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Abstract. In the natural world, performing a given task which is beneficial to
an entire group requires the cooperation of several individuals of that group
who often share the workload required to perform the task. The mathemat-
ical framework to study the dynamics of collective action is game theory.
We study the evolutionary dynamics of cooperators and defectors in a pop-
ulation in which groups of individuals engage in N-person, non-excludable
public goods games. We analyze the N-person Prisoner’s dilemma (NPD),
where the collective benefit increases proportional to the cost invested, and
the N-person Snowdrift game (NSG), where the benefit is fixed but the cost
is shared among those who contribute. We impose the existence of a threshold
which must be surpassed before collective action becomes successful, and dis-
cuss the evolutionary dynamics in infinite and finite populations. In infinite
populations, the introduction of a threshold leads, in both dilemmas, to a uni-
fied behavior, characterized by two interior fixed points. The fingerprints of
the interior fixed points are still traceable in finite populations, despite evolu-
tion remaining active until the population reaches a monomorphic end-state.
As the group size and population size become comparable, we find that spite
dominates, making cooperation unfeasible.
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1. Introduction

The last decades have witnessed the discovery of key insights into the emergence
and sustainability of cooperation at different levels of organization [1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Special attention has been paid to two-person
dilemmas such as the Prisoner’s Dilemma (PD) [18, 19], the Snowdrift Game (SG)
[20] and the Stag-Hunt game (SH) [16], which constitute powerful metaphors to
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describe conflicting situations often encountered in the natural and social sciences
[5, 16]. Many real-life situations, however, are associated with collective action
based on joint decisions made by a group often involving more than 2 individuals.
This is the case, for instance, in the upper primates, where problems of collective
action are recurrent [2, 21]. These types of problems are best dealt-with in the
framework of N -person games [22, 23, 24, 25, 26, 27, 28]. The crossover from
two-person games to N -person games brings along additional difficulties, similar
to what one observes in the physical sciences when moving from the study of
interactions between two particles and those involving many particles. The impact
of this additional complexity in the context of biology has been well captured by
the words of W.D. Hamilton [29]:

“The theory of many person games may seem to stand to that of two-
person games in the relation of sea-sickness to a headache.”

The prototypical example of a Public Goods Game (PGG) is captured by
the so-called N -person PD (NPD). It involves a group of N individuals, who can
be either Cooperators (C) or Defectors (D). Cs contribute a cost “c” to the public
good, whereas Ds refuse to do so. After all individuals are given the chance to
contribute, the accumulated contribution is multiplied by an enhancement factor
“F”, and the total amount is equally shared among all individuals of the group. In
other words, if there are k Cs in a group of N individuals, Ds end up with kFc/N ,
whereas Cs only get kFc/N − c, that is, in mixed groups Cs are always worse off
than Ds.

Group hunting provides an excellent example of this type of setting. From
lionesses in Etosha National Park, Namibia [30], to Chimpanzees in the Tai forest
[31] and African wild dogs [32], group hunting, being ubiquitous, usually requires,
to be effective, the joint action of at least a minimum number of animals. Of
course, the more individuals participate, the more effective the hunting will be. In
animals, other collective actions, such as lions defending a kill against a pack of
hyenas, can also be seen as generalized Stag Hunt games [33]. In human affairs we
also find collective action problems that can be viewed as generalized Stag hunts,
not only in literal hunts such as the whale hunts discussed in [34], but also in
international relations [35] and macroeconomics [36].

Despite their abundance, N -person generalizations of the Prisoner’s Dilemma
and the Stag-Hunt games do not exhaust the spectrum of collective action dilem-
mas encountered in the natural and social phenomena. Indeed, generalized snow-
drift games appear all too often. In the standard SG, two individuals are driving
on a road which is blocked by a snowdrift. To proceed with their journey home,
the snow must be removed. Three possibilities occur: No-one shovels, and hence
no-one gets home: The two drivers cooperate and shovel, and both get home, each
one sharing the workload of shoveling the snow. If only one driver decides to shovel,
both get home despite one driver incurring the entire cost of snow shoveling. If
we define the benefit of getting home as b and the cost of shoveling as c, then if
both drivers cooperate and shovel, each gets b − c/2. If both defect, no one gets
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anything: 0. If one cooperates and the other defects, the Cooperator (C) gets b− c
while the defector (D) gets b. Assuming, as usual, that the benefit is greater than
the cost, we get a payoff ranking characteristic of a chicken, hawk-dove or snowdrift
dilemma [6]. The generalization of this game to a public goods game involving N
players is straightforward. To remain with the previous example, we can imagine
that the snowdrift occurs at a cross-road where N drivers meet. Again, all want to
go home (getting all the same benefit b), but perhaps not all are willing to shovel.
If all shovel, then each gets b− c/N . But if only k individuals shovel (C), they get
b− c/k whereas those who defect by refusing to shovel get home for free and get b.

Similar to group hunting, however, it is often the case that no common ben-
efit is produced unless its cost is shared by a minimum threshold of cooperating
individuals. In keeping with the metaphor introduced above, the fact that individ-
uals have a finite capacity of clearing the snow, may lead to the requirement of a
minimum threshold of people to cooperate (shovel) so that the road is cleared.

The existence of thresholds in NSG abounds. For example, not all Amish
need to participate in the construction of a church for the church to be built (see,
e.g., the movie Witness, directed by P. Weir (1985)). Yet, the more contribute the
better, since the effort to be invested by each member of the construction group will
be smaller. On the other hand, the cost of building a church cannot be provided by
a single individual. In this example, the public good is the church. Note, further,
that the size of the church, or the benefits of having one, do not necessarily increase
with the number of individuals that worked on it. Similar settings apply whenever
individuals act collectively to setup sandbag levees to prevent river flooding.

Hence, as with the NPD, the need for collective coordination in the NSG in-
troduces a behavioral tension common to conventional coordination games [15, 16]:
if the others do their work, it might be profitable to do it as well; otherwise you
definitely gain from opting out.

Mathematically, this means that for a given group of size N , we define a
threshold 1 ≤ M ≤ N such that only when the number k of Cs in the group is
at least M (k ≥ M) a public good is achieved. In all cases, a cost c must be paid
before a common benefit b is produced. For the NPD, the benefit increases with
the cost invested. For the NSG, the benefit is fixed but the cost is shared among
those that contribute. In Table 1 we summarize the payoffs of Cs and Ds in any
case (as usual in N -person games, k = 0 means no cost is expended and no benefit
is produced).

We shall assume a population of size Z, from which groups of size N are
randomly sampled. Let us first study the conventional limit in which Z → ∞, un-
der deterministic replicator dynamics. Subsequently, we shall consider stochastic
dynamics in finite populations. The fitness of individuals is determined by their
payoff collected when engaging in N -person PGG, requiring at least 0 < M < N
individuals to produce any public good at all. We shall find that requiring a mini-
mum threshold of cooperators to produce a benefit leads to the appearance of both
coexistence and coordination features in an otherwise defector dominance game
(NPD), and to coordination features in an otherwise coexistence game (NSG).
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Game NPD NSG

Strategy C D C D

1 ≤ k < M −c 0 − c
M 0

M ≤ k Fkc
N − c Fkc

N b − c
k b

Table 1. Payoff values ΠC and ΠD for the NPD and NSG.

Hence, we obtain a richer evolutionary dynamics scenario in infinite populations,
which, at least qualitatively, brings about a unified picture of N -person games with
a threshold. We find that this scenario remains qualitatively valid whenever we re-
move the approximation of assuming infinite populations, although the stochastic
dynamics only ends whenever a monomorphic composition of the population is
reached. Nonetheless, for small populations and/or group sizes spanning nearly
the entire population, we observe the “spite” effect first noted by Hamilton in
1970, and which works against cooperation [37].

2. Evolutionary dynamics of PGGs in infinite populations

Let us assume a very large population, a fraction x of which is composed of Cs,
the remaining fraction (1 − x) being Ds. Let groups of N individuals be sampled
randomly from the population. Such a random sampling leads to groups whose
composition follows a binomial distribution. The fitness of the Ds is given by

fD =
N−1∑

k=0

(
N − 1

k

)
xk(1 − x)N−1−kΠD(k), (2.1)

whereas the average fitness of Cs is given by

fC =
N−1∑

k=0

(
N − 1

k

)
xk(1 − x)N−1−kΠC(k + 1), (2.2)

ΠC and ΠD are defined in Table 1 for each of the games. The evolutionary dynamics
is given by the replicator equation [4],

ẋ = x(1 − x)(fC − fD) (2.3)

following that there exists an interior fixed point, x∗, whenever Q(x∗) = fC(x∗)−
fD(x∗) = 0.

2.1. N -person PD with thresholds in infinite populations

For the NPD, with a given threshold M , the payoff of Defectors and Cooperators
can be explicitly written as (see Table 1) ΠD = (kFc/N)θ(k−M) and ΠC = ΠD−c,
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Figure 2.1. a) Interior fixed points of the replicator equation for N -
person PD games with coordination threshold. The curves provide the
location of the critical values of the fraction of cooperators (xL,xR) at
which fC = fD. For each value of F (defining a horizontal line), the
critical values are given by the intersection of this line with each curve
(one curve for given fixed M and N = 20). Scenarios with none, one
and two interior fixed points are possible as detailed in the right panel.
b) Dynamics of N -person PD in infinite populations with coordination
threshold. Empty circles represent unstable fixed points; full circles rep-
resent stable fixed points and arrows indicate the direction of evolution
by natural selection.

respectively, where the Heaviside step function θ(x) is equal to 1 whenever x ≥ 0
and equal to 0 otherwise. The introduction of a threshold (M > 1) leads to a sym-
metry breaking of the sampling, which does not allow a closed form expression for
the fitness. Thus, the determination of the possible interior equilibrium points, i.e.,
the zeros of Q(x) has to be done numerically. However, a great deal of information
can be obtained without solving explicitly for Q(x) = 0. Indeed, as shown in [38],
introducing ΠC and ΠD above in Eqs. (2.1) and (2.2) leads to

Q(x) = fC(x) − fD(x)

= c

(
F

N
− 1

)

− c
F

N
(1 − x)N−M

M−1∑

k=0

(
N − 1

k

)
(1 − Mδk,M−1)xk(1 − x)M−1−k.

In what follows, we shall strictly assume that N ≥ 2. For most of the time, we
shall assume that 1 < M ≤ N ; the degenerate cases can be handled as well, and
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the reader is referred to [38] for details. Let

R(x) =
N−1∑

k=M

(
N − 1

k

)
xk(1 − x)N−1−k + M

(
N − 1
M − 1

)
xM−1(1 − x)N−M

= xM−1

(
N−1∑

k=M

(
N − 1

k

)
xk−M+1(1 − x)N−1−k + M

(
N − 1
M − 1

)
(1 − x)N−M

)
.

(2.4)

Since,

1 = 1N−1 = (x + 1 − x)N−1 =
N−1∑

k=0

(
N − 1

k

)
xk(1 − x)N−1−k,

we have that
Q(x) = −c (1 − λR(x)) , (2.5)

with λ = F/N .

Lemma 2.1. The polynomial R defined above satisfies
1. R(0) = 0;
2. R(1) = 1;
3. R(x) > 0, x ∈ (0, 1);
4. Let x∗ = M/N . Then we have that R′(x) > 0 for 0 ≤ x < x∗, and R′(x) < 0

for x∗ < x < 1. In particular, R′(x∗) = 0, and x∗ is a point of maximum of
R with R(x∗) > 1.

Proof. First, notice that 1., 2. and 3. are straightforward from the form of the
polynomial R(x); cf. (2.4).

To prove 4., we let k = N − 1 − k′, and on noting that
(

N − 1
N − 1 − k′

)
=

(
N − 1

k′

)
,

we may write

R(x) = xM−1

[
N−M−1∑

k′=0

(
N − 1

k′

)
xN−M−k′

(1 − x)k′
+ M

(
N − 1
M − 1

)
(1 − x)N−M

]

= xN−1

[
N−M−1∑

k′=0

(
N − 1

k′

) (
1 − x

x

)k′

+ M

(
N − 1
M − 1

) (
1 − x

x

)N−M
]

.

Let
z =

1 − x

x
.

Then, we have that

z′ = − 1
x2

= − 1
x

(z + 1)
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Thus,

R(x) = xN−1p(z), with p(z) =
N−M∑

i=0

aiz
i,

where

ai =
(

N − 1
i

)
, 0 ≤ i < N − M and aN−M = M

(
N − 1
M − 1

)

We now compute R′:

R′(x) = (N − 1)xN−2p(z) − xN−2p′(z)(z + 1)

= xN−2 [(N − 1)p(z) − (z + 1)p′(z)]

= xN−2

[
(N − 1)

N−M∑

i=0

aiz
i −

N−M∑

i=1

iaiz
i −

N−M∑

i=1

iaiz
i−1

]

= xN−2

[
(N − 1)a0 − a1 + (N − 1)

N−M∑

i=1

aiz
i −

N−M∑

i=1

iaiz
i −

N−M∑

i=2

iaiz
i−1

]
.

Since a0 = 1 and a1 = N − 1, and writing i = i + 1 in the last sum, we find that

R′(x) = xN−2

[
(N − 1)

N−M∑

i=1

aiz
i −

N−M∑

i=1

iaiz
i −

N−M−1∑

i=1

(i + 1)ai+1z
i

]

= xN−2S(z),

where

S(z) =
N−M−2∑

i=1

[(N − 1 − i)ai − (i + 1)ai+1] zi

+ [MaN−M−1 − (N − M)aN−M ] zN−M−1 + (M − 1)aN−MzN−M .

On noting that (
L

j + 1

)
=

L − j

j + 1

(
L

j

)
, (2.6)

we obtain, for 1 ≤ i < N − M , that

ai+1 =
N − 1 − i

i + 1
ai.

Hence,
N−M−2∑

i=1

[(N − 1 − i)ai − (i + 1)ai+1] zi = 0.

Also, we have

MaN−M−1 − (N − M)aN−M = M

(
N − 1

M

)
− (N − M)

(
N − 1
M − 1

)
,
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which on calling upon (2.6) yields

M

(
N − 1

M

)
− (N − M)

(
N − 1
M − 1

)
= (N − M)

(
N − 1

M

)
− (N − M)

(
N − 1
M − 1

)

= −(N − M)(M − 1)
(

N − 1
M − 1

)
.

Thus, we write

S(z) = zN−M−1

(
N − 1
M − 1

)
[−(N − M)(M − 1) + M(M − 1)z]

which yields

R′(x) = xM−1(1 − x)N−M−1

(
N − 1
M − 1

)
[−(N − M)(M − 1) + M(M − 1)z] (2.7)

For x ∈ (0, 1), (2.7) vanishes at

z∗ =
N − M

M
=

1 − M/N

M/N
.

Since

z =
1 − x

x
is one-to-one.

x∗ =
M

N
.

Also, from (2.7), we see that

1. for 0 < z < z∗, R′(x) < 0;
2. for z > z∗, R′(x) > 0

Furthermore, z = (1− x)/x is monotonically decreasing and maps (0, 1) in (0,∞)
(thus reversing the orientation), which yields that 0 < z < z∗ corresponds to
x∗ < x < 1 and z > z∗ corresponds to 0 < x < x∗.

This proves 4. !

Using the information provided by Lemma 2.1, we have

Theorem 2.2. Let λ∗ = 1/R(x∗). Then we have that 0 < λ∗ < 1. Moreover, we
have that Q(x) satisfies:

1. For λ < λ∗ there are no roots in (0, 1);
2. For λ = λ∗ there exists one double root at x = x∗;
3. For λ∗ < λ ≤ 1 there are two simple roots {xL, xR}, with xL ∈ (0, x∗) and

xR ∈ (x∗, 1].
4. For λ > 1 there is only one root in (0, x∗).
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From Theorem 2.2, we can infer the complete evolutionary dynamics of the
system. Thus, if F < λ∗N , no interior equilibrium is possible. For F = λ∗N ,
x = M/N is an unstable equilibrium. For

λ∗ <
F

N
< 1,

we have the existence of two equilibria. The leftmost equilibrium is always less
than M/N and it is unstable. On the other hand, the rightmost equilibrium is
always greater than M/N , and it is stable. The reader is referred to [38] for the
detailed proofs.

Overall, the analysis above shows that the properties of Q(x) lead to a very
interesting dynamics of the replicator equation, with possibly two interior fixed
points (xL and xR), as illustrated in Fig. 2.1, for N = 20, different values of
1 < M ≤ 20 and variable F . Note, in particular, that the fact that R′(xL) > 0 and
R′(xR) < 0 [38] allows us to classify immediately xL as an unstable fixed point
whereas xR, if it exists, corresponds to a stable fixed point, as illustrated also in
Fig. 2.1. Moreover, when F/N = R(M/N)−1, M/N is the unique interior and
unstable fixed point.

Between these two limiting values of F , and given the nature of the interior
fixed points xL and xR, one can easily conclude that below xL all individuals will
ultimately forego the public good. Conversely, for all x > xL, the population will
evolve towards a mixed equilibrium defined by xR, corresponding to a stable fixed
point of the associated replicator equation (even if, initially, x > xR). Similar to
the N -person PD, whenever F/N < R(M/N)−1, fC(x) < fD(x), for all x ∈ (0, 1),
which means that all individuals will end up foregoing the public good.

2.2. N -person SG with thresholds in infinite populations

For the NSG, we may formally write the payoffs in Table 1 in the form

ΠD(k) = bθ(k − M) (2.8)

for the payoff of a defector in the group and

ΠC(k) = ΠD(k) − c

k
θ(k − M) − c

M
(1 − θ(k − M)) (2.9)

for the payoff of a cooperator in the same group. Under these assumptions, one
can show that Q(x) now reads [39]

Q(x) =
c

xN

{
N

b

c

(
N − 1
M − 1

)
xM (1 − x)N−M

−
[
1 +

M−1∑

k=0

(
N

k

)
xk(1 − x)N−k

(
k

M
− 1

)]}
.

Although the polynomial Q in this case is quite distinct from the NPD case,
we can show similar results for the internal fixed points. More precisely, let γ = c/b.
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We find that it will be more appropriate to study

p(x, γ) =N

(
N − 1
M − 1

)
xM (1 − x)N−M

− γ

[
1 +

M−1∑

k=0

(
N

k

)
xk(1 − x)N−k

(
k

M
− 1

)]
.

p(x, γ) has the same interior roots as Q(x), and we made the dependence on γ
explicit. Notice also that p(x, γ) implies the same dynamics for the Replicator
equation as that implied by Q(x) in (0, 1) up to a time rescaling. We then have
the following result

Theorem 2.3. There exists 0 < γ̄ and 0 < x̄ < 1 such that, if
1. γ̄/γ < 1, then the evolutionary dynamics has no interior equilibria.
2. γ̄/γ = 1, then x̄ is a unique interior equilibrium.
3. γ̄/γ > 1, then there are two interior equilibria xL < x̄ < xR. Moreover, xL is

always an unstable equilibrium point, while xR is always a stable point.

In order to prove Theorem 2.3, it turns out that is more convenient to de-
termine what γ will render a given x ∈ (0, 1) an interior point, rather than deter-
mining what x are equilibria for a given γ. Let us define

Γ(x) =

{
0, x = 0,

N
(

N−1
M−1

) xM(1−x)N−M

1+
∑M−1

k=0 (N
k)xk(1−x)N−k( k

M −1) , 0 < x ≤ 1. (2.10)

Then Γ : [0, 1] → R is continuous in [0, 1] and differentiable in (0, 1). Also, by
solving for γ the equation p(x, γ) = 0, it is straightforward to verify that we have
the identity

p(x,Γ(x)) = 0. (2.11)
Ultimately, Γ(x) is responsible for the existence of a cost-to-benefit ratio at which
a given interior x can become an equilibrium of the replicator dynamics. The
critical value x̄ corresponds to the first interior equilibrium which emerges when
c/b = γ̄ and which divides the unit interval into two pieces, in which the stable and
unstable equilibria remain confined whenever c/b < γ̄. The thrust of the argument
is to study the number of solutions of Γ(x) = γ, for a given γ, which then can be
used to prove Theorem 2.3. In order to achieve our goal, we establish a series of
results about Γ. In what follows, we shall assume N > 2 and 1 < M < N .

Proposition 2.4. There is a unique x̄ ∈ (0, 1) such that Γ′(x̄) = 0. Such x̄ will be
the unique point of global maximum for Γ.

Proposition 2.5. Let γ̄ = Γ(x̄), with x̄ given above. Then the equation Γ(x) = γ
has

1. two solutions, xL and xR, for γ < γ̄. Moreover xL ∈ [0, x̄) and xR ∈ (x̄, 1].
2. one solution for γ = γ̄;
3. no solution for γ > γ̄.
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Figure 2.2. Equilibria of the N -person Snowdrift Game with thresh-
old. We assume infinite, well-mixed populations, fix the group size at
N = 20 and vary the threshold M above which cooperation leads to a
common benefit b. The total cost involved is c. In a) we show how the
occurrence of a threshold leads to the appearance of at most 2 interior
fixed points xL and xR, which can be found via the intersection of a
horizontal line with the appropriate curve (illustrated for M = 10); in
this case, the leftmost root is always an unstable fixed point whereas
the rightmost corresponds to stable fixed point, as illustrated by the
horizontal arrows (see main text for details). For a given M/N , there
is a critical value γ̄ for the critical cost-to-benefit ratio c/b below which
the 2 interior roots discussed above always exist. In panel b) we show
how these interior fixed points scale with variable group size N for some
values of the b/c ratio indicated. For γ̄b < c no interior fixed points ex-
ist and defectors dominate unconditionally, whereas for γ̄b = c the only
root corresponds to an unstable fixed point.

Finally, the following asymptotic result allows an approximate determination
of x̄.

Proposition 2.6. Let x0 = M
N and assume that

0 < ε =
N − M

N
' 1

Then, we have that

x̄ = x0 −
xM

0

M

(
N

M − 1

)
εN−M+1 + O(εN−M+2) .

Therefore, when the threshold is comparable in order to the size of the group,
we have that while the critical equilibrium is not quite M/N , it is quite close to
it. We refer the interested reader to [39] for detailed proofs.



130 J.M. Pacheco, F.C. Santos, M.O. Souza and B. Skyrms

As in the case of the NPD, the exact position of the roots of Q(x) in the
NSG regime may be cumbersome to find analytically, but are easy to compute
numerically. Fig. 2.2 pictures the position of the interior roots of Q(x) for a fixed
group size of N = 20 and variable threshold values of M (right panel).

For each value of M there is a critical benefit-to-cost value b/c above which
two interior fixed points emerge. These can be found in Fig. 2.2 by drawing a
horizontal line at a fixed b/c – its intersection with the appropriate curve for a
given threshold M provides the location of the points.

As shown above and illustrated in Fig. 2.2, one root corresponds to an unsta-
ble fixed point (xL) and the other to a stable fixed point (xR) inducing a coexistence
between Cs and Ds. This means there is a range of values of x (xL < x < xR), in
which Cs are favored against Ds (fC(x) > fD(x)). When x > xL, the system will
always evolve to the mixed configuration given by xR, and below xL all individuals
will end up refusing to contribute to the public good.

3. Evolutionary dynamics of PGGs in finite populations

Let us focus on a well-mixed population of size Z in the absence of mutations. Sam-
pling of individuals is no longer binomial, following a hypergeometric distribution.
Consequently, the average fitness of Cs and Ds can now be written as

fC(k) =
(

Z − 1
N − 1

)−1 N−1∑

j=0

(
k − 1

j

)(
Z − k

N − j − 1

)
ΠC(j + 1) (3.1)

and

fD(k) =
(

Z − 1
N − 1

)−1 N−1∑

j=0

(
k

j

)(
Z − k − 1
N − j − 1

)
ΠD(j) (3.2)

respectively.
The fraction of cooperators is no longer a continuous variable, varying in steps

of 1/Z. We adopt a stochastic birth-death process [40] combined with the pairwise
comparison rule [41, 42, 43] in order to describe the evolutionary dynamics of Cs
(and Ds) in a finite population. Under pairwise comparison, two individuals from
the population, A and B are randomly selected for update (only the selection of
mixed pairs can change the composition of the population). The strategy of A will
replace that of B with a probability given by the Fermi function (from statistical
physics)

p =
1

1 + e−β(fA−fB)
. (3.3)

The reverse will happen with probability 1 − p. The quantity β, which in physics
corresponds to an inverse temperature, controls the intensity of selection: For
β ' 1 selection is weak, and one recovers the replicator equation in the limit
Z → ∞ [41, 42, 43]. For arbitrary β, the quantity corresponding to the right-hand
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side of the replicator equation, specifying the gradient of selection, is given in finite
populations by [41, 42, 43]

g(k) ≡ T +(k) − T−(k) =
k

Z

Z − k

Z
tanh

{
β

2
[fC(k) − fD(k)]

}
(3.4)

The right-hand side of g(k) is similar to the replicator equation, only that the (non-
linear) pairwise comparison [41, 42, 43] defined in Eq. 3.3 leads to the appearance
of the hyperbolic tangent of the fitness difference, instead of the fitness difference.
This has implications in the characteristic evolutionary times, which now depend
on β [41, 42, 43], but not in what concerns the roots of g(k). Importantly, the
evolutionary dynamics in finite populations will only stop whenever the population
reaches a monomorphic state (k = 0 or k = Z). Hence, the sign of g(k), which
indicates the direction of selection, is important in that it may strongly influence
the evolutionary time required to reach any of the absorbing states.

3.1. N -person PD with thresholds in finite populations

Whenever M = 0 (NPD without the requirement to coordinate to obtain collective
benefits) we may write

fC(k) − fD(k) = c

[
F

N

(
1 − N − 1

Z − 1

)
− 1

]
(3.5)

which is independent of k being, however, population and group size dependent.
This means frequency independent selection. In particular, whenever the size of
the group equals the population size, N = Z, we have that fC(k)−fD(k) = −c and
cooperators have no chance irrespective of the value of the enhancement factor.
This contrasts with the result in infinite, well-mixed populations (Z → ∞), where
to play C would be the best option whenever F > N . For finite populations, the
possibility that group size equals population size leads to the demise of cooperation.
Moreover, given the independence of fC(k)− fD(k) on k in finite populations, for
a given population size, it is straightforward to obtain a critical value of F for
which selection is neutral, and above which cooperators will win the evolutionary

race. From the equations above this critical value reads F = N
(
1 − N−1

Z−1

)−1
.

Let us now discuss the NPD with 1 < M < N ≤ Z. Whenever N = Z, the
result is easily inferred from the NPD above – all individuals in the population
will ultimately forego the public good. This will happen, in finite populations, ir-
respective of the existence (or not) of a threshold M . However, whenever N < Z
the threshold brings about a strong disruption of the finite population dynam-
ics, which we illustrate numerically, given the unappealing look of the analytical
equations.

Let us start with the case in which F > N , that is, the regime for which we
obtain a pure coordination game with a single (unstable) fixed point in the repli-
cator dynamics equation (cf. Fig. 2.1). In finite populations the possible scenarios
are depicted in the left panel of Fig. 3.1. Clearly, for small population sizes, coop-
erators are always disadvantageous. With increasing Z, however, one approaches
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Figure 3.1. Behaviour of g(k) for a N -person PD game with coordina-
tion threshold M = 5 in a population of variable size Z and fixed group
size N = 10. a) Since F = 12 > N , the game becomes a pure coordi-
nation game in infinite populations. In finite populations, however, it
strongly depends on Z: For Z = N , Cs are always disadvantageous and
evolutionary dynamics leads mostly to 100% Ds. For Z = 20 (and using
a terminology which is only correct for Z → ∞), we obtain a profile for
g(k) evidencing the emergence of a coordination point and a coexistence
point. For increasingly large Z (e.g., Z = 40), the coexistence point
disappears and we recover the behaviour of the replicator dynamics (see
Fig. 2.1: Selection favours Cs above a given fraction k/Z and Ds below
that fraction which, in turn, depends on the population size. b) Since
F = 8 < N , the game exhibits now 2 interior fixed points in infinite
populations (red curve). Similar to a), for small Z Cs are disadvanta-
geous for all k. Unlike a), however, now two interior fixed points emerge
together for a critical population size, and remain for larger population
sizes.

the replicator dynamics scenario (see Fig. 2.1), despite the fact that, e.g., for
Z = 20, convergence towards the absorbing state at 100% Cs is hindered because
Cs become disadvantageous for large k. Indeed, for this population size, Cs are
advantageous only in a small neighbourhood of k/Z = 0.5, being disadvantageous
both for smaller and larger values of k/Z. In other words, and despite the fact that
evolution will stop only at k = 0 or k = Z, the time it takes to reach an absorbing
state will depend sensitively on the population size, given the occurrence (or not)
of interior roots of g(k).

Whenever F < N , yet above the critical limit below which Cs become dis-
advantageous for all x in Fig. 2.1, we observe that for small population sizes Cs
are always disadvantageous, and the two interior fixed points of the replicator
dynamics equation only manifest themselves above a critical population size, as
illustrated in the right panel of Fig. 3.1.
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Figure 3.2. a) Equilibria of the N -person snowdrift game with thresh-
old in finite populations. Population size is Z = 50 and group size is
N = 20. We vary the threshold M above which cooperation leads to
a common benefit b. For each k/Z we show the corresponding b/c at
which g(k) = 0 (cf. Eq. (13)). Whenever the population size is large
compared to group size, selection in finite populations is qualitatively
similar to that in infinite populations. b) Effect of group size in the
evolution of cooperation.We plot g(k) as a function of the fraction of
cooperators k/Z, for b/c = 5. We fixed the population size at Z = 50
and the threshold at M = 5, while varying the group size N . As the
group size approaches the population size, the range of values of k/Z
for which cooperation is advantageous (g(k) > 0) is reduced.

3.2. N -person SG with thresholds in finite populations

In Fig. 3.2a, we show how the qualitative behavior of selection under stochas-
tic dynamics in finite populations mimics closely that already encountered in the
previous section (cf. Fig. 2.2), associated with deterministic dynamics in infinite
populations. Although the population will always fixate in one of the two absorbing
states (k = 0 and k = Z in the absence of mutations), selection will act to drive the
population toward a composition reflecting the rightmost root of g(k), which con-
stitutes the deepest point of the basin of attraction of the evolutionary dynamics.

On the other hand, as the group size approaches the population size the
previous basin of attraction is reduced. In Fig. 3.2b we show a typical behavior
of g(k) as a function of the fraction of cooperators k/Z for fixed population size
Z = 50, threshold M = 5 and different group sizes N . As N increases, cooperation
becomes increasingly unfeasible – in the limit when N → Z, cooperators have no
chance and defectors dominate unconditionally. Moreover, for a given b/c ratio, the
existence of a finite population analogue of a stable root of g(k) (in infinite popu-
lations) occurs for values of the frequency k/Z of cooperators which decrease as N
increases. This has been first noted by Hamilton [37] and reflects the occurrence
of “spite” which works against cooperation, as illustrated in Fig. 3.2.
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4. Discussion

We showed how generalizing the conventional versions of the NPD and NSG
dilemmas by introducing thresholds below which collective action is unfeasible
leads to the emergence of an entirely new evolutionary scenario. Irrespectively of
the game played, in infinite, well-mixed populations, the existence of a threshold
opens the possibility for the appearance of two interior fixed points in the repli-
cator equation (xL and xR). The one at lower frequency of cooperators is always
an unstable fixed point (coordination), which determines a threshold for cooper-
ative collective action. The other, at higher frequency of cooperators, is a stable
fixed point (coexistence), and hence determines the final frequency of cooperators
in the population, assuming the coordination threshold is overcome. Moreover,
both dilemmas converge to a pure coordination game whenever the coordination
threshold approaches the group size.

In the particular case of the NSG with a given threshold M and group size
N , there is always a critical cost-to-benefit ratio c/b above which the two interior
roots discussed above emerge. The same qualitative behavior can be observed in
finite populations. However, as soon as the group size approaches the population
size, cooperation becomes increasingly unfeasible.

In the NPD, besides the above-mentioned regime with two interior roots,
there are also the possible outcomes of no cooperation or of a pure coordination
game, which depends sensitively on the minimum number of cooperators M in a
group of N individuals required to produce any public good. In finite populations,
the evolutionary dynamics of the NPD game may be profoundly affected, mostly
when the population size (Z) is comparable to the group size (N). In this regime,
one observes an overlap of the different scenarios observed in infinite populations.
Hence, for Z = N , cooperators are always disadvantageous, irrespective of the
existence or not of a threshold. For Z > N , the direction of selection in a finite
population is strongly size dependent. For fixed F > N , there is a critical value,
Z1, above which the interior roots of g(k) emerge, which constitute the finite-
population analogs of xL and xR in infinite populations (cf. Fig. 2.1). Above a
second critical value, Z2, xR disappears, and one ends up with a coordination
game. For M < F < N and a small population size, that is, F < N but yet above
the critical value λ∗ = R(M/N)−1 defined in section 2.1, cooperators are always
disadvantageous; however, above a critical population size (ZC) the interior roots
of g(k) emerge simultaneously and the evolutionary dynamics approaches that
observed in infinite populations.

5. Conclusions

Unlike two-person games, current models of collective action have typically over-
looked the necessity of some form of coordination among individuals, pervasive
in biological and social collective dilemmas. From social organization [17] to the
salvation of the planet against environmental hazards [44, 45], examples abound
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where a minimum number of individuals, which does not necessarily equal the
entire group, must simultaneously cooperate before any outcome (or public good)
is produced.

In this chapter we investigate the predictions of evolutionary game theory
in both finite and infinite populations, whenever a minimum threshold of individ-
uals must cooperate simultaneously in a group before any viable public good is
achieved. We have concentrated on two of the most important collective dilem-
mas: the N -person snowdrift game (NSG) [39] and N -person prisoner’s dilemma
(NPD) [38]. In doing so, we uncover a new framework in which the advantage
or not of cooperators depends sensitively on group and population size, as well
as on the threshold for collective action. Such interplay leads to rich evolutionary
scenarios, impossible to anticipate based on the traditional assumption of infinite
populations, providing valuable insights into the variety and complexity of many
person social dilemmas, inescapable especially among humans.

In addition, it is noteworthy that irrespectively of the distinctive features
of the N -person Prisoner’s dilemma (a defector’s dominance dilemma) and the
N -person Snowdrift game (a coexistence game), the existence of a coordination
threshold is able to produce an unifying framework associated with a generalized
stag-hunt game [38]. Moreover, the necessity of coordination is shown to increase
the equilibrium fraction of cooperators, even if this enhancement comes together
with a strong dependence on the initial level of cooperation, since coexistence be-
tween cooperators only emerges when a minimum number of cooperators is already
present in the population. This result is of particular relevance given that the ex-
istence of coordination thresholds constitutes a rule, rather than the exception.
Finally, our results reinforce the idea that even minor differences in the nature of
collective rewards and/or costs can have a profound effect in the final outcome of
evolution.
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