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4ATP-Group, Centro de Fı́sica Teórica e Computacional and Departamento de Fı́sica da Faculdade de Ciências,

P-1649-003 Lisboa Codex, Portugal
5GADGET, Apartado 1329, 1009-001 Lisboa, Portugal
(Received 19 July 2008; published 6 February 2009)

We investigate how diversity in individual responses to unwanted interactions affects the evolution of

cooperation modeled as a 2-person prisoner’s dilemma. We combine adaptive networks and evolutionary

game theory, showing analytically how the coevolution of social dynamics, network dynamics, and

behavioral differences benefit the entire community even though myopic individuals still act in their own

interest. As defectors are wiped out, surviving cooperators maintain the full diversity of behavioral types,

establishing cooperation as a robust evolutionary strategy. The present framework can be used in other

problems where the feedback between topology and dynamics affects the overall behavior of the system.
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Many physical processes are dynamical and take place
on complex networks [1–6]. Recent evidence [7–10] sup-
ports the intuition that complex networks are also dynami-
cal entities, such that the coevolution of the networks with
the dynamical processes they host strongly influences the
overall system behavior [3–15]. Unfortunately, up to now it
has proven difficult to explore analytically any dynamics
on coevolving networks (for exceptions cf. [4,6,13,15]).
Here we explore the behavioral dynamics of a population
interacting via an adaptive social network. Individual de-
cision making is introduced in the framework of evolu-
tionary game theory [16]. Often decisions are reduced to a
black-and-white world in which cooperators (C’s) and
defectors (D’s) interact, compete, and self-organize at in-
creasing levels of complexity [7,8,13,14]. Up to now, the
C’s (and D’s) exhibit no differences in the way they
manage their contacts [7,8,13,14]. This situation contrasts
with our everyday experience, where we recognize a con-
tinuous behavioral spectrum: Two C’s (D’s) may react
differently when confronted with the same unfavorable
situation. In which way does this variability in the spec-
trum of possible reactions influence cooperation among
humans along the links of the social web?

Let us stick to C’s and D’s, engaging in a 2-player
prisoner’s dilemma (PD) with payoffs R for mutual coop-
eration, P for mutual defection, Swhen playing C against a
D, and T when playing D against a C, satisfying T > R>
P> S. BothC’s andD’s are satisfied when interacting with
a C [14], in the sense that such an interaction is the most
rewarding. An interaction with a D, on the other hand, is
never the best option and can be interpreted as an adverse
social tie. Here we introduce diversity in behavior by
conferring individuals the possibility to treat adverse social
ties differently.

We start from the model developed in [13] where net-
work topology and strategy dynamics coevolve, and we

introduce diversity of individual behavioral types, leading
to additional couplings with both topology and strategy
dynamics. Individuals are assigned to the vertices of a
dynamical graph, whose links define who interacts with
whom. Here, individuals differ both in their strategy and in
their aptness to break unwanted ties, falling intoM (usually
many) different types (behavioral classes). Once a link
between two individuals has formed, its quality is assessed.
Given each individual’s aptness to break ties, unwanted
links will be broken off at different rates, leading to a rich
interplay between type, strategy, and network dynamics.
Let us assume for simplicity that all individuals have the

same propensity � to create new links. Individuals con-
nected to C’s will be satisfied (C-C or D-C). Links to D’s
(C-D or D-D) will be considered adverse. Both C’s and
D’s will want to sever these interactions at different rates,
type dependent. Breaking links depends usually on both
individuals connected. We include this effect by defining
the rate at which links are broken as kij ¼ 1

2 ð�ij þ �jiÞ for
each link Lij, where �ij is the rate at which individual i

wants to break the link Lij with individual j (other choices

are also possible [13,14]). Those satisfied will want the link
to last as long as possible, and hence we take those �ij to be

given by the minimum value � among all �ij. Naturally,

adverse interactions will satisfy �ij � �, and behavioral

differences arise due to the plethora of �ij types present in

the population. The corresponding linking dynamics of the
network can be described by a set of ordinary differential
equations [13] _Lij ¼ �2ðNij � LijÞ � kijLij, where Lij

(respectively, Nij) is the number (respectively, maximum

number) of links connecting individuals with strategies Si
and Sj (assuming a constant population size N). These

differential equations lead to a stationary distribution of
links given by L�

ij ¼ Nij�ij, where �ij ¼ �2ð�2 þ kijÞ�1

denotes the fraction of active ij links [13].
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We start by introducing only two types of rates
(M ¼ 2)—fast and slow—obtaining four combined
strategy-types: slow C’s (SC’s) and D’s (SD’s), whose
adverse interactions last long (having a low breakup rate
�S), and fast C’s (FC’s) and D’s (FD’s), whose adverse
interactions are short-lived (with a high breakup rate �F).
C’s andD’s engage in a PD (we reduce the game complex-
ity making R ¼ 2, P ¼ 1, varying T and S in the region
defined by 3 � T > 2> 1> S � 0). As usual, the game
only distinguishes between C’s and D’s—however, when
individuals interact via an adaptive and coevolving net-
work, the difference between types emerges as individuals
break unwanted relations at different rates. In the follow-
ing, we provide analytical insights into this tight coevolu-
tionary dynamics between strategies, types, and networks
in a finite population. To this end, we assume network
dynamics to proceed faster than strategy dynamics, so
that strategy updates occur under stationary network con-
figurations. In other words, we assume that � � TS=TN �
1, with TS the characteristic time scale for strategy update
and TN that associated with network update. Numerical
simulations, however, show that this approximation works
very well whenever �< 10 [13]. In the present case, this
leads to a conservative estimate of �< 10� for the ap-
proximation to remain valid.

In this regime, the evolutionary dynamics can be
mapped onto that of a (simpler and analytically solvable)
well mixed population with the same composition of C’s
and D’s, engaging, however, in a different game, charac-
terized by a payoff matrix which is rescaled compared to
that defining the original PD. The network dynamics and
number of types define the rescaling of the payoff matrix.
Hence, in the case of 2M ¼ 4 combined strategy-types, we
get the following rescaled payoff matrix Pij:

SC
FC
SD
FD

SC FC SD FD
R�S R�S S�S S�S

R�S R�S S�M S�M

T�S T�M P�S P�M

T�S T�M P�M P�F

0
BBB@

1
CCCA (1)

where �x ¼ �2ð�2 þ kxÞ�1 [kS ¼ �S, kM ¼ 1
2 ð�S þ �FÞ,

and kF ¼ �F] reflects the impact of the characteristics of a
given link (kind and associated lifetime dependent on the
individuals connected) on its average abundance in the
network of contacts of the community. In general, there
will be more (M> 2) types, which leads to a trivial gen-
eralization of the 2M� 2M payoff matrix above. Payoff
matrix (1) shows the nontrivial coupling between individ-
ual type, game strategy, and network dynamics (given that
different types imply different rates of breaking links),
resulting in a complex multicomponent feedback interplay.

A complete solution for the case in which many types
coevolve is unfeasible. However, it is possible to approxi-
mately determine the relative importance of each of the
coevolving strategies by computing the stationary distri-
butions in the so-called small-mutation limit [17,18]. In a

nutshell, we imagine that a mutant (using a strategy located
at arrow end in Fig. 1) appears in an otherwise monomor-
phic population (using the strategy located at arrow start in
Fig. 1). Thus, the population will contain only two strat-
egies, and to the extent that the mutation probability is
sufficiently small, the mutant will go extinct or fixates
before a new mutation occurs. Adopting the so-called
pairwise comparison rule [19]—in which the least fit
mostly adopts the strategy of the most fit in the presence
of noise, described via a Fermi function with inverse
temperature �—allows us to calculate analytically the
probability (fixation probability, FP) that a mutant with
strategy Si will take over a population ofN � 1 individuals
with strategy Sj, for every i and j [19]: �ij ¼ ðerf½�1� �
erf½�0�Þ=ðerf½�N� � erf½�0�Þ, where erfðxÞ is the error

function and �k ¼
ffiffiffi
�
u

q
ðkuþ vÞ. We have 2u ¼

Pii � Pij � Pji þ Pjj and 2v ¼ �Pii þ NðPij � PjjÞ þ
Pjj. These FP’s determine the transition matrix

½�ij�i;j¼1;:::;2M, with �ii ¼ 1�P
2M
k¼1;k�i �ki=ð2M� 1Þ

and �ij ¼ �ji=ð2M� 1Þ (j � i), of a Markov chain be-

tween the different monomorphic states [17,18]. The nor-
malized left eigenvector of the unit eigenvalue of this
matrix defines the stationary distribution, i.e., the fraction
of time the population spends in each of the available
strategy-type combinations. We have checked with nu-
merical simulations that the stationary distributions ob-
tained using this small-mutation approach also hold for
larger mutation rates (of the order of 1=N), as also shown in
[18].
Figure 1 shows that, in a region whereD’s dominate, the

population remains most of the time in the SD strategy. The
arrows indicate which transitions are favored by natural
selection, that is, those for which the FP is larger than
�N ¼ 1=N, associated with neutral evolution, in which C’s

FIG. 1 (color online). Transition probabilities and stationary
distributions for the PD with M ¼ 2 types of individuals. Solid
black (dashed grey) arrows indicate those transitions, computed
analytically (numerically), for which the fixation probability is
greater than neutral fixation, �N ¼ 1=N (see main text for
details). Large (small) circles indicate the analytical (numerical)
values for the stationary distribution. FC’s remain in the popu-
lation while D’s dominate due to the direct FD-SD transition and
the transient nature of SC (N ¼ 100, T ¼ 2:1, R ¼ 2, S ¼ 0:9,
P ¼ 1, � ¼ 0:4, � ¼ 0:01, �S ¼ 0:25, and �F ¼ 0:75).
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andD’s have the same fitness. Among C’s, FC’s are clearly
favored. On the other hand, natural selection renders FD’s
disadvantageous, whereas SC’s acquire a transient charac-
ter by providing an alternative route for FD to evolve
toward SD. In this specific case, the direct transition of
FD’s into SD’s is the main factor suppressing C’s. As we
will show below, the viability of C’s relies on the extent to
which the transition FD ! SD is inhibited compared to
transitions into FC’s, a feature which relies on the occur-
rence of a more continuous spectrum of behavioral types,
as observed empirically [20]. Figure 1 also shows the
excellent agreement between the analytical treatment and
corresponding numerical simulations [21], which is robust
to changes of parameters, except for those parameter re-
gions leading to disconnected graphs.

In what follows we extend the analysis to an arbitrary
number of types keeping the framework adopted. We con-
sider a population containing M different types of indi-
viduals, whose rates at which they sever unwanted ties fall
into the M subdivisions of the interval [0:5� �, 0:5þ �].
We fix the range � ¼ 0:25—we have checked that varying
the range does not change the overall behavior of the
population. Figure 2(a) shows the influence of the number

of types on the abundance of C’s in the population:
Cooperation blooms with increasing number of types, a
result that generally applies to most popular social dilem-
mas of cooperation [22].
What is the mechanism responsible for this remarkable

performance of C’s? A first hint is provided in Fig. 2(b),
where the fraction of time spent on each type is shown for
the case in which there areM ¼ 50 types in the population
and for fixed �, T, and S. Figure 2(b) shows that all types of
C’s are present in the population, whereas the D’s who
survive are only of the slowest types. Importantly, however,
by increasing the number of available types, the difference
between the values of the rates associated with contiguous
types is reduced, which provides a means for D’s other
than the slowest to survive in the population. These are
precisely the D’s who provide an escape hatch for C’s to
survive (cf. Fig. 1), since many of them will be disadvanta-
geous with respect to C’s. Indeed, Fig. 3 shows that in-
creasing the number of possible types, D’s with breakup

FIG. 2 (color online). Impact of behavioral differences.
(a) Population spends more time in a cooperative state (of any
type) when the number of types increases (M), irrespective of the
temptation to defect T in the PD (N ¼ 100, R ¼ 2, P ¼ 1, S ¼
3� T, � ¼ 0:4, � ¼ 0:01, � ¼ 0:25). (b) Most types of C’s end
up equally represented, whereas only the slower D’s survive. In
contrast to Fig. 1, the surviving D’s exhibit behavioral differ-
ences, which acts to inhibit the dominance of their slowest type,
providing an escape hatch for cooperation (M ¼ 50, T ¼ 2:1,
R ¼ 2, P ¼ 1, S ¼ 0:9).

FIG. 3 (color online). Transition probabilities and stationary
distributions for the PD game with M ¼ 3 (a) and M ¼ 10 (b)
types of individuals. C’s and D’s are numbered according to
increasing �, C1 (D1) being the slowest C (D). We use the same
notation of Fig. 1. Increasing the number of possible types splits
the outflow of fast D’s toward other types among a wide range of
different possibilities. Cooperation increases, since only few
types of D’s are evolutionarily stable, whereas the majority of
C types work as flow sinks. (N ¼ 100, T ¼ 2:1, R ¼ 2, S ¼ 0:9,
P ¼ 1, � ¼ 0:4, � ¼ 0:01, � ¼ 0:25).
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rates higher than the minimum � are now able to survive.
Although these individuals do not dominate, they effec-
tively promote the appearance of fast C’s, since the tran-
sition D ! C between these types is favored by natural
selection. On the other hand, because all C types are
neutral with respect to each other, they end up fairly
equally distributed in the population, unlike D’s for
whom natural selection favors the slower types
(cf. Fig. 2). Figure 3 also shows that, by increasing the
number of available types, the number ofC types which are
favored increases more than the corresponding number of
D types. As a result, all but the slowest D’s are disadvanta-
geous with respect to (most of the) C’s. Increasing the
number of types efficiently inhibits the transition from
the fastest to the slowest D’s, paving the way for coopera-
tion to thrive, an effect which remains valid irrespective of
the model parameters, inasmuch as T and S are such that
cooperators manage to survive. Mathematically, a large
number of different types allows individuals to engage in
a wider range of games, and the complex set of different
interactions allows the appearance of D’s from which C’s
can profit.

The results of the present model convey an exciting
message: Populations in which individuals exhibit diver-
sity in handling their social contacts end up being more
cooperative than those in which individuals exhibit no such
diversity. The result is even more striking if we take into
consideration that individuals always behave according to
their own myopic preferences. In the framework of con-
ventional evolutionary game theory, diverse behavioral
preferences together with adaptive social dynamics make
individuals perceive differently the same social dilemma;
in doing so society as a whole benefits. Under static [2,5] or
coevolving [13,14] network reciprocity, all individuals
behave as if they engage in a transformed game—yet all
individuals perceive the same game. Individual diversity
enables all individuals who engage in the same game to
perceive that game differently. To the best of our knowl-
edge, this is the first time such an effect is introduced and
studied. It is rewarding that behavioral diversity promotes
cooperation, as cooperation will act to reinforce it, given
the neutrality between cooperative strategies associated
with diverse behaviors.

Diversity, in some of its forms [5,23,24] has been shown
to play an important role in the social dynamics of coop-
eration. Thus, diversity not only is ubiquitous in all (free)
societies but also appears as a fundamental mechanism
toward the emergence of cooperative behavior. Similarly,
diversity in physiology leads individuals to react differ-
ently to the same pathogen, and different software leads
computers to exhibit diverse levels of protection to viruses.
In such adaptive networks—the human web of social rela-
tions or the multilayered web of computer connections—
individual diversity may profoundly alter their self-
organization dynamics, calling for a coevolutionary pro-
cess such as the one introduced here, given the unified way
[6] in which dynamics on adaptive networks can be often

approached. The present formalism can be readily adapted
to these problems. Work along these lines is in progress.
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