns observed has
become extremely valuable, with applications extending
to all areas of human activity. Several studies have focused
on the role played by social networks on the spread of
information between individuals, by making use of email
and blog databases and online social networks such as
Twitter [11,12] and Facebook [6,7]. Such empirical studies
have shown how social networks affect the propagation of
health issues [13,14], ideas [15], criminal behavior [16,17],
economic decisions [18,19], school achievement [20], and
cooperation [21,22], among other human traits.
In what concerns the correlation patterns observed,

Fowler and Christakis [22–25] recently proposed a three
degree of influence rule based on the statistical analysis of
the Framingham Heart Study database, from which a social
network was inferred. Correlations among individuals were
analyzed for traits as diverse as smoking habits, alcohol
consumption, loneliness, obesity, cooperation, or happi-
ness. These correlations reflected the relative increase in
probability—when compared with a random arrangement
—that two individuals share the same trait as a function
of the network distance, defined as the smallest number of
links connecting those individuals in the network [see
Fig. 1(a)]. They found that similar and nontrivial correla-
tions emerge from distinct traits and persist in the period
studied, suggesting the validity of a three degrees of

influence on social networks. In other words, not only
our “friends” but also our friends’ friends together with
their friends exhibit a positive correlation of traits. More
recently, analysis of cooperation on social networks of
hunter-gatherers revealed a degree of influence of 2 [26].
Here, we investigate the degree of peer influence that

emerges from different dynamical processes representative
of a plethora of phenomena occurring in networked
populations—the spread of cooperative strategies, opin-
ions, and diseases. Individuals are assigned to nodes of a
complex network, whereas links between them represent
interactions. We show that, for each network class consid-
ered, different processes often lead to the same degrees of
influence, suggesting that peer influence is insensitive
to the process at stake. On the other hand, we find that
simple topological properties of the underlying networks,
such as the average connectivity (hki) and the clustering
coefficient, ultimately determine the number of degrees
of influence observed, which systematically falls between
3 and 2, in agreement with the results stemming from
empirical analyses of correlations in present [22–25] and
past [26] social networks.
We start by studying the evolutionary dynamics of

cooperation [5,27], modeled as peer-to-peer interactions
by means of the famous Prisoner’s Dilemma (PD) metaphor
[27]. The word dilemma in the PD stems from the decision
conflict that occurs when 2 individuals must simultane-
ously decide whether to Cooperate (C) or to Defect (D)
towards the other. The game returns R ¼ 1 for mutual
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cooperation, P ¼ 0 for mutual defection, S ¼ −λ when
playing C against a D, and T ¼ 1þ λ when playing D
against a C (λ > 0 measures both the temptation to defect
and the fear of being cheated [28]). The ranking T > R >
P > S implies that maximizing one’s own payoff leads
each individual to choose D, irrespective of the decision of
the other, such that the outcome will be mutual defection
(pure Nash equilibrium for λ > 0). This outcome, however,
is not the best for the pair, as mutual cooperation would
lead to a better outcome for both of them. In the evolu-
tionary version, the accumulated return from the inter-
actions with all neighbors is interpreted as a measure of
success (or “fitness”), such that some strategies (C or D)
may become more attractive than others. We assume that
individuals revise their behavior based on the perceived
success of others: an individual A imitates a randomly
chosen neighbor Bwith probability p ¼ ½1þ e−βðfB−fAÞ&−1,
where fA (fB) stands for the fitness of A (B) and β denotes
the intensity of selection [29]. In the mean-field limit, in
which everyone is equally likely to interact with anyone
else (also known as well-mixed population approximation),
this dilemma inexorably condemns cooperation to extinc-
tion [27], a fate which may change when individuals are

embedded in a social network represented by means
of a graph, in which structural diversity is ubiquitous
[1–3,5,7–10,22–26,28,30–35].
In practice, however, the (population) dynamics of peer

influence does not need to be fitness-driven or constrained
by any type of social dilemma. To investigate opinion
dynamics, we adopt a variant of one of the simplest and
most commonly used models of opinion formation—the
Voter Model (VM)—in which an individual can be influ-
enced by a randomly chosen neighbor to adopt the opinion
of the latter with probability p ¼ 1.0 [10,36–38]. We
confirmed that lower values of p do not change the results
discussed below.
Moreover, information transmission has been sometimes

regarded as contagious [15,39], similar to the propagation
of infectious diseases [10]. Hence, we also study a widely
used model of disease spreading, the Susceptible-Infected-
Recovered model (SIR) [40], in which individuals can be in
a susceptible (S), infected (I), or recovered (R) epidemio-
logical state [10,40]. An infected individual can either
infect a susceptible neighbor at an infection rate α or
recover and become immune at a recovery rate γ.
Given the structural diversity of social networks

[2,3,30,34] in which some individuals interact and/or
are taken as role models more and more often than others,
we investigate the role played by the distribution of the
number of first neighbors of each individual (the degree
distribution [2]) and clustering [2,35] (a measure of the
number of individuals’ neighbors who are also neighbors
of each other) in the emerging patterns of correlations. To
this end, we employ four network classes [30,41] with
increasing variance of the degree distribution and similar
low levels of clustering: homogeneous and heterogeneous
small-world networks and exponential and scale-free
networks [2,3,30]. Homogeneous small-world (HoSW)
networks were obtained by repeatedly swapping the ends
of pairs of randomly chosen links of a regular ring.
Scale-free networks were obtained combining growth
and preferential attachment, following the model proposed
by Barabási and Albert (BA) [2]. Exponential networks
(EXP) were obtained by adopting the same algorithm, with
preferential attachment replaced by random attachment [2].
Heterogeneous small-world (HeSW) networks were built
adopting the limit p ¼ 1 of the Watts-Strogatz model [35],
in which all links are rewired. Results reported in the
main text refer to networks with Z ¼ 103 (see Fig. 2) nodes,
of the same order of magnitude of those investigated in
Refs. [22–25] and for which finite-size effects are non-
negligible. In the Supplemental Material [41], we inves-
tigate in detail the behavior of correlations as a function of
the network size.
Let j be the number of individuals carrying one of the

traits in a population of size Z. For each dynamical process
and each j=Z we determine the propensity δnðj=ZÞ that 2
individuals at a distance n self-organize in the same trait

(a)

(b)

FIG. 1 (color online). (a) Network distance of a given node to
the focal individual (black circle) defined as the smallest number
of network links that separate the two (given by the number inside
each circle). (b) Examples of correlation patterns as a function of
j=Z (where j is the number of cooperators present in a population
of size Z), emerging from the evolutionary PD game in homo-
geneous small world networks of size Z ¼ 103 and degree
hki ¼ 4; the ratio δnðj=ZÞ=δ1ðj=ZÞ provides an adequate nor-
malization that renders the correlation patterns approximately
constant for most values of j=Z. Similar patterns are obtained
both for VM and SIR dynamics.
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relative to a random distribution of traits [23,24]. This qua-
ntity can be written as δnðj=ZÞ ¼ ϵnðj=ZÞ=ϵrandn ðj=ZÞ − 1,
where ϵnðj=ZÞ is the average probability that a node shares
the same trait with nodes located at a network distance
n and ϵrandn ðj=ZÞ is the same quantity associated with a
random distribution of traits, given by j=Z. The network
distance (n) between individuals corresponds to the small-
est number of links separating two nodes of a complex
network, as depicted in Fig. 1(a). Additionally, we define
nc as the largest number of links (network distance) n for
which δn remains positive (nc ¼ 3 in Refs. [22–25] and
nc ¼ 2 in Ref. [26]).
To obtain ϵnðj=ZÞ we compute, for each network

configuration, the average fraction of nodes that exhibit
the same trait at a distance n. Hence, for each dynamical
process, ϵnðj=ZÞ results from averaging over 106 indepen-
dent network configurations. For the PD and VM proc-
esses, simulations where carried out starting from random
configurations of traits; configurations included in the
average were extracted after a transient of 103 generations
(1 generation ¼ Z iterations). For the SIR process, each
simulation was started with a single I in a population of S; α

and γ where defined such that the population would often
reach a state with no Is left (Supplemental Material [41]).
The upper panels of Fig. 2 illustrate the normalized

correlation values δn=δ1, which as shown in Fig. 1(b) are
approximately independent from j=Z, obtained for the
SIR dynamics in HoSW, HeSW, EXP, and BA networks.
We observe that, regardless of the network topology,
nc ¼ 3 as in Refs. [22–26]. Similar trends are also obtained
for the two other dynamical processes introduced above
(Supplemental Material [41]). This is shown in the
lower panels of Fig. 2, which also show how the critical
network distance (nc) stabilizes at nc ¼ 2 with increasing
network connectivity (e.g., hki), independently of the net-
work structure, cluster coefficient, and dynamical process
(see also the Supplemental Material [41]). On the contrary,
deviations from this universal behavior of nc are obtained
only whenever networks become very sparse, associated
with the smallest values of the average connectivity.
Counterintuitively, the sparser the underlying network, the
more far reaching the influence of each individual will be,
extending beyond themost pervasive value of 2. Needless to
say, the absolute values of the correlations, depicted in the
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FIG. 2 (color online). Peer influence in social networks. Upper panels: δn=δ1 for recovered and infected individuals in the SIR
epidemic model taking place in (a) homogeneous small world networks, (b) heterogeneous small world networks, (c) exponential
networks, and (d) scale-free networks. Lower panels: Critical degree of peer influence nc (defined as the largest network distance n for
which δn > 0) for different values of average degree hki and network classes shown in the top panels, for the following traits and
processes (see main text for details). (e) Recovered and infected individuals in the SIR epidemic model (as above), (f) individuals with
the same opinion in the VM, and (g) cooperators in the evolutionary PD game. All panels correspond to networks of size Z ¼ 103, and
results in the upper panels were obtained for networks with an average degree hki ¼ 6. For larger network (and population) sizes, the
negative values of the peer-influence correlation amplitudes that one obtains above nc (see upper panels) will slowly approach 0,
highlighting the importance of finite-size effects in evaluating peer-to-peer processes. The reason for the negative correlation values
for n > nc in finite (and small) networks is clear: at a network distance nc, most of the individuals with the same trait have been
already sampled (see Fig. 2 in the Supplemental Material [41]); thus, for larger network distances, negative correlations will inevitably
build up. At any rate, it is possible to clearly identify two regions of influence separated by nc (see the Supplemental Material [41] for
additional details).
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upper panels, will depend on the specific model parameters
but not the final value of nc.
Besides being heterogeneous, social networks often

exhibit sizable levels of clustering [2], contrary to the
negligible values that characterize the ones utilized in
Fig. 2. To evaluate the impact of this property, we generate
in the Supplemental Material [41] networks with arbitrary
clustering for each network class [41,42]. We show how nc
remains limited between 2 and 4 for each of the three
heterogeneous networks under study, irrespectively of their
clustering coefficient and average degree. Nonetheless, we
observe that increasing levels of clustering act to enlarge
nc, mostly whenever networks are very sparse, thus size-
ably increasing their average path length (Supplemental
Material [41]).
Overall, our results suggest that the extent of peer

influence emerges as a natural outcome of dynamical
processes on structured populations, being pervasive in a
wide range of phenomena occurring in social networks.
Despite the importance of social networks in defining the
paths and ends of the dynamical processes they support,
showing how important it is to address and understand
population dynamics from a complex networks perspective
[5,10,32,33,37], the patterns of peer influence they exhibit
are surprisingly independent of their structure. On the other
hand, when networks are very sparse, different network
properties may contribute to enlarge the sphere of influence
of each individual. Our results also show how networks
naturally entangle individuals into interactions of many-
body nature: Indeed, social networks effectively extend, in
nontrivial ways, the dyadic interactions we started from.
The fact that the network distance between any two
individuals in social networks is small [2,3] and compa-
rable to nc further enhances the significance of the present
results, as they stress how our individual actions may have
wide scopes and counterintuitive repercussions.

Financial support by FEDER through POFC—
COMPETE and by FCT-Portugal is gratefully acknowl-
edged through Grants No. SFRH/BD/77389/2011,
No. SFRH/BPD/90936/2012, No. PTDC/MAT/122897/
2010, No. EXPL/EEI-SII/2556/2013, No. PEst-OE/EEI/
LA0021/2013, and No. PEst-OE/BIA/UI4050/2014.

[1] A. L. Lloyd and R. M. May, Science 292, 1316 (2001).
[2] R. Albert and A. L. Barabási, Rev. Mod. Phys. 74, 47

(2002).
[3] S. N. Dorogotsev and J. F. F. Mendes, Evolution on

Networks: From Biological Nets to the Internet and
WWW (Oxford University Press, New York, 2003).

[4] M. Rosvall and K. Sneppen, Phys. Rev. Lett. 91 178701
(2003).

[5] G. Szabó and G. Fáth, Phys. Rep. 446, 97 (2007).
[6] K. Lewis, J. Kaufman, M. Gonzalez, A. Wimmer, and

N. Christakis, Soc. Networks 30, 330 (2008).

[7] J. P. Onnela and F. Reed-Tsochas, Proc. Natl. Acad. Sci.
U.S.A. 107, 18 375 (2010).

[8] D. Liben-Nowell and J. Kleinberg, Proc. Natl. Acad. Sci.
U.S.A. 105, 4633 (2008).

[9] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and
C. Zhou, Phys. Rep. 469, 93 (2008).

[10] A. Barrat, M. Barthélemy, and A. Vespignani, Dynamical
Processes on Complex Networks (Cambridge University
Press, Cambridge, England, 2008).

[11] M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummad, in
Proceedings of the Fourth International AAAI Conference
on Weblogs and Social Media, Washington, DC (2010).

[12] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts, in
Proceedings of the Fourth International Conference on Web
Search and Data Mining, Hong-Kong (2011), p. 65.

[13] J. G. Trogdon, J. Nonnemaker, and J. Pais, J. Health Econ.
27, 1388 (2008).

[14] H. Nair, P. Manchanda, and T. Bhatia, J. Market. Res. 47,
883 (2010).

[15] L. Bettencourt, A. Cintron-Arias, D. Kaiser, and C. Castillo-
Chavez, Physica (Amsterdam) 364A, 513 (2006).

[16] E. L. Glaeser, B. Sacerdore, and J. A. Scheinkman,
Q. J. Econ. 111, 507 (1996).

[17] A. Calvó-Armengol and Y. Zenou, Int. Econ. Rev. 45, 939
(2004).

[18] A. Calvó-Armengol, J. Econ. Theory 115, 191 (2004).
[19] L. Cohen, A. Fazzini, and C. Malloy, J. Polit. Econ., 116,

951 (2008).
[20] B. Sacerdote, Q. J. Econ. 116, 681 (2001).
[21] P. Brañas-Garza, R. Cobo-Reyes, M. Paz Espinosa,

N. Jiménez, J. Kovářík, and G. Ponti, Games Econ. Behav.
69, 249 (2010).

[22] J. Fowler and N. Christakis, Proc. Natl. Acad. Sci. U.S.A.
107, 5334 (2010).

[23] N.Christakis, and J. Fowler, N. Engl. J.Med. 358, 2249 (2008).
[24] N. Christakis and J. Fowler, N. Engl. J. Med. 357, 370

(2007).
[25] J. Fowler and N. Christakis, Br. Med. J. 337, a2338 (2008).
[26] C. L. Apicella, F. W. Marlowe, J. H. Fowler, and N. A.

Christakis, Nature (London) 481, 497 (2012).
[27] K. Sigmund, The Calculus of Selfishness (Princeton

University Press, Princeton, NJ, 2010).
[28] F. C. Santos, J. M. Pacheco, and T. Lenaerts, Proc. Natl.

Acad. Sci. U.S.A. 103, 3490 (2006).
[29] G. Szabó and C. Tőke, Phys. Rev. E 58, 69 (1998).
[30] L. A. Amaral, A. Scala, M. Barthelemy, and H. E. Stanley,

Proc. Natl. Acad. Sci. U.S.A. 97, 11149 (2000).
[31] F. C. Santos and J. M. Pacheco, Phys. Rev. Lett. 95, 098104

(2005).
[32] M. Perc and A. Szolnoki, BioSystems 99, 109 (2010).
[33] F. L. Pinheiro, J. M. Pacheco, and F. C. Santos, PLoS One 7,

e32114 (2012).
[34] J. P. Onnela, J. Saramaki, J. Hyvonen, G. Szabo, D. Lazer,

K. Kaski, J. Kertesz, and A.-L. Barabasi, Proc. Natl. Acad.
Sci. U.S.A. 104, 7332 (2007).

[35] D. Watts and S. Strogatz, Nature (London) 393, 440 (1998).
[36] T. M. Liggett, Stochastic Interacting Systems: Contact,

Voter, and Exclusion Processes (Springer–Verlag, Berlin,
1999).

[37] T. Antal, S. Redner, and V. Sood, Phys. Rev. Lett. 96,
188104 (2006).

PRL 112, 098702 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

7 MARCH 2014

098702-4

http://dx.doi.org/10.1126/science.1061076
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/PhysRevLett.91.178701
http://dx.doi.org/10.1103/PhysRevLett.91.178701
http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1016/j.socnet.2008.07.002
http://dx.doi.org/10.1073/pnas.0914572107
http://dx.doi.org/10.1073/pnas.0914572107
http://dx.doi.org/10.1073/pnas.0708471105
http://dx.doi.org/10.1073/pnas.0708471105
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.1016/j.jhealeco.2008.05.003
http://dx.doi.org/10.1016/j.jhealeco.2008.05.003
http://dx.doi.org/10.1509/jmkr.47.5.883
http://dx.doi.org/10.1509/jmkr.47.5.883
http://dx.doi.org/10.1016/j.physa.2005.08.083
http://dx.doi.org/10.2307/2946686
http://dx.doi.org/10.1111/j.0020-6598.2004.00292.x
http://dx.doi.org/10.1111/j.0020-6598.2004.00292.x
http://dx.doi.org/10.1016/S0022-0531(03)00250-3
http://dx.doi.org/10.1086/592415
http://dx.doi.org/10.1086/592415
http://dx.doi.org/10.1162/00335530151144131
http://dx.doi.org/10.1016/j.geb.2009.10.014
http://dx.doi.org/10.1016/j.geb.2009.10.014
http://dx.doi.org/10.1073/pnas.0913149107
http://dx.doi.org/10.1073/pnas.0913149107
http://dx.doi.org/10.1056/NEJMsa0706154
http://dx.doi.org/10.1056/NEJMsa066082
http://dx.doi.org/10.1056/NEJMsa066082
http://dx.doi.org/10.1136/bmj.a2338
http://dx.doi.org/10.1038/nature10736
http://dx.doi.org/10.1073/pnas.0508201103
http://dx.doi.org/10.1073/pnas.0508201103
http://dx.doi.org/10.1103/PhysRevE.58.69
http://dx.doi.org/10.1073/pnas.200327197
http://dx.doi.org/10.1103/PhysRevLett.95.098104
http://dx.doi.org/10.1103/PhysRevLett.95.098104
http://dx.doi.org/10.1016/j.biosystems.2009.10.003
http://dx.doi.org/10.1371/journal.pone.0032114
http://dx.doi.org/10.1371/journal.pone.0032114
http://dx.doi.org/10.1073/pnas.0610245104
http://dx.doi.org/10.1073/pnas.0610245104
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1103/PhysRevLett.96.188104
http://dx.doi.org/10.1103/PhysRevLett.96.188104


[38] V.Sood,T.Antal, andS.Redner,Phys.Rev.E77041121(2008).
[39] E. Hatfield, J. T. Cacioppo, and R. L. Rapson, Emotional

Contagion (Cambridge University Press, Cambridge,
England, 1994).

[40] W. O. Kermack and A. G. McKendrick, Proc. R. Soc. A 115,
700 (1927).

[41] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.112.098702 for addi-
tional details of the models and methods used, and for
results obtained for larger network sizes.

[42] S. Bansal, S. Khandelwal, and L. A. Meyers, BMC Bioinf.
10, 405 (2009).

PRL 112, 098702 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

7 MARCH 2014

098702-5

http://dx.doi.org/10.1103/PhysRevE.77.041121
http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1098/rspa.1927.0118
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.098702
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.098702
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.098702
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.098702
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.098702
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.098702
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.098702
http://dx.doi.org/10.1186/1471-2105-10-405
http://dx.doi.org/10.1186/1471-2105-10-405

