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Abstract.  Counterfactual Thinking is a human cognitive ability 
studied in a wide variety of domains. It captures the process of rea-
soning about a past event that did not occur, namely what would 
have happened had this event occurred, or, otherwise, to reason 
about an event that did occur but what would ensue had it not. 
Given the wide cognitive empowerment of counterfactual reason-
ing in the human individual, the question arises of how the pres-
ence of individuals with this capability may improve cooperation 
in populations of self-regarding individuals. Here we propose a 
mathematical model, grounded on Evolutionary Game Theory, to 
examine the population dynamics emerging from the interplay be-
tween counterfactual thinking and social learning (i.e., individuals 
that learn from the actions and success of others) whenever the in-
dividuals in the population face a collective dilemma. Our results 
suggest that counterfactual reasoning fosters coordination in col-
lective action problems occurring in large populations, and has a 
limited impact on cooperation dilemmas in which coordination is 
not required. Moreover, we show that a small prevalence of indi-
viduals resorting to counterfactual thinking is enough to nudge an 
entire population towards highly cooperative standards. 
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1. Introduction 

Counterfactual Thinking (CT) is a human cognitive ability studied in a 
wide variety of domains, namely Psychology, Causality, Justice, Morality, 
Political History, Literature, Philosophy, Logic, and AI [1-8]. CT captures 
the process of reasoning about a past event that did not occur, namely what 
would have happened had the event occurred, which may take into account 
what we know today. CT is also used to reason about an event that did oc-
cur, concerning what would have followed if it had not; or if another event 
might have happened in its place. An example situation: Lightning hits a 
forest and a devastating forest fire breaks out. The forest was dry after a 
long hot summer and many acres were destroyed. A counterfactual thought 
is: If only there had not been lightning, then the forest fire would not have 
occurred. 

 Given the wide cognitive empowerment of CT in the human individual, 
the question arises of how the presence of individuals with CT-enabled 
strategies affects the evolution of cooperation in a population comprising 
individuals of diverse interaction strategies. The natural locus to examine 
this issue is Evolutionary Game Theory (EGT) [9], given the amount of 
extant knowledge concerning different types of games, strategies, and 
techniques for the evolutionary characterization of such populations of in-
dividual players. EGT represents a dynamical and population-based coun-
terpart of classical game theory. Having originated in evolutionary biolo-
gy, EGT also holds a great potential in the realm of social sciences, given 
that human decision-making is often concerned within large populations 
and networks of self-regarding individuals.  

   The framework of EGT has been recently used to identify several of 
the key principles of mechanisms underlying the evolution of cooperation 
in living systems [9-11]. Most of these principles have been studied within 
the framework of two-person dilemmas. In this context, the Prisoner’s Di-
lemma (PD) metaphor is possibly the most ubiquitously known game of 
cooperation. The dilemma is far more general than the associated story, 
and can be easily illustrated as follows. Two individuals have to decide 
simultaneously to offer (to Cooperate) or not (to Defect) a benefit b to the 
other at a personal cost c<b. From a game theoretical point of view a ra-
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tional individual in a PD is always better off by not cooperating (defect-
ing), irrespectively of the choice of the opponent, while in real life one of-
ten observes the opposite, to a significant extent. This apparent mismatch 
between theory and empirical results can be understood if one assumes an 
individual preference to cooperate with relatives, direct reciprocity, reputa-
tion, social structure, direct positive and negative incentives, among other 
sorts of community enforcing mechanisms (for an overview, see, e.g., [10, 
11]).  

Despite the popularity of the PD, other game metaphors can be used to 
unveil the mysteries of cooperation. Each game defines a different meta-
phor, the relative success of a player and attending strategy, and the ensu-
ing behavioural dynamics. Moreover, while 2-person games represent a 
convenient way to formalize a pairwise cooperation, many real-life situa-
tions are associated with dilemmas grounded on decisions made by groups 
of more than 2 agents. Indeed, from group hunting, to modern collective 
endeavours such as Wikipedia and open source projects, or global collec-
tive dilemmas such as the management of common pool resources or the 
mitigation of the dangerous effects of climate change, general N-person 
problems are recurrent in biological and social settings.  

  The prototypical example of this situation is the N-person Prisoner’s 
dilemma, also known as Public Goods Game. Here, N individuals decide 
to contribute (or not) to a public good. The sum of all contributions is in-
vested, and the returns of the investment shared equally among all group 
members, irrespectively of who contributed. Often, in these cases, free rid-
ing allows one to enjoy the public good at no cost, to the extent that others 
continue to contribute. If all players adopt the same reasoning, we are led 
to the tragedy of the commons [12], characterizing the situation in which 
everyone defects, with the making of cooperation a mirage. Below we will 
return to the details associated with the formalization of such dilemmas.  

Importantly, depending on the game and associated strategies, individu-
als may revise their strategies in different ways. The common assumption 
of classic game theory is that players are rational, and that the Nash Equi-
librium constitutes a reasonable prediction of what self-regarding rational 
agents adopt [13]. Often, however, players have limited cognitive skills or 
resort to simpler heuristics to revise their choices. Evolutionary game theo-
ry (EGT) [14] offers an answer to this situation, adopting a population de-
scription of game interactions in which individuals resort to social learning 
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and imitation. In EGT, the accumulated returns of the game are associated 
with the fitness of an individual, such that the most successful individuals 
would reproduce more often, and their strategies spread in the populations. 
Interestingly, such evolutionary framework is mathematically equivalent to 
social learning, where individuals revise their strategy looking at and imi-
tating the success and actions of others that show more fit than they [9]. As 
a result, strategies that do well spread in the population.  

Yet, contrary to social learning, more sophisticated agents (such as hu-
mans) might instead imagine how a better outcome could have turned out, 
if they would have decided differently, and thence self-learn by revising 
their strategy. This is where Counterfactual Thinking (CT) comes in. In 
this chapter, we propose a simple mathematical model to study the impact 
on cooperation of having a population of agents resorting to such counter-
factual kind of reasoning, when compared with a population of just social 
learners. Specifically, in this chapter, we pose three main questions:  

1. How can we formalize counterfactual behavioural revision in large 
populations (taking cooperation dynamics as an application case study)?  

2. Will cooperation emerge in collective dilemmas if, instead of evolu-
tionary dynamics and social learning, individuals revise their choices 
through counterfactual thinking?  

3. What is the impact on the overall levels of cooperation of having a 
fraction of counterfactual thinkers in a population of social learners? Does 
cooperation benefit from such diversity in learning methods? 

To answer these questions, we develop a new population dynamics 
model based on evolutionary games, which allows for a direct comparison 
between the behavioural dynamics created by individuals who revise their 
behaviours through social learning and through counterfactual thinking. 
We consider individuals who interact in a public goods problem in which a 
threshold of players, less than the total group size, is necessary to produce 
benefits, with increasing contributions leading to increasing returns. This 
setup is common to many social dilemmas occurring in Nature and socie-
ties [15-17], combining a N-player interaction setting with non-linear re-
turns. We show that such counterfactual players can have a profound im-
pact on the levels of cooperation. Moreover, we show that just a small 
prevalence of counterfactual thinking within a population is sufficient to 
lead to higher overall levels cooperation when compared with a population 
made up solely of social learners.  
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To our knowledge, this is the first time that counterfactual thinking is 
considered in the context of the evolution of cooperation in populations of 
agents, by employing evolutionary games with both counterfactual think-
ing and social learning to that effect. Nevertheless, other works have made 
use of counterfactuals in the multi-agent context. Foerster et al. [18] ad-
dressed cases where counterfactual thinking consists in imagining changes 
in the rules of the game, an interesting problem not addressed in this chap-
ter. Peysakhovich et al. [19] rely on the availability and use of a central-
ized critic that estimates counterfactual advantages for the multi-agent sys-
tem by reinforcement learning policies. While interesting from a 
engineering perspective, it differs significantly from our work, in that we 
have no central critic, no utility function to be maximized, nor the aim of 
conjuring a policy that optimizes given utility function. To the contrary, in 
our approach the population evolves, leading to emergent behaviours, by 
relying on social learning and counterfactual thinking given at the start to 
some of the agents. Hence the two approaches deal with distinct problem 
settings and are not comparable. A similar approach is used by Colby et al. 
[20] where there is a collective utility function to be maximized. Finally, in 
Ref. [7], it is adopted a modelling framework that neither considers a pop-
ulation nor multi-agent cooperation, but individual counterfactual thinking 
about another agent's intention. It does this by counterfactually imagining 
whether another agent's goal would still be achieved if certain harmful side 
effects of its actions had not occurred. If so, those harmful side effects 
were not essential for the other achieving its goal, and hence its actions 
were not immoral. Otherwise, they were indeed immoral because the 
harmful side effects were intended because necessary to achieve the goal. 

This chapter is organized as follows. In Section 2 we detail the princi-
ples underlying our counterfactual thinkers and the N-person collective di-
lemma used to illustrate the idea. In Section 3 we introduce the mathemati-
cal formalism associated with counterfactual and social learning dynamics. 
Importantly, this formalism is independent of the game chosen.  In Section 
4 we show the results for the impact on cooperation dynamics of counter-
factual reasoning when compared with social learning, and discuss the in-
fluence of counterfactual thinkers in hybrid population of both social 
learners and counterfactual agents. Section 5 provides a discussion on the 
results obtained, also drawing some suggestions for future works.  
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2. Counterfactual thinking and evolutionary games   

Counterfactual thinking (CT) can be exercised after knowing one's re-
sulting payoff following a single playing step with a co-player. It employs 
the counterfactual thought: Had I played differently, would I have obtained 
a better payoff than I did? This information can be easily obtained by con-
sulting the game's payoff matrix, assuming the co-player would have made 
the same play, that is, other things being equal. In the positive case, the CT 
player will learn to next adopt the alternative play strategy. 

A more sophisticated CT would search for a counterfactual play that 
improves not just one's payoff, but one that also contemplates the co-
player not being worse off, for fear the co-player will react negatively to 
one's opportunistic change of strategy. More sophisticated still, the new al-
ternative strategy may be searched for taking into account that the co-
player also possesses CT ability. And the co-player might too employ a 
Theory of Mind (ToM)-like CT up to some level. We examine here only 
the non-sophisticated case, a model for simple (egotistic) CT.  

In Evolutionary Game Theory (EGT), a frequent standard form of learn-
ing is so-called Social Learning (SL). It basically consists in switching 
one's strategy by imitating the strategy of a more successful individual in 
the population, compared to one’s success. CT instead can be envisaged as 
a form of strategy update learning akin to debugging, in the sense that: if 
my actual play move was not conducive to a good accumulated payoff, 
then, after having known the co-player's move, I can imagine how I would 
have done better had I made a different strategy choice. 

When compared with SL, this type of reasoning is likely to have a minor 
impact in games of cooperation with a single Nash equilibrium (or a single 
evolutionary stable strategy, in the context of EGT) such as the Prisoner’s 
dilemma or the Public Goods game mentioned above, where defection-
dominance prevails. However, as we illustrate below, counterfactual think-
ing has the potential to have a strong impact in games of coordination, 
characterized by multiple Nash Equilibria: CT will allow for a meta-
reasoning on which equilibria provide higher returns. This is particularly 
relevant since conflicts often described as public goods problems, or as a 
Prisoner’s Dilemma game, can be also interpreted as coordination prob-
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lems, depending on how the actual game parameters are ranked and as-
sessed [15].  

As an example, consider the two-person Stag-Hunt (SH) game [15]. 
Players A and B decide to go hunt a stag, which needs to be done together 
for maximum possibility of success. But each might defect and go by him-
self hunt a hare instead, which is more assured, because independent of 
what the other does, though less rewarding. The dilemma is that each is not 
assured the other will in fact go hunt the stag in cooperation and is tempted 
by the option of playing it safe by going hunt hare. Concretely, one may 
assume that hunting hare has a payoff of 3, no matter what the other does; 
hunting stag with another has a payoff of 4; and hunting stag alone has a 
payoff of 0. Hence the two-person stag hunt expectance payoff matrix: 

      B stag     B hare 
  A stag       4  4     0  3     
  A hare        3  0     3  3 

A simple analysis of this payoff table would tell us that one should always 
adopt the choice of our opponent, i.e., to coordinate our actions, despite the 
fact that we may end in a sub-optimal equilibria (both going for hare). 

The nature of this dilemma is generalizable to an N-player situation 
where a group of N is required to hunt stag [17]. Let us then consider a 
group of N individuals, who can be either cooperators (C) or defectors (D); 
the k Cs in N contribute a cost c to the public good, whereas Ds refuse to 
do so. The accumulated contribution is multiplied by an enhancement fac-
tor F, and the ensuing result equally distributed among all individuals of 
the group, irrespective of whether they contributed or not. The requirement 
of coordination is introduced by noticing that often we find situations 
where a minimum number of Cs is required within a group to create any 
sort of collective benefit [17, 21]. From group hunting [17] and the rise 
and sustainability of Human organizations [22], to collective action to mit-
igate the effects of dangerous  climate change [23], examples abound 
where a minimum number of contributions is required before any public 
good is produced.  
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Following [17], this can be modelled through the addition of a coordina-
tion threshold M, leading to the following straight forward payoff func-
tions for the Ds and Cs — Cs contribute a cost c to the common pool and 
Ds refuse to do so — where j stands for the number of contributing k:  

PD ( j) = H ( j −M ) jFc N
PC ( j) = PD ( j)− c

     (1) 

respectively. Here, H represents the Heaviside step function, taking the 
value of H(x)=1 if x≥0, and H(x)=0 otherwise. Above the coordination 
threshold M, the accumulated contribution (j.c) is increased by an en-
hancement factor F, and the total amount is equally shared among all the N 
individuals of the group. This game is commonly referred to as the N-
person Stag-Hunt game [17]. For M=1, one recovers the classical N-person 
Prisoner’s dilemma and the Public Goods game alluded to in the introduc-
tion.  

Here we will consider a population of agents facing this N-person Stag-
hunt dilemma, revising their preferences through social learning and 
through counterfactual thinking. The following section provides the details 
of how the success of an agent is computed and how agents revise their 
strategies in each particular case. The mathematical details are given for 
the sake of completeness, but a detailed understanding of the equations is 
not required to follow the insights of the model. For more information on 
evolutionary game theory and evolutionary dynamics in finite population, 
we refer the interested reader to reference [9]. 

3. Population dynamics with social learning and 
counterfactual thinking 

Let us consider finite population of Z interacting agents where all agents 
are equally likely to interact with each other. In this case, the success (or 
fitness) of an agent results from the average payoff obtained from random-
ly sampling groups of size N<Z. As a result, all individuals adopting a giv-
en strategy will share the same fitness. One can compute the average fit-
ness of each individual through numerical simulations, averaging over the 
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payoff received in a large number of groups randomly sampled from the 
population. Equivalently, one can also compute analytically the average 
fitness of a strategy assuming a random sampling of groups, and averaging 
over the returns obtained in each group configuration1.  

Using this framework as a baseline model for the interactions among 
agents, let us now detail how population evolution proceeds under social 
learning (SL) and under counterfactual thinking (CT). Our Z interacting 
agents can either resort to SL or CT to revise their behaviours. If an agent i 
resorts to SL, i will imitate a randomly chosen individual j, with a proba-
bility p that augments with the increase in fitness difference between j and 
i, given by fi and fj respectively. This probability can take many forms. We 
adopt the ubiquitous standard Fermi distribution to define the probability p 
for SL 

pSL = 1+ e
−βSL f j− fi⎡

⎣
⎤
⎦⎡

⎣⎢
⎤
⎦⎥

−1

    (2) 

in which βSL expresses the unavoidable noise associated with errors in the 
imitation process [24, 25]. Hence, successful individuals might be imitated 
with some probability, and the associated strategy will spread in the popu-
lation.  
  Given the above assumptions, it is easy to write down the probability to 
change the number k of Cs (by ±1 at each time step) in a population of Z-k 
Ds in the context of social learning. The number of Cs will increase if an 
individual D has the chance to meet a role model with the strategy C, 

which occurs with a probability Z − k
Z

k
Z −1

. Imitation will then effectively 

                                                        
1 Formally, one can write this process as an average over a hyper-geometric sam-
pling in a population of size Z and k cooperators. This gives the probability of an 
agent to interact with N-1 other players, where, among those, j are cooperators. In 
this case, the average fitness fD and fC of Ds and Cs, respectively, in a population 

with k Cs, is given by [17] fD (k) =
Z −1
N −1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−1
k
j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

j=0

N−1

∑ Z − k −1
N − j −1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟PD ( j)

 

and 

fC (k) =
Z −1
N −1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−1
k −1
j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

j=0

N−1

∑ Z − k
N − j −1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟PC ( j +1) , where PC and PD are given by 

Eq. (1).   
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occur with a probability 1+ e−βSL fC− fD
⎡⎣ ⎤⎦⎡

⎣⎢
⎤
⎦⎥
−1

 (see Eq. 2), where fC and fD are 

the fitness of a C and of a D, respectively. Similarly, to decrease the num-
ber of Cs, one needs a C meeting a random role model D, which occurs 

with a probability k
Z
Z − k −1
Z −1

; imitation will then occur with a probability 

given by Eq. 2. Altogether, one may consequently write the probability 
that one more or one less individual (T+ and T- in Figure 1) adopts a coop-
erative strategy through social learning as2  

TSL
± (k) = k

Z
Z − k
Z

1+ e∓βSL fB (k )− fA (k )
⎡⎣ ⎤⎦⎡

⎣⎢
⎤
⎦⎥
−1

.  (3) 

Differently, agents that resort to CT assess alternatives to their present 
returns, had they used an alternative play choice contrary to what actually 
took place. Agents imagine how the outcome could have worked if their 
decision (or strategy, in this case) would have been different. In its sim-
plest form, this can be modelled as an incipient form of myopic best re-
sponse rule [13] at the population level, taking into account the fitness of 
the agent in a configuration that did not, but could have occurred. In the 
case of CT, an individual i adopting a strategy A will switch to B with a 
probability  

pCT = 1+ e
−βCT fi

B− fi
A⎡

⎣⎢
⎤
⎦⎥⎡

⎣⎢
⎤

⎦⎥

−1

   (4)  

that increases with the fitness difference between the fitness the agent 

would have had if it had played B ( fi
B ), and the fitness the agent actually 

got by playing A ( fi
A ). This can easily be computed considering the fit-

ness players of C or players of D would have had in a population having an 
additional cooperator, or an extra defector, depending on the alternative 
strategy chosen by the individual revising its strategy. As before, one may 
write down the probability to change the number k of Cs by plus or minus 
1. To increase the number of Cs, one would need to select a D — which 

occurs with a probability Z − k( ) k  — and this D counterfactually decides 

to switch to C with the probability given by Eq. (4):
                                                         

2 For simplicity we assume that the population is large enough such that Z ≈ Z −1 . 
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 TCT
+ (k) = Z − k

Z
1+ e

−βCT fC (k+1)− fD (k )
⎡
⎣⎢

⎤
⎦⎥⎡

⎣⎢
⎤

⎦⎥

−1

   (5) 

Similarly, the probability to decrease the number of Cs by one through 
counterfactual thinking would be given by 

TCT
− (k) = k

Z
1+ e

−βCT fD (k−1)− fC (k )
⎡
⎣⎢

⎤
⎦⎥⎡

⎣⎢
⎤

⎦⎥

−1

  (6) 

This expression is slightly simpler than the transition probabilities of SL 
due to the fact that, in this case, the reasoning is purely individual, and 
does not depend on the existence and fitness of meeting individuals adopt-
ing a different strategy.  

Importantly, CT assumes that agents get access to the returns under dif-
ferent actions. This is, of course, a strong assumption that precludes the 
use of CT in all levels of complexity and evolutionary settings. Nonethe-
less, we assume that this feature is shadowed by some sort of error through 
the parameter βCT, which, once again, expresses the noise associated with 
guessing the fitness values. 
 

 
Fig 1. Social dynamics as a Markov chain. Representation of the transitions 
among the Z+1 available states, in a population of size Z, and two strategies (C 
and D). Both social learning TSL

± (k)
 
and counterfactual thinking TCT

± (k) , where k 

stands for the number of cooperators (Cs), create a one-dimensional birth and 
death stochastic process of this type. One may also inquire about the stationary 
distribution sk for each case, which represent the expected fraction of time a popu-
lation spends in each given state, in a large timespan.  
 

We further assume that, with probability µ, individuals may switch to a 
randomly chosen strategy, freely exploring the space of possible behav-
iours. Thus, with probability µ, there occurs a mutation and an individual 
adopts a random strategy, without resorting to any of the above fitness de-
pendent heuristics. With probability (1−µ) we have either social learning 

0 Cs 1 C
T+(0)

T-(1)
… k Cs …

T+(1)

T-(2)

T+(k-1)

T-(k)

T+(k)

T-(k+1)
Z Cs

T+(Z-1)

T-(Z)
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or counterfactual reasoning learning. As a result, for both SL and CT tran-
sition probabilities, we get modified transition probabilities given by  

TSL/CT
+ (k,µ) = 1−µ( )TSL/CT+ (k)+µ Z − k( ) Z    (7) 

for the probability to increase from k to k+1 Cs and  
TSL/CT

− (k,µ) = 1−µ( )TSL/CT− (k)+µ k Z    (8) 

for the probability to decrease to k-1 (see Figure 1).  
These transition probabilities can be used to assess the most probable di-

rection of evolution in SL and CT. This is given by a learning gradient (of-
ten called gradient of selection [17, 23] in the case of SL), expressed by  

GSL (k)=TSL
+ (k,µ)−TSL

− (k,µ)     (9) 

and  

GCT (k) =TCT
+ (k,µ)−TCT

− (k,µ)    (10) 

respectively. When GSL (k) > 0  and GCT (k) > 0  (GSL (k) < 0  and 

GCT (k) < 0 ), time evolution is likely to act to increase (decrease) the num-

ber of Cs. In other words, for a given number k of Cs, the sign of G(k) of-
fers the most likely direction of evolution. 

This mathematical framework allows one to obtain the fraction of time 
that the population spends in each configuration after a long time has 
elapsed. To do so, it is important to note that the above transition proba-
bilities define a stochastic process in which the probability of each event 
depends only on the current state of the population. In other words, we are 
facing a Markov process, whose states are given by the number of coop-
erators k ∈{0,...,Z} . The transitions among all Z+1 states can be seen as a 

transition matrix Λij  such that Λk ,k±1 =TSL/CT
± (k,µ)  and 

Λk ,k =1−Λk ,k−1 −Λk ,k+1 . The average time the system spends in each state 

k is given by the so-called stationary distribution sk, which is obtained 
from the eigenvector corresponding to the eigenvalue 1 of the transition 
matrix Λ  [26].  

Finally, we can also use the stationary distribution to define a global co-
operation index  

C = ksk
k
∑     (11) 
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which gives the number of Cs across states (k), weighted by the time the 
system spends in each state, i.e., by the stationary distribution sk.  

4. A comparison of social learning and counterfactu-
al prompted evolutions, and an analysis of their in-
terplay 

 In Figure 2a, we illustrate the behavioural dynamics both under CT and 
SL for the same parameters of the N-person Stag-hunt game. For each 
fraction of co-operators (Cs), if the gradient G (for both SL or CT) is posi-
tive (negative), then it is likely the fraction of Cs will increase (decrease). 
As shown, in both cases, the dynamics is characterized by two basins of at-
traction and two interior fixed points3: one unstable (also known as a coor-
dination point), and a stable co-existence state between Cs and Ds. To 
achieve stable levels of cooperation (in a co-existence state), individuals 
must coordinate to be able to reach the cooperative basin of attraction on 
the right-hand side of the plot, a common feature in many non-linear pub-
lic goods dilemmas [17, 23]. Figure 2a also shows that CT allows for the 
creation of new playing strategies, absent before in the population, since 
new strategies can appear spontaneously based on individual reasoning. By 
doing so, CT interestingly leads to different results if compared to SL. In 
this particular scenario, it is evident how CT may facilitate coordination of 
action, as individuals can reason on the sub-optimal outcome associated 
with non-reaching the coordination threshold, and individually react to 
that.  

In Figure 2b, we show the stationary distribution of the Markov chain 
associated with the transition probabilities indicated above, showing how 
cooperation can benefit from CT. The stationary distribution characterizes 
the prevalence in time of each fraction of co-operators (k/Z). In this partic-
ular configuration, it is shown how in SL (black line), the population 
spends most of the time in low values for the fraction of co-operators. 
Whenever CT is allowed, cooperation is maintained most of the time. This 
emerges from the new position of the unstable fixed point shown in Figure 

                                                        
3 Strictly speaking, by the finite population analogues of the internal fixed points 
in infinite populations. 
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2a. We further confirmed (not shown) the equivalence of CT and SL 
prompted evolutions, in the absence of coordination constraints (i.e., when 
M=1). In this case, we would have a defection dominance dilemma with a 
single attractor at 100% of defectors. Thus, in this regime, CT will have a 
marginal impact. Nonetheless, as long as the N-person game includes the 
need for coordination, translated in the existence of (at least) two basins of 
attraction and an internal unstable fixed point, CT may have the positive 
impact shown in Figure 2. In this particular case of the N-person Stag-
Hunt dilemma, as shown by Pacheco et al. [17], the existence of these two 
basins of attraction depends on the interplay between F, M and the group 
size, N. 

 
Fig. 2. Left panel: Learning gradients for social learning (black line) and coun-
terfactual thinking (red line) — see GSL(k/Z) in see Eq. 9 and GCT(k/Z) in Eq. 10 
— for the N-person SH game (Z=50, N=6, F=5.5. M=N/2, c=1.0,  µ=0.01, 
βSL=βCT=5.0). For each fraction of co-operators, if the gradient is positive then 
it is likely that the number of co-operators will increase; for negative gradient 
values cooperation is likely do decrease. Empty and full circles represent the 
finite population analogue of unstable and stable fixed points, respectively. 
Right panel: Stationary distribution of the Markov processes created by the 
transition probabilities pictured in the left panel; it characterizes the prevalence 
in time of each fraction of co-operators in finite populations (see main text). 
Given the positions of the roots of the gradients and the amplitudes of GCT and 
GSL, contrary to the SL configuration, in the CT case the population spends 
most of the time in a co-existence between Cs and Ds.  
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Until now, individuals can either revise their strategies through social 
learning or counterfactual reasoning. However, one could also envisage 
situations where each agent may resort to CT and to SL in different cir-
cumstances, a situation prone to occur in Human populations. To encom-
pass such heterogeneity at the level of agents, let us consider a simple 
model in which agents resort to SL with a probability χ, and to CT with a 
probability (1-χ), leading to a modified learning gradient given by 
G(k)= χGSL (k)+ (1− χ )GCT (k) .  

 

 
Fig. 3. Overall level of cooperation (cooperation index, see Eq. 11) as a 
function of the prevalence of individuals resorting to social learning (SL, 
χ) and counterfactual reasoning (CT, 1-χ). We show that only a relatively 
small prevalence of counterfactual thinking is required to nudge coopera-
tion in an entire population of self-regarding agents. Other parameters: 
Z=50, N=6, F=5.5., c=1.0,  µ=0.01, βSL=βCT=5.0. 
 
In Figure 3, we show the impact χ on the average cooperation levels (see 

Eq. 11) in a N-person Stag-Hunt dilemma in which, in the absence of CT, 
cooperation is unlikely to persist. Remarkably, our results suggest that a ti-
ny prevalence of individuals resorting to CT is enough to nudge an entire 
population of social learners towards highly cooperative standards, provid-
ing further indications on the robustness of cooperation prompted by coun-
terfactual reasoning.  
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5. Discussion 

In this contribution we illustrate how decision-making shaped by coun-
terfactual thinking (CT) is worth studying in the context of large popula-
tions of self-regarding agents. We propose a simple form to describe the 
population dynamics arising from CT and study its impact in behavioural 
dynamics when individuals face a threshold public goods problem. We 
show that CT enables the arise of pro-social behaviour in collective di-
lemmas, even where non or little existed before. We do so in the frame-
work of non-cooperative N-person evolutionary games, showing how CT 
is able to modify the equilibria expected to occur when individuals revise 
their choices through social learning (SL). Specifically, we show that CT is 
particularly effective in easing the coordination of actions by displacing 
the unstable fixed points that characterize this type of dilemmas. In the ab-
sence of a clear need to coordinate (e.g., whenever M=1 in the N-person 
game discussed) CT offers equivalent results to those obtained with SL. 
Nonetheless, this is an especially gratifying result since many of the mech-
anisms known to promote cooperation in defection-dominance dilemmas 
(e.g., Prisoner’s Dilemma, Public Goods games, etc.) enlarge the chances 
of cooperation by transforming the original dilemma into a coordination 
problem [10]. Thus, CT has the potential to be even more effective when 
applied in combination with other known mechanisms of cooperation, such 
as conditional strategies based on past actions, commitments, signalling, 
emotional reactions, or reputations based dynamics [16, 27-29]. Moreover, 
it is worth pointing out that the NPSH dilemma adopted here as a particu-
lar case study — which combines co-existence and coordination dynamics 
(see Figure 2a) — also represents the dynamics that emerge from most N-
person threshold games, and from standard Public Goods dilemmas in the 
presence of group reciprocity [30], quorum sensing [16], and adaptive so-
cial networks [31], which further highlights the generality of the insights 
provided. 

We also analyse the impact of having a mixed population of CT and SL, 
since it is unlikely that individuals would resort to a single heuristic for 
strategy revision. We show that, even when agents seldom resort to CT, 
highly cooperative standards are achieved. This result may have various 
interesting implications, if heterogeneous populations are considered. For 
instance, we can envision a near future made of hybrid societies compris-
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ing humans and machines [32-34]. In such scenarios, it is not only im-
portant to understand how human behaviour changes in the presence of ar-
tificial entities, but also to understand which properties should be included 
in artificial agents capable of leveraging cooperation in such hybrid collec-
tives [32]. Our results suggest that a small fraction of artificial CT agents 
in a population of Humans social learners can decisively influence the dy-
namics of cooperation towards a cooperative state. These insights should 
be confirmed through a two-population ecological model where SLs influ-
ence CTs (and vice-versa), but also by including CTs that have access to a 
lengthier record of plays, rather than just the last one, or learn from past 
actions, creating a time-dependence that may be assessed through numeri-
cal computer simulations. Work along these lines is in progress. 
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