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Abstract

This article defines a growth model for complex networks
based on the underlying dynamics reminiscent of biologi-
cal systems. The model constructs a network consisting of
vertices that correspond to biological types of elements and
edges modelling the dynamical interactions that have oc-
curred between instances of these types. It is shown that un-
der endogenous birth-only dynamics a scale-free distribution
can emerge with general properties similar to those in biolog-
ical systems. We also show that, as in Biology, the growth
model can produce networks that are organised in a hierar-
chical modular fashion.

Introduction
Due to recent advances in high-throughput methods that
gather information of the overall structure of molecular net-
works, Biologists are now able to investigate the proper-
ties of these networks in terms of their structure and func-
tionality (Alam and Arkin, 2003; Li and et al., 2003; Vi-
dal, 2005; Uetz and Finley Jr., 2005). Yet, little is known
about the mechanisms which are responsible for these prop-
erties. Consequently, models need to be designed which
might make predictions about the results we can now ob-
serve using these high-throughput methods.

In statistical physics, general constructive models have
been proposed to explain the origin of these biological net-
works of interactions (NoI) (Barabási and Albert, 1999;
Dorogotsev et al., 2001; Newman, 2003; Pastor-Satorras
and Vespignani, 2004; Dorogovtsev and Mendes, 2003; Solé
et al., 2002; Strogatz, 2001). Yet, due to, on the one hand,
the expected simplicity of the models and, on the other hand,
the absence of any real-world biological semantics (Alam
and Arkin, 2003), these models, like the preferential attach-
ment model (Barabási and Albert, 1999), have suggested
construction rules that are difficult to justify in a biological
context. In acknowledgement of this problem, other mecha-
nisms like the gene-duplication model (Vazquez et al., 2003;
Wagner, 2003; Solé et al., 2002) were introduced to explain
the structure of biological NoI like protein interaction net-
works.

Starting from a similar motivation as both previous mod-
els, we designed a generalised growth model for Biological
NoI. The motivation for the introduction of this new model
came from the shortcomings of the BA model in a biologi-
cal context and the limited validity of the gene-duplication
model to represent other biological NoI (Barabási and Olt-
vai, 2004). Moreover, since the behaviour of biological sys-
tems is defined by the interaction dynamics between the ele-
ments only a growing model that incorporates these interac-
tion dynamics will be able to give a meaningful explanation.
To achieve our goal, a growth model that uses four basic
principles of biological simulations is defined. The basic
principles that are examined are: (i) every node has a dif-
ferent identity based on its physical properties defining its
type and an associated concentration that changes in time;
(ii) since every node represents a type, biological networks
are type-based networks instead of instance-based like so-
cial and technological networks; (iii) every node connects to
a selected set of nodes based on mutual attractiveness (affin-
ity) ; and (iv) which nodes will be added to the network de-
pends on the dynamics of the existing nodes in the network.
Especially the principles (ii), (iii) and (iv) are critical fea-
tures that are completely ignored in other general growth
models. When a cloning dynamics is used to introduce the
new nodes into the network, the model comes close to the
gene-duplication model. The difference is that attachment
of the new node to the network is performed using the con-
centration of the biological types and an actual binding rule
based on complementarity (or similarity) instead of the pre-
vious connectivity of the nodes (Vazquez et al., 2003; Wag-
ner, 2003; Solé et al., 2002).

Using this generalised growth model we show here that
the power-law or scale-free degree distribution with different
γ can be obtained under certain conditions i.e. endogenous
production of similar instances of the types that are present
in the network and an amplification mechanism concerning
the concentrations of the types. As soon as these condi-
tions are relaxed, the network looses its scale-free proper-
ties and moves to the other extreme of the spectrum. This
other extreme is obtained by an exogenous production model



that has similarities with the growth-only model defined
in (Barabási et al., 1999). Furthermore, we demonstrate
that this growth model produces NoI whose structure corre-
sponds to the hierarchical and modular NoI discussed in bio-
logical literature (Newman, 2003; Ravasz et al., 2002; Rives
and Galitski, 2003; Guimerà and Nunes Amaral, 2005).
Such a structure may improve the overall robustness of the
network is since perturbations will only have local effects.

The structure of the article is the following. First we pro-
vide an algorithmic description of the growth model and
discuss, in the following section, a simplified birth dynam-
ics that produces the nodes that might be recruited into the
network. In the same section the results of this model are
discussed. In a following section the structure of the NoI
topology is discussed. Here we focus on the modular or hi-
erarchical nature of the network and discuss how our results
correspond to existing results in the literature. Finally we
provide a conclusion.

Growing Biological Networks with
Homogeneous Types

Based on the five basic ingredients that were discussed in
the previous section, a growth model is defined as follows:
Every type (vertex) in the network is identified by a bi-
nary string of length N so that only 2N types are possible.
Yet, since biological system consists of multiple interacting
copies (instances) of the same type, whose abundance can
change due to the underlying dynamics, every vertex also
has a variable indicating the number of instances that are
present (the concentration). The general reasoning is that
for every interaction an instance has to exist. An interaction
is defined by a binding process: two instances of particular
types bind when their binary string is sufficiently comple-
mentary. Since we are using bitstrings to represent types,
the hamming distance (DH) is used to calculate the differ-
ence. The resulting binding rule for an instance of type n i to
connect to another instance of type n j is:

DH(ni,n j) > t (1)

meaning that the Hamming distance (DH) has to be superior
to a given threshold t. The value of t influences only one
physical property of the NoI i.e. the maximal number of
links any type in the NoI can possess. This idea of binding
comes very natural in interactome modelling (Thomas et al.,
2003; Maslov and Sneppen, 2002).

Because every node uses bit-strings of the same length
N and the same threshold value t we refer to the types as
homogeneous. This assumption can be relaxed since types
in Biological system are not homogeneous. In this article,
we discuss only this first scenario.

The general structure of the growth model with homoge-
neous types works as follows:

a) Initially a few types with initial concentration equal to
one are recruited in the system in order to kick off the
growing.

b) At each time step, do:

1. Produce a new instance x from the set of possible types
T using an instance-birth dynamics (explained below).

2. Select a set of possible partners P of a predefined size
trials from the collection of types T in the current net-
work relative to their concentrations.

3. Traverse P one by one and determine the affinity be-
tween the new instance x and the potential partner p
from P. Examine the attractiveness between x and p
using Equation 1.

(a) if a partner p is found then go to 5.

4. if no partner p was found go to 7.

5. If the type t(x) associated with the new instance x is not
yet in the network then add the type, set the concentra-
tion of t(x) to 1 and connect the type t(x) with the type
t(p) of the partner.

6. If the type t(x) associated with new instance x is already
in the network then increase the concentration with 1
and if the link between t(x) and t(p) is not yet present
in the network then add it.

7. When the amount of types in the network reaches a
predefined number, the simulation stops. Otherwise go
back to 1.

This growth model incorporates a biological interpreta-
tion of the growth and preferential attachment rules pro-
posed by Barabási and Albert: At each iteration new in-
stances of a particular type are introduced to the NoI and
they are added to the NoI when they can bind to other in-
stances in the NoI. The link only appears in the network
when the types of the two instances were not bound before.
This part simulates the growth process of the model.

Important now is the distribution of types that are added
and to which type the recruited instances are connected. In
the algorithmic description, the distribution of types is de-
termined by the instance-birth dynamics. This dynamics is
a simplification since we only consider birth and no death
of instances. A complete dynamical model would require
death rate or a carrying capacity which determines the sta-
ble concentration of a particular type. This extension is left
for future work. The fundamental differences with all pre-
viously suggested growth models is that preferential attach-
ment does not depend on the current connectivity of the node
in the NoI. As we will demonstrate, it is a function of the
concentration of the types.

Before this growth model can be used, the value of a ma-
jor parameter needs to be tuned: how many types will we
select from the NoI to decide whether the new instance will
be included ? Or what is the value of trials (see step b2)?



Since, every instance in the models has the same probability
of encountering the new instance, the partners are selected
according to the concentrations of the types: a highly con-
centrated type has a higher probability to encounter the new
instance. A small value for trials indicates only that there
is a small chance that the node will find a partner. The big-
ger the value of trials the higher the possibility. As soon
as the system encounters a possible partner (p) for this new
instance, the type of the new instance can be added to the
NoI. This assumption introduces a natural preferentiallity
for types which are highly concentrated.

Further parameters are the size of the bit-string N, the
amount of types that will be added to the NoI and the value
of the threshold t. All experiments in this section are per-
formed using N = 13, t = 9 and the amount of types is lim-
ited to 1000. This limit for the NoI size is selected since
most of the experimental data of biological networks are of
modest size in terms of number of types.

Cloning Dynamics

Different instance dynamics which produce new instances
and (possibly) types can be introduced in our growth model.
Here, we discuss one production scheme: an instance of a
type is cloned and its clone is possibly mutated. Mutation
means that the bits of the string are switched from 0 to 1
or vice versa. Changing the bits has an effect on the attrac-
tiveness of the new instance towards other instances in the
system. The probability of mutation is defined by a new pa-
rameter pmut .

Every instance in the system has the same likelihood to
produce a mutated clone: At every iteration of our growth
model, a random instance is selected. Selecting a random
instance corresponds to selecting a particular type relative
to the concentrations of each type. Hence, types with high
concentrations have a higher probability to produce the new
clone than types with low concentrations.

The results of this node recruitment scheme are visualised
in Figure 1 for different values of the parameter trials. As
can be observed, the degree distribution becomes clearly
scale-free for the case where trials = 2. For higher values
of trials, the distribution shifts a bit, but remains close to
the power-law distribution. These latter distributions are re-
ferred to as scale-free with exponential cut-off and are of-
ten observed in real biological data (Jeong et al., 2001). In
the left-plot of Figure 1, it can also be seen that there ex-
ists a correlation between degree and concentration i.e. the
higher the concentration, the higher the degree. This correla-
tion between concentration and degree becomes very strong
(polynomial) in the case where trials = 2. This difference
can also be observed in Table 1. The high concentrations of
the hubs are a consequence of the very few possibilities that
cloned instances have to reconnect to the NoI. Important to
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Figure 1: Results of producing a type NoI using cloning dy-
namics. The left plot shows the correlation between degree
and type. The right plot shows the degree distribution of the
NoI in terms of the number of types. pmut = 0.001

note here is that the instance dynamics consists only of a
birth process.

These results are a consequence of the endogenous pro-
duction scheme and the amplification effect (or positive
feedback) produced by the concentration dependency: All
new instances are produced through cloning of an existing
instance. When pmut is small, this means that there is a
high probability that the node which is produced, is an ex-
act copy of the original one. In other words mutation did
not change the bitstring. Since this allows a new instance
to be added to the concentration of the highly concentrated
node, the probability of selecting this type again for cloning
increases. This explains the positive feedback mechanism:
The more clones a type produces the higher the probabil-
ity that it produces more clones in the future. Putting it in
more popular terms, the rich get richer. This latter interpre-
tation clearly reproduces the preferential attachment for this
cloning model. Yet, and this is very important, to achieve
these results the model did not make any assumptions about
the degree of the type in the NoI. The time-dependent fac-
tor here is the concentration of the type which is implicitly
linked to its degree.

The clonal model discussed here is of course strongly re-
lated to the gene-duplication model (Pastor-Satorras et al.,
2003). In both cases it is some kind of cloning mechanism
in combination with mutation which produces the new el-
ements that are added to the NoI. The important contribu-
tion of the current model, next to providing an extension
of the gene-duplication model, is that it highlights the im-
portance of a positive feedback mechanism working on the
concentration of the type to produce the power-law distri-
bution in biological growth models. A similar amplification
effect is also at work in the gene-duplication model: highly
connected nodes will receive additional connections because



they were linked to nodes that are duplicated. By adding ad-
ditional links the probability that they will receive even more
connections is increased. The difference between the gene-
duplication approach and our scheme is that we do not ex-
plicitly link this positive feedback to the degree of the node.
Linking it to the concentration makes it more plausible from
a biological perspective.

Apart from all that, the cloning model presented here also
highlights the importance of the underlying dynamics in the
formation of the NoI. Identifying this relationship with the
dynamics is fundamental since it is an important source of
new types that can be added to the NoI. It is therefore also an
active research interest in the complex network community
at the moment (Caldarelli et al., 2004).

Table 1: Physical properties of Networks produced by clonal
recruitment. < k > refers to the average degree, max refers
to the maximum degree in the network, < L > refers to the
average path length, < C > refers to the average clustering
coefficient, r refers to the assortativeness of the network and
γ refers the exponent of the power-law distribution that fits
the data. The fifth column contains data on an experiment
with a different binding rule: hamming distance smaller than
a certain value t, instead of bigger than t.

trials = 2 trials = 15 trials = 50 t = 2 and
trials = 2

< k > 10.42 10.39 9.37 4.044
max 421 180 143 211

< L > 2.82 3.01 3.11 3.51
< C > 0.00765 0.00097 0.00582 0.1219

r -0.33 -0.37 -0.36 -0.29
γ 2.7 2.4 2.6 2.3

Differences between the degree distributions shown in
Figure 1 become more clear when we examine their proper-
ties listed in Table 1. On a first observation one can see that
the value of trials has an impact on the final NoI. The aver-
age degree and max degree reduce when the number of trials
increases. When comparing the scenario where trials = 2
with the other two, we can even conclude that this reduction
is high for the value of the maximum degree. Since the de-
gree reduces, an increase of the average path length can also
be observed. In Table 1, we also added the γ values for the
exponents of the power-law distribution that fits the data. It
can be observed that the values are within the interval be-
tween 2 and 3, which contains the networks with the most
interesting properties (Albert and Barabási, 2002; Newman,
2003).

In Figure 2, the results are shown for the second ques-
tion: What happens to the NoI when the cloning process
becomes more noisy? Increasing the mutation rate (value of
pmut ) corresponds to an increase in the production of nodes
that differ more from their parents, producing almost ran-
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Figure 2: Results of producing a type NoI using clonal re-
cruitment with increasing values of pmut . The left plot shows
the degree-distributions for three values of pmut . The two
right plots visualise the correlation between degree and con-
centration for each pmut value.

dom new instances when pmut ≈ 1. The increase in muta-
tion rate corresponds to an increase in the amount of random
nodes that appear in the network. We call this source exoge-
neous. In the figure, one can observe that by an increasing
the exogenous production, the degree distribution (left plot
of Figure 2) looses its scale-free properties. This change is
confirmed by the degree-concentration correlations shown
in the two plots at the right in Figure 2: The top-right plot
shows a polynomial relationship between degree and con-
centration reflecting the power-law distribution of the NoI
produced for pmut = 0.01. The bottom-right plot shows that
when pmut increases, the correlation becomes linear which
results in a shift away from the scale-free distribution that
we had before. When pmut = 0.5, the correlation between
degree an concentration becomes sub-linear indicating that
we are coming close to the exponential distribution. In sum-
mary, increasing the exogenous production of nodes will re-
move all the hubs from the system resulting in a growth-only
model.

Analysis of the Topological Organisation

One negative aspect of the first three columns in Table 1 is
that the clustering coefficient is rather low. This is in con-
tradiction with the data that have been obtained on biolog-
ical networks (Newman, 2003). This problem in the cur-
rent model is the consequence of the simple binding rule.
Since the hamming distance has to be bigger than a partic-
ular threshold t, the mutated clone can not reconnect to the
node it was produced by. This problem is not fundamen-
tal for our model and can be easily resolved by defining an
inverse binding rule:

DH(ni,n j) < t (2)



which means that the hamming distance needs to be smaller
than some value. Using this binding rule does not change
anything in our discussion so far. The only difference is that
now, the mutated clone can reconnect to the original one. In
this way, transitive relationships can emerge and the clus-
tering coefficient will increase since it counts the number of
your neighbours that are also connected.

For instance, assume that in Equation 2 the value of t
(threshold) is 2. This means that only nodes which differ
in two 0 or 1 bit can connect with each other. When pmut is
very low, this will often be the case and we obtain a NoI with
higher clustering coefficient. Results for an experiment with
trials = 2 are visualized in Figure 3 and in the last column
of Table 1.
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Figure 3: Results of producing a type NoI using cloning dy-
namics with t = 2. The plot shows the correlation between
the clustering coefficient and the degree of the nodes of the
network. The line corresponds to the scaling law C(k)≈ k−1

which defines a law on the connectivity of the nodes in an
hierarchical network. Plot shows the resulting degree distri-
bution.

In Table 1 we can see that the average clustering coef-
ficient has increased immensely, moving the resulting net-
work closer realistic biological data. From Figure 3, one
can derive that there exists a particular community struc-
ture in this experiment: the nodes with high degree have
low clustering coefficient and the nodes with lower degree
have a high clustering coefficient. This seems to indicate
that the NoI has a modular structure where the hubs con-
nect nearly decomposable sub-networks (Barabási and Olt-
vai, 2004). In the literature of biological networks equivalent
plots have been shown for yeast protein networks (Rives and
Galitski, 2003). Such a relationship between degree and the
clustering coefficient provides a signature for modular struc-
ture. As already indicated in the introduction, this feature

enhances the robustness of the NoI in terms of its function-
ing. As argued in (Maslov and Sneppen, 2002) this increase
in robustness is a consequence of the lack of crosstalk be-
tween the different functioning modules in the NoI.

Furthermore, it has been suggested that biological net-
works are organised in a hierarchical structure, where nodes
are organised in small modules which are in turn organ-
ised into larger modules (Rives and Galitski, 2003; Hallinan,
2004). In (Rives and Galitski, 2003) it is argued that this hi-
erarchical modularity can be identified without identifying
the actual modules using a scaling law for the connectivity
of nodes in a hierarchical modular network:

C(k) ≈ k−1 (3)

with C(k) being the cluster coefficient. As can be observed,
the network produced by our model seems to come close to
the suggested law, indicating that the network has a hierar-
chical modular structure. Note that this law does not provide
any information on the form of the modularity. Hence fur-
ther analysis needs to confirm the predicted outcome.

A final observation for all the previous cloning models is
that the NoI are disassortative, a trait which is frequently en-
countered in the topological analysis of biological networks.
Dissassortativeness refers to the fact that nodes with high
degree are connected preferentially with nodes with low de-
gree. The combination of modularity and the fact that the
network is disassortative seems to indicate that it is not the
hubs that connect the different modules in the NoI (New-
man, 2003; Guimerà and Nunes Amaral, 2005). Whether
this is the case also requires further analysis.

Conclusion
In this article a new growth model has been proposed which
reflects naturally the kind of NoI one can find in real biolog-
ical systems. The approach taken in the model is to combine
general properties implicit in many biological simulations:
(i) NoI consists of types which are defined by their structural
properties; (ii) as a consequence biological NoI are type-
based and this has some implications on the properties of the
NoI; (iii) the links in the NoI are defined by complementary
or matching relations and (iv) exogenous and endogenous
mechanisms produce the new instances of existing or new
types which are recruited into the NoI.

The experiments briefly discussed here show that a scale-
free NoI is only produced in systems where new instances
are recruited using an endogenous production scheme in
combination with a positive feedback mechanism. When
this scheme is combined with an exogenous production
mechanism or the noise level in the recruitment mechanism
increases, the scale-free property disappears leading, in the
worst case, to an exponential distribution. Different from
all previous growth models is that it is not the preference of
connecting to nodes with higher degrees that leads to these



results. Type concentration determines both which types are
endogenously reproduced and to whom this newly produces
instance are connected. Hence, rich types are those which
have a high concentrations and they will get richer when the
new nodes are endogenously produced. This rich get richer
phenomenon defines the positive feedback or amplification
mechanism.

Finally, the growth model based on cloning dynamics
(with certain binding rule) produces a NoI that has a modu-
lar and hierarchical organisation as can be observed in dif-
ferent biological NoI, confirming that our model produces
NoI meaningful in a biological context. Yet, this feature of
the model and its meaning require further investigation.
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