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 G R A P H I C A L A
c Achieving a common goal requires
the cooperation of at least some
individuals.

c This can be modeled by an N-person
snowdrift game, a variant of Public
Goods Games.

c Social networks influence the emer-
ging behavioral dynamics.

c Homogeneous networks help the
coordination towards stable levels
of cooperation.

c Heterogeneous networks create a
new scenario with multiple beha-
vioral equilibria.
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B S T R A C T
When a snowdrift traps several individuals, work is required to shovel off the snow and let everyone get
home, an effort which is shared among those who participate. This situation provides a powerful metaphor
one encounters in many real life situations, in which the completion of a task by a group toward achieving
a common goal requires the cooperation of at least some of its members, who share the workload. The N-
person snowdrift game is a Public Goods Game that conveniently models such cases. Here, each individual
has the option to help (or not) shoveling the snow, such that the more the individuals who shovel, the less
the effort each one has to invest in order to surpass (in the illustrated example) the blocked railway. On the
other hand, once the snow is removed, everyone will be able to reach his or her destination (and, game-
wise, everyone gets the same benefit). In this manuscript, we study how a social network affects the
behavioral dynamics under such class of dilemmas. We show that homogeneous social structures enhance
the chances of coordinating toward stable levels of cooperation, while heterogeneous network structures
create multiple internal equilibria, departing significantly from the reference scenario of a structureless
population (artwork by António Araújo, 2012).
a r t i c l e i n f o

Article history:

Received 4 July 2012

Received in revised form

3 September 2012

Accepted 4 September 2012
Available online 12 September 2012

Keywords:

Evolutionary Game Theory

Emergence of cooperation

N-person snowdrift game

Complex networks

Public goods games
a b s t r a c t

In many real-life situations, the completion of a task by a group toward achieving a common goal

requires the cooperation of at least some of its members, who share the required workload. Such cases

are conveniently modeled by the N-person snowdrift game, an example of a Public Goods Game. Here we

study how an underlying network of contacts affects the evolutionary dynamics of collective action

modeled in terms of such a Public Goods Game. We analyze the impact of different types of networks in

the global, population-wide dynamics of cooperators and defectors. We show that homogeneous social

structures enhance the chances of coordinating toward stable levels of cooperation, while hetero-

geneous network structures create multiple internal equilibria, departing significantly from the

reference scenario of a well-mixed, structureless population.
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1. Introduction

Evolutionary Game Theory (EGT) plays a central role in the
study of the emergence and evolution of cooperation at all scales,
a problem that has received increasing attention (Axelrod and
Hamilton, 1981; Maynard Smith, 1982; Macy and Flache, 2002;
Skyrms, 2004; Nowak, 2006a, 2006b; Sigmund, 2009). Tradition-
ally, interactions have been modeled in terms of one-shot,
symmetric two-person dilemmas of Cooperation such as the
Prisoner’s Dilemma (PD) (Rapoport and Chammah, 1965; Axelrod
and Hamilton, 1981), the Snowdrift Game (SG) (Sugden, 1986), or
the Stag-Hunt Game (SH) (Skyrms, 2004). However, many real-life
situations involve decisions derived from groups composed of
more than two individuals. This type of collective action
problems—which abound, not only in humans (Hardin, 1968;
Ostrom, 1990; Sigmund, 2009; Poteete et al., 2010) but also in
other upper primates (Boyd and Richerson, 1988; Kollock, 1998)
— is best described in the framework of N-person games (Hardin,
1968; Dawes, 1980; Boyd and Richerson, 1988; Kollock, 1998;
Hauert et al., 2004, 2007; Santos et al., 2008; Gokhale and
Traulsen, 2010; Santos and Pacheco, 2011; Van Segbroeck et al.,
2012), in particular Public Goods Games.

Here we investigate the N-person generalization of the SG
(NSG) (Sugden, 1986; Zheng et al., 2007; Souza et al., 2009), a
powerful metaphor for modeling situations in which performing a
task which confers the same benefit to the entire group depends
on the cooperation of several of its members, who share the
required workload. A classic example that illustrates this
dilemma assumes N travelers trapped in a train blocked by a
snowdrift, as illustrated in Fig. 1. Each individual can choose
whether or not to cooperate by shoveling the snow. Those who
cooperate divide the workload, while all collect the benefit of
resuming their journey home. Those who do not cooperate may
enjoy the sun on the train’s roof or use the time to take a picture
Fig. 1. The N-person Snowdrift Game (NSG) metaphor: In the NSG one assumes N in

shoveling the snow, such that the more the individuals who shovel, the less the effort

railway. On the other hand, once the snow is removed, all will be able to reach their dest

case in collective dilemmas, the benefit resulting from resuming the trip may be obtain

by António Araújo, 2012).
(see Fig. 1), while the others do the shoveling. When the snow is
removed, everyone will manage to get to the train destination. It
may also happen that the benefit is obtained only when a
minimum threshold of individuals cooperates (Pacheco et al.,
2009; Souza et al., 2009; Santos and Pacheco, 2011): in line with
the previous example, the timely removal of the snow may
require the combination of efforts from several individuals.

There are several examples in everyday life that conform to the
NSG. When lion(esse)s gather to hunt a prey (Stander, 1992),
sometimes not all of them participate in the hunting, yet, all have
access to the same benefit. Whether the benefit is (equally)
shared among all group members amounts to a redefinition of
what is the benefit. Or take for instance the construction of a
church by a group of colonizers who arrived to some newfound
land. The effort of a single individual is not enough to build it up,
and the more the individuals who contribute, the less the effort
each one has to invest. In the end, the benefit of having such
building is independent of how many participate in the
enterprise.

In an infinite well-mixed (WM) population, where all indivi-
duals have equal chances to interact with everyone else, the
evolutionary dynamics is conveniently described, in the frame-
work of EGT, by the replicator equation (Taylor and Jonker, 1978;
Hofbauer and Sigmund, 1998), where individual fitness is asso-
ciated with the game payoff. Similarly to its two-person counter-
part, the evolution of a population of cooperators (Cs, those who
contribute) and defectors (Ds, those who refuse to do so yet reap
the benefit) under a NSG leads the population toward a config-
uration in which one observes a coexistence of the two strategies,
a result that persists in finite populations (Zheng et al., 2007;
Souza et al., 2009). However, very often such a WM assumption is
not realistic: indeed, one expects that different individuals inter-
act with different (albeit small) sub-sets of the whole population.
Such topological constraints can be conveniently described by
dividuals trapped by a snowdrift. Each individual has the option to help (or not)

each one has to invest in order to surpass (in the illustrated example) the blocked

ination (and, game-wise, everyone gets the same benefit). Moreover, as is often the

ed only whenever a minimum number of individuals decide to cooperate (artwork
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means of complex networks, in which individuals are assigned to
the nodes of the network whereas links between them define
their interconnectedness and pattern of social interactions. As
illustrated in Fig. 2, each neighborhood may characterize a
N-person game in which an individual engages (Szabó and
Hauert, 2002; Santos et al., 2008; Wu et al., 2009; Ji et al., 2010;
Lei et al., 2010; Szolnoki and Perc, 2010a, 2010b; Ji et al., 2011;
Szolnoki et al., 2011; Vukov et al., 2011).

Let us start by summarizing the main results in infinite and
finite WM populations before investigating in which way the
problem of collective action formulated in terms of the NSG is
affected by the underlying networks that structuralize the
population.
2. N-person snowdrift game in well-mixed populations

We consider an infinite WM population of individuals behav-
ing either as unconditional cooperators (Cs) or defectors (Ds). The
threshold M (1rMrN) defines a minimum number of Cs in the
group required to obtain the collective benefit, so as to encompass
DefectorCooperator

Fig. 2. Groups on networks: the focal individual (largest blue disk) participates in

the games centered on her neighbors (groups B–D) as well as the game centered

on herself (group A). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 3. Gradient of selection for the N-person snowdrift game. We fixed c/b¼0.6, N¼5, b
well-mixed populations and (B) the average gradient of selection GA(j/N) in finite popu
several situations in which the contribution of a single individual
(M¼1) is not enough to achieve the common goal. The payoffs of
Cs and Ds can hence be written as PC(nC)¼H(nC�M)(c(1/M�1/
nC)þb)�c/M and PD(nC)¼H(nC�M)b respectively, where nC is the
number of Cs in the group, c is the total cost involved in achieving
b, the common benefit obtained by each individual of the group,
regardless of her strategy, when nCZM (throughout all this
manuscript, we shall take b¼1) and H(x�a) is the Heaviside step
function which is 1 whenever xZa, and 0 otherwise.

Random sampling of groups yields the following average
fitness of Cs (fC) and Ds (fD) (Hauert et al., 2006; Pacheco et al.,
2009; Souza et al., 2009):

f CðxÞ ¼
XN�1

nC ¼ 0

N�1

nC

� �
xnC ð1�xÞN�1�nCPCðnCþ1Þ ð1Þ

and

f DðxÞ ¼
XN�1

nC ¼ 0

N�1

nC

� �
xnC ð1�xÞN�1�nCPDðnCÞ ð2Þ

Denoting, as usual, by x (1�x) the fraction of Cs (Ds) in the
population, the replicator equation _x ¼ xð1�xÞðf CðxÞ�f DðxÞÞ allows
us to follow the time evolution of Cs in the population. In
particular, the sign of the so-called gradient of selection, here
denoted by g(x) (gðxÞ � _x), indicates which strategy increases in
abundance. Fig. 3A shows g(x) for different threshold levels: for
M¼1, g(x) dictates a single stable equilibrium, which can be
computed numerically for an arbitrary N, while for M41 a richer
evolutionary dynamics emerges, typically characterized by two
interior roots of g(x) one unstable at lower frequency of Cs and
another stable, at a higher frequency of Cs. This dynamics
characterized by two basins of attraction typically vanishes for a
critical c/b (Souza et al., 2009), above which a single stable fixed
point remains for x¼0, similar to the N-person prisoner’s
dilemma.

For finite populations of size Z, the general dynamical picture
remains the same, as long as ZbN (Souza et al., 2009). Here, the
binomial sampling is replaced by a hyper-geometric sampling.
Evolution in finite populations can be conveniently studied by
means of a birth–death (BD) process, combined with the pairwise
comparison rule (Szabó and T +oke, 1998; Traulsen et al., 2006,
2007). In this case, and in each step of the BD process, an
individual A adopts the strategy of a randomly selected neighbor
B with a probability given by the Fermi distribution
p¼ ½1þe�bðf B�f AÞ��1, where b stands for the intensity of selection
regulating the accuracy of the imitation process. As a result,
evolution proceeds as a balance between the probabilities to
increase (Tþ) and decrease (T�) the number of Cs in the
rators, j/Z
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population, which can be written as

T 7
ðjÞ ¼

j

Z

Z�j

Z�1
½1þe8bðf C ðjÞ�f DðjÞÞ��1 ð3Þ

where j stands for the total number of Cs in the population. The
finite population equivalent of the gradient of selection g(x) can
be written as

GðjÞ � T þ ðjÞ�T�ðjÞ ¼
j

Z

Z�j

Z�1
tanh

b
2
ðf CðjÞ�f DðjÞÞ

� �
ð4Þ

which exhibits similar roots as those of g(x) for ZcN (Souza et al.,
2009).
3. Evolutionary dynamics in structured populations

In line with previous studies (Santos et al., 2008; Vukov et al.,
2011), an individual’s fitness is determined by the payoffs resulting
from the game centered on herself plus the k games centered on her k

neighbors, as depicted in Fig. 2. In homogeneous populations every
individual takes part in the same number of games, all with the same
size (kþ1 in both cases). However, this scenario does not take into
account an important feature of social networks: its diversity
(Barabási and Albert, 1999; Dorogovtsev and Mendes, 2003; Santos
et al., 2012). Often individuals face different numbers of collective
dilemmas (depending on their social position) that may also have
different sizes. Such levels of social diversity can be modeled by
considering a heterogeneous network of interactions as pictured in
Fig. 2. In the following section we compare the evolutionary dynamics
on both homogeneous and heterogeneous networks. To this end, we
consider homogeneous random networks (HRND) (Santos et al.,
2005) for the former, and scale-free networks generated with the
Barabási–Albert algorithm (BA) of growth and preferential attachment
(Barabási and Albert, 1999) as representative of the latter.
cost - bene
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corresponding results for well-mixed populations are drawn with solid lines for com

vertical lines cross the solid curves in two points, the upper root corresponds to a co-
We consider populations of size Z¼103 with an average
connectivity (ok4) of 4. We maintain the strategy updating
via the pairwise comparison rule (already described in Section 2),
in which individuals now randomly choose a neighbor to be
imitated. We resort to computer simulations to assess the evolu-
tionary outcome of such populations: in particular, we compute
the so-called average gradient of selection (AGoS) (Pinheiro et al.,
2012a, 2012b), a quantity which provides information equivalent
to that given by G(k) in Eq. (4) but which, now, explicitly takes
into consideration network structure effects. In short, and for each
individual i, we compute the probability that this individual

changes behavior at time t, TiðtÞ ¼ k�1
i

Pni

m ¼ 1 ½1þe�bðf iðtÞÞ��1, where

ki stands for the degree of node i and ni for the number of
neighbors of i having a different strategy. At a given time t of

simulation p we define Gpðj,tÞ ¼ T þp ðj,tÞ�T�p ðj,tÞ (with

T 7
p ðj,tÞ ¼ Z�1PAllDs

AllCs
i ¼ 1 TiðtÞ) for a state with j Cs in a population of

size Z. The time-dependent AGoS at generation tg (1 generation
means Z iterations), GA(j,tg), is then computed by averaging over

the last Z time-steps, that is, GA
ðj,tgÞ ¼ cjðtgÞ

�1Ptg

tg�1

PO
p ¼ 1 Gpðj,tÞ,

where cj(tg) accounts for the number of times the population was
observed in state j during generation tg. For a given network type,
we run O¼2.5�107 simulations (using 102 networks of each
type) starting from random initial conditions.
4. Results and discussion

Fig. 3A and B shows typical profiles of the gradients of
selection, both in well-mixed and HRND populations, respec-
tively. Comparing the two panels, we observe that while the
nature of the dilemma remains unchanged, (i) HRND networks
facilitate coordination: regardless of the value of M, the coordina-
tion point (xL) is shifted to the left (requiring less Cs) when
fit ratio (c/b)
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compared with its position in well-mixed populations. Further-
more, (ii) whenever individuals face stringent requirements to
meet goals (large M/N) the coexistence point (xR) is shifted to the
right (coexistence involving more Cs). In both cases we obtain a
more favorable scenario for cooperation in HRND structured
populations compared to well-mixed populations. It is also
noteworthy that, for large M/N, the relative size of the two basins
of attraction combined with stochastic effects renders full coop-
eration as the most prevalent state, whereas for low M/N, the
population will remain in the vicinity of the co-existence point
(xR) most of the time. Finally, both in well-mixed and HRND-
structured populations, large values of c/b (e.g., c/b40.8) slightly
shift xR to lower values of the fraction j/N of Cs.

The results in Fig. 3 allow the visualization of the gradients of
selection for specific values of c/b. Differently, in Fig. 4 we provide
an overview of the evolutionary dynamics for the full range of c/b,
by drawing the location of the interior roots of the AGoS for the
different values of M (circles), in comparison with the well-mixed
case (solid lines), showing how HRND networks favor cooperation
by reducing the fraction of cooperators (xL) needed to escape full
defection (j/Z¼0). Furthermore, for low values of c/b, co-existence
(xR) occurs for larger fractions of cooperators, a scenario which is
overturned for large values of c/b, in which cooperation may be
hindered, as in two-person SG (Hauert and Doebeli, 2004).

Homogeneous networks are, however, not regarded as good
examples of realistic social structures. Instead, these exhibit a
marked degree of heterogeneity (in practice, a large number of
individuals with few links whereas a few have a large number of
links) combined with small-world effects, characteristics that are
both present, albeit at extreme levels, on BA networks.

Fig. 5 provides, similar to Fig. 4, but now for BA populations,
the location of the internal roots of GA(j,tg) as a function of c/b. We
consider the cases M¼1 to M¼3, the latter corresponding to
imposing unanimity of cooperation for the smallest groups of the
population (for our particular choice of the average connectivity
ok4 , for which we used ok4¼4). The intrinsically dual nature
(co-existence and coordination) of the NSG creates a multitude of
internal roots which result from the occurrence of evolutionary
deadlocks associated with particular motifs of the network
(Gómez-Garden-es et al., 2008; Pinheiro et al., 2012a), reflected
in the appearance of quasi-stationary states close to full coopera-
tion and full defection. This happens, in particular, for the case of
strong selection, and can be clearly identified in panels A and B of
Fig. 5. For this reason, and contrary to the case of HRND networks,
the AGoS in BA networks do not converge rapidly into a stationary
state, due to the continuous invasion and counter-invasion
induced by highly connected nodes. Analysis of domain growing
processes in spatially structured populations (Szabó and Fáth,
2007) shows that the appearance, simultaneously, of more than
one stable equilibrium often leads to a competition between
them, resulting in the emergence of a dominant configuration.
This process, which has been investigated in detail in spatial
lattices, also in ecological contexts (Szabó et al., 1999), is largely
unexplored in networks exhibiting heterogeneity and small-
world structures, and it would be interesting to understand in
detail how competition is affected by network properties such as
size, cluster coefficient or average path length. In what concerns
the population (network) size Z, we find that the number of
competing equilibria remains unaltered if we increase Z by one
order of magnitude. Moreover, computation of the quasi-
stationary distributions for Z¼103, that is, the prevalence of each
state before fixation, taking into account the first 2.5�103

generations shows no trace of any disappearance of these edge
coexistence states, a feature which seems to rely on the robust-
ness of the coordination root xL.

As we increase the coordination requirements needed to
achieve a collective benefit (M41, see Fig. 5B and C), local co-
existences will become harder to achieve which, combined with
harsher dilemmas (large c/b), in the long run lead the population-
wide dynamics toward a coordination dilemma (Skyrms, 2004),
with a single unstable root and two stable monomorphic states.
For large values of M and c/b, it is noteworthy that global
coordination can be reached for values of c/b in which widespread
defection would pervade in well-mixed populations (i.e. M¼1 and
c/b¼1.0), showing how heterogeneous networks may transform a
defection dominance dilemma into a coordination problem.
5. Conclusion

The present study puts in evidence the impact of structured
populations in the dynamics of cooperative collective action
associated with the NSG. Due to its twofold nature of coordination
and coexistence (Souza et al., 2009) — in well-mixed populations
it exhibits a pair of coordination and coexistence points when a
threshold M is introduced — as such, the NSG surpasses in
complexity most dilemmas previously studied in structured
populations (Szabó and Fáth, 2007; Perc and Szolnoki, 2010;
Santos et al., 2012).

In order to handle such a degree of complexity, we have
explicitly addressed the global dynamics (Pinheiro et al., 2012a)
created by each network structure, enabling a direct comparison
with the results previously obtained in unstructured populations
(Zheng et al., 2007; Souza et al., 2009). We show that evolution on
homogeneous networks exhibits a population-wide behavior
qualitatively similar to that observed in well-mixed populations.
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Notwithstanding, homogeneous social structures are able to
reduce the efforts needed to achieve a stable fraction of coopera-
tors which, in turn, increases with increasing M. Heterogeneous
networks, on the other hand, lead to more complex evolutionary
dynamics scenarios, with a multitude of internal equilibria,
whereas for high values of c/b and M41, the increasing difficulty
to locally coordinate actions transforms the overall population-
wide dynamics into a coordination problem.

Finally, our results support the idea that stringent require-
ments to achieve a collective benefit significantly raise the
chances of cooperation, thereby escaping the tragedy of the
commons.
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