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Abstract

Idiotypic network models give one possible justification for the appearance of tolerance for a certain category of cells while
maintaining immunization for the others. In this paper, we provide new evidence that the manner in which affinity is defined in an
idiotypic network model imposes a definite topology on the connectivity of the potential idiotypic network that can emerge. The resulting
topology is responsible for very different qualitative behaviour of the network. We show that using a 2D shape-space model with affinity
based on complementary regions, a cluster-free topology results that clearly divides the space into distinct zones; if antigens fall into a
zone in which there are no available antibodies to bind to, they are tolerated. On the other hand, if they fall into a zone in which there are
highly concentrated antibodies available for binding, then they will be eliminated. On the contrary, using a 2D shape space with an
affinity function based on cell similarity, a highly clustered topology emerges in which there is no separation of the space into isolated
tolerant and non-tolerant zones. Using a bit-string shape space, both similar and complementary affinity measures also result in highly
clustered networks. In the networks whose topologies exhibit high clustering, the tolerant and intolerant zones are so intertwined that the
networks either reject all antigen or tolerate all antigen. We show that the distribution and topology of the antibody network defined by
the complete set of nodes and links—an autonomous feature of the system—therefore selects which antigens are tolerated and which are

eliminated.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the key aspects of the idiotypic network first
proposed by Jerne is the manner in which the affinity
between clones is defined, this affinity ultimately giving rise
to the network itself. Jerne himself specifically addressed
this issue in his Nobel lecture in 1984 (Jerne, 1985) in which
he compared this affinity with the matching problem
between pieces of sentence (for example referring to
Chomsky’s work on universal grammar). Jerne’s suspicion
was that the manner in which affinity was defined would
determine the properties of the resultant networks of
connected clones. The key role played by the definition of
the pair-wise affinities between the components of a
network has been apparent in many proposed models
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which simulate the ontogenesis of the immune network,
e.g., De Boer and Perelson (1991), Calenbuhr et al. (1995)
and Detours et al. (1996). However, the work of Varela and
Coutinho (Varela and Coutinho, 1991; Varela et al., 1988)
pushes this concept even further in making a clear link
between the affinity and the topology of the resulting
network connectivity. Despite the lack of empirical data
relating to the connectivity matrix which made it impos-
sible to make any definitive statement on the analytical
nature of the topology, it is evident that Varela did not see
the connectivity of the network as simply random like in an
Erdos graph (Bollobas, 2001), but rather well structured
and playing a key role in the functionality of the system.
For instance, he discussed the topology of this connectivity
as a possible cause or signature of some auto-immune
diseases whose treatment was inspired by this new network
perspective. He showed, again using very scant data,
that people suffering from auto-immune disease could
present a less densely connected network than healthy
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ones. This reduction in connectivity could decrease the
network effect and thereby provoke homeostatic failure by
perturbing the emergent regulatory effect of this network.

The quest to understand the structure and functionality
of all types of biological networks continues, but is making
great advances with new experimental techniques which
facilitate the study of large sets of empirical data, for
example protein-interaction networks. Further advance-
ments in our knowledge and understanding are being made
by a new generation of physicists enthusiastic about small-
world effects and scale-free topology (Barabasi and Albert,
1999; Sole et al., 2002). This paper carries on this quest
with new and very unexpected findings, first presented in a
preliminary form in Hart et al. (2006).

1.1. Background: affinity measures in idiotypic networks

The study of the effects of affinity between cells was
facilitated by the notion of shape space introduced by
Perelson (1989) as a method for representing biological
molecules and therefore capturing affinities between them.
This affords the modeller a variety of alphabets and
therefore spaces in which to study the interaction of cells.
The most common choices are to adopt a bit-string
universe or an n-dimensional real (or integer) valued space.
In practice, the bit-string model is predominantly used as it
offers a rich diversity in the manner in which strings can
interact; a number of affinity functions have been proposed
which are physiologically plausible based on finding
complementary matching regions between two strings
(Perelson, 1989).

However, a low-dimensional integer representation of
cells offers some advantages in that interactions between
cells can be visualized and therefore analysed. Although it
is perhaps more natural to define affinity between two cells
in for example a 2D integer-space in terms of their
proximity and therefore similarity to each other, affinity
in terms of complementarity can also be defined in such a
universe. Stewart and Coutinho (2004), propose a model
based on a simplified version of shape space in which
points on a 2D grid represented a pair of perfectly
complementary shapes with maximal affinity. Their simple
model showed that a self-sustaining network could arise as
a result which they propose correspond to molecular self.
Furthermore, they go on to show that external antigens are
tolerated by this network, i.e. they are assimilated into the
molecular self by the network.

In related work, Bersini (2002) proposed a shape-space
model implemented in 2D in which affinity was based upon
complementary matching between cells by supposing that a
cell exerts a domain of affinity in a zone which is situated in
region obtained by reflecting the cell through the centre of
symmetry of the space. It was shown that this led to a
model in which regions of tolerance and intolerance
emerged naturally from the dynamics of the idiotypic
network, without need for pre-defining cells as being of a
particular type. This model was later explored in greater

depth by Hart in Hart and Ross (2005a, b), and Hart
(2005) and later Dilger in Dilger and Strangfield (2006)
which confirmed that these zones exist and furthermore
showed that the shape of the zones, and therefore the
subsequent properties of the network could be controlled
by altering the shape of the domain of affinity exerted by a
cell.!

In this paper, we show that contrary to opinion, the
definition of affinity imposes a very definite topology on an
emerging network, which has subsequent important con-
sequences for the properties that we can expect a network
to exhibit. The paper is organized as follows. First, two
different network models are introduced, in 2D and in a
bit-string universe. We then show how the 2D model with
complementary matching gives rise to tolerant and intol-
erant zones in the shape space. This is then contrasted to
the bit-string shape space with an affinity function based
on Hamming distance in which tolerance cannot be
obtained. We explain the anomalous results we find by
first analysing a 2D model with a similarity-based affinity
function which can be visualized in a straightforward
manner. This indicates that the topology of the network
defined by the affinity function plays a key role in the
dynamics. Finally, we confirm our hypothesis by directly
investigating the dynamics of network growth on a range
of potential topologies.

2. Description of network models

In this section, we describe the 2D and bit-string
models in which we obtain our results. In as far as
possible, the models are equivalent in the manner in which
potential cells are introduced, and in the methods by which
a cell stimulates (or is stimulated by) other cells. The
differences lie only in the representation of cells used, and
therefore the manner in which affinity between cells is
calculated.

2.1. 2D shape-space model

The following 2D shape-space model was first proposed
by Bersini (2002) and subsequently adopted in further
work by Hart and Ross (2005a, b), and Hart (2005) in
which the effect of the shape of the cell recognition region
was explored. The shape space is defined on a 2D integer-
grid of dimension X, Y. A cell is specified by a position
(x,y) on the grid. The potential network therefore consists
of a possible X x Y cells. Cells can be considered as

"Note that the usefulness of shape space as a concept for modelling
protein interaction has been challenged by Carneiro and Stewart
(Carneiro et al. (1996)) who take the view that interactions between
proteins (both idiotypic and otherwise) are essentially a relational
phenomenon and that therefore the affinity between molecules cannot
be predicted from the characteristics of the two isolated molecules. They
therefore propose a model in which affinities are generated by a procedure
based on random assignment which implies no intrinsic topology in the
resulting matrices.
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connected nodes on a graph if one cell is stimulated by
another cell. The manner in which one cell stimulates
another depends on the affinity function defined. If affinity
is defined as complementary, then two cells 4 and B have a
non-zero affinity if B lies within a circular region of radius r
centred on the point (X — x, Y — »). On the other hand, if
affinity is defined between similar cells, then 4 and B have a
non-zero affinity if B lies within a circular region of radius r
centred on A itself. For all cells that lie within a distance r
of one of the four boundaries of the shape space, then part
of their circular recognition region will fall outside of the
shape space, (X, Y). Any region outwith the shape space is
simply ignored, i.e., there are no periodic boundary
conditions. (The choice of concentration values given for
new antibodies and antigens in the algorithm below was
determined through empirical investigation. This is dis-
cussed in detail in Section 3.1.) Using these definitions, the
following algorithm can be used to simulate the growth on
an idiotypic network in which there are potential interac-
tions between both antibodies and antibodies, and
antibodies and antigens:

1. Generate at random a new antibody (x, y) and add with
concentration 10.
2. (Possibly) add a new antigen with coordinates (x,,y,)
and concentration 1000.

. Calculate the stimulation S, of each antibody.

4. If L<S4,<U, increase the concentration of the anti-
body by 1, otherwise decrease it by 1.

. Calculate the stimulation S, of each antigen.

6. If L<S,,, decrease the concentration of the antigen A4,
such that 4. < 4. — S44/(L *f), where f is simply a
scaling factor.

7. Remove any cells (antibody or antigen) with concentra-
tion 0.

W

93]

Stimulation of antibodies and antigens is calculated
according to the equations below, where S 4, represents the
total stimulation of an antibody 4b and S 4, represents the
total stimulation of an antigen Ag. The affinity between
any two cells represented in a 2D shape space by points i
and j is given by Eq. (1). (Note that the equation holds
given that r> D(i,j'), otherwise the affinity is zero.) The
term D(i,j') represents the Euclidean distance in shape
space between the cells, where j/ is the complement of
point j, on which the recognition region of j is centred.
(In the similarity model, j = j'.) The term C; represents the
concentration of cell i. r represents the radius of the
circular recognition region surrounding each complemen-
tary point. The total affinity exerted by a cell represented
by a point in shape space i is influenced by the
concentration of the cell 7, and is given by Eq. (1).
According to this equation, affinity is maximal when D(i, ')
is zero, i.e., j lies exactly at the centre of the complemen-
tary region. The affinity decreases as D(i,;’) increases, that
is, cells lying closer to the centre of the circular recognition
region provide more stimulation than those further away.

If D(i,j')>r then i exerts no affinity on J"

affinity(i,j) = Ci(r — D(i,]))
if D(i,j)<r, =0 otherwise (1)

Sap = Z

affinity(E, Ab)

antibodies E

+ > affinity(4, Ab), )
antigens A4

Sag= Y affinity(E,AD). 3)
antibodies E

2.2. Bit-string model

Except for the definition of clone identity, the bit-string
model closely follows the previous description given for the
2D shape space, maintaining a complementarity-based
affinity rule. Instead of a point in a plane, each cell is now
identified by a binary bit-string of N bits and the affinity a
cell i exerts on another cell j is defined by the following
equation:

affinity(i,j) = 100 - C; - (HD(i,j) = T)/(Npiss — T) (4)

with C; being the concentration of the cell i, HD the
hamming distance between the two bitstrings and T,
the affinity threshold, playing an equivalent role of the
parameter r in the 2D shape-space model, provided that
(HD(,j) — T) is positive, otherwise the affinity is 0.

Like before, the total affinity (field) received by a cell i,
S;, is obtained by summing the affinity for all cells present
in the system, given that this affinity can either be positive
or null, as in Egs. (2) and (3). As in the 2D scenario,
antibodies can be stimulated by antigens and antibodies,
while antigens interact only with antibodies, and not with
other antigens.

Keeping the system as similar as possible to the 2D
shape-space model, the algorithm is as follows:

1. Generate at random a new antibody cell (bit-string)
having an affinity field between L and U, with
concentration 75.

2. (Possibly) add a new antigen with concentration 100.

. Calculate the stimulation S 4, received by each antibody.

4. If L<S, < U, increase the concentration of the anti-
body by 1, otherwise decrease it by 1.

5. Calculate the stimulation S4, received by each antigen
accordingly.

6. If L<S,4, decrease the concentration by 1.

7. Remove any cells whose concentration has reached 0.

(98]

Regarding the idiotypic network as just a graph, we may
say that a cell A is connected with a cell B, if the hamming
distance between A and B is higher than this threshold T.
A high T value imposes a system where an almost perfect
complementarity is needed for stimulation, whereas a low
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T tolerates very poor complementarity for the network to
pop up. Each combination of parameters gives rise to
different stabilized networks. The size of the stable network
will depend primarily on the threshold level (T') and the size
of the window (U and L). Low specificity (low T) leads to
potential networks in which the nodes have potentially
high connectivity; this high connectivity, however, leads to
nodes becoming easily over-stimulated (exceeding the
upper limit) which in turn leads to a decrease in their
concentration. At very low 7, a network never pops up as
no cells can be sustained for long enough. The opposite can
also happen. When almost perfect complementarity is
needed for stimulation (very high T), the average degree of
the network will be so low that nodes cannot be stimulated
beyond the lower stimulation limit. So, for an idiotypic
network to pop up, an optimal individual average
stimulation value must be found in the algorithm.
A similar phenomenon is observed in the 2D model as
the radius r is increased; in fact, the recognition radius of a
cell r in the 2D model can be seen as playing a similar role
to the threshold value T in the bit-string model in that both
parameters regulate the number of potential matches that
any cell can make in each model. In 2D, when r is low, the
probability of cell finding another cell lying within its
recognition zone to provide stimulation is low, and a
network is unable to pop-up due to the low average degree.
At the other end of the spectrum, when r is large, every cell
is stimulated by every other cell; all cells become over-
stimulated and are suppressed, preventing the emergence of
a self-sustaining network. Therefore, as with the bit-string
model, there is a balance to be found between r, and also
the concentration at which cells are added (see Eq. (2)).

2.3. A comment on the proposed model

It should be noted that the model proposed above is in
fact a continuation of a whole series of idiotypic network
models that have been proposed in the past by many
authors, e.g. Stewart and Coutinho (2004), Calenbubhr et al.
(1995), Detours et al. (1996), and many others such as De
Boer and Perelson. All of these models in fact implement a
number of common features (although they differ in the
exact mechanisms by which these features are implemented):

1. The idea of a shape space: either 2D or binary.

2. The notion that both antibodies and antigens grow or
decrease in concentration depending on how they bind
to each other, i.e whether the binding is from antibody
to antibody, or antibody—antigen. Each antibody i
receives a field of affinity exerted by all others and
defined as the sum over the whole existing set of their
concentration multiplied by a degree of match between
each element of the set and antibody i. The network
arises as the result of the connections existing between
matching antibodies.

3. If the field received by a cell is too high, this causes a
decrease in concentration of the received antibody or

antigen. For the antibody, this decrease is a compromise
between the stimulation that makes them proliferate (i.e.
they are produced by the B lymphocytes) and their
mutual binding that causes them to die. For the antigen,
the decrease is due to the effect of the binding only.

4. If the field received is too low, this also causes a decrease
in the concentration of the received antibody.

5. In between these two thresholds (too low and too high)
the effect of the field for the receiving antibody is an
increase in concentration as the B-lymphocyte produc-
tion exceeds the binding.

The model presented in this paper is the simplest
instance of such a scenario. However, it has been shown
by the authors quoted above that such a simplification does
not modify the relevant phenomenology, and therefore we
utilize this simplified model in order to investigate some of
the deeper issues concerning the topology that can arise in
a connected network.

3. Experimental results

We first perform a simple set of experiments in which the
bit-string and 2D models are run for 10,000 iterations in
the absence of any antigens. Following this, a set of 50
randomly generated antigens are presented to the network
and evolution continued for a further 2000 iterations.

In order to be consistent with work reported previously
in Hart (2005), 2D experiments are performed on a grid of
size 100 x 100, resulting in 10,000 potential cells. The
values of the lower limit L and upper limit U are fixed at
L =100 and U = 10,000. Antibody cells are added to the
simulation with concentration 10; antigen cells are added
with concentration 1000. In the simulations with bit-
strings, we consider strings of length 13, creating a space of
8192 possible cells, a potential repertoire size of similar size
to the 2D shape space. The lower limit L and upper limit U
take, respectively, values 5000 and 10,000. Unless other-
wise stated, the scaling factor f is set to 100 in all
experiments.

Initial experiments performed with both network models
give surprising results (shown in Figs. 1 and 2) which can
be summarized as follows:

e The network obtained via the 2D model is always able to
tolerate a subset of antigens.

® The network obtained via the bit-string model is
intolerant of all antigens for the majority of the threshold
range (when T > 10 the network collapses as a result of a
lack of connections).

3.1. Exploration of parameter space

Experimentation shows that these results hold over a
wide range of parameters for each model. Fig. 1 presents
the results of an investigation of the main parameters of the
2D model, in particular the recognition radius r, the



426 E. Hart et al. | Journal of Theoretical Biology 249 (2007) 422436
100 T T T T T T T 100 T T T T T T -#erﬂhwrwm
g ++++++++“++M++#W e
- 80 1 80 | Lo 1€
2 60 1 60 | s 1z
3 o 2
2 antigens |l =
% 40 40 f E’
= , o
® 20 7 repertoire size A 20 | 8
O 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 0 8 N DN DN DD
S F T HN .M O S S \
Recognition Radius S S S S O RN
Antigen Concentration
100 T T T T T T T T 2000 100 2000 .
-
§s)
5 80 ] 80 11500 3
% 1500 =
— -
§ 60 60 g
5 40 40 E
] Y
= J 500 ©
S a0l 1 500 20 8
e __repertoire size »n
0 \ \ L A . . 0 0 - - - : : : : 0
0 N\ Q \} \} \} \} N\ \
\ \ \ \ N\ \ \ \
50 100 150 200 250 300 350 400 450 500 N \QQ \SQ %QQ ff?Q %QQ 0)50 @Q
Lower threshold L Upper threshold U
100 T T T T T 2000
1800 &
= 80 1 1600 %
2 repertoire size 1 1400 &
S 60 | 1 1200 5
B i 1 1000 ¢
< L ] =
5 40 antigens 800 =
8 1 600 =
® 20 1400 @
-------- 1200 @
0 1 1 1 1 1 1 O
10 15 20 25 30 35 40 45 50

Antibody concentration

Fig. 1. Figures show exploration of parameter space of 2D model with complementary affinity function. In all experiments shown, the scaling factor f
which influence the decrease in antigen concentration is set to 100. Graphs show the % of antigens tolerated by the network following presentation of a set
of 50 random antigens to a network evolved in the absence of antigen for 10,000 iterations. The tolerance is plotted as a function of: (top left) radius of
recognition region (top right) concentration of added antigens (middle left) value of the lower stimulation threshold L (below which concentration of
antibodies is reduced) (middle right) value of upper stimulation threshold U (above which the concentration of antibodies is reduced), (bottom centre)
concentration of added antibodies. In each diagram, all parameters other than the one being explored are fixed at r = 15, L = 10, U = 10,000, initial
concentration antigen = 100, initial concentration antibody = 10, scaling factor f = 100.

concentration of added antigens, A., and the lower and
upper limits L and U of the stimulation thresholds. The
ultimate outcome of any simulation is determined by a
complex interplay between these parameters. In essence, in
order for a network to emerge, then a balance must be
found which allows a number of antibodies to maintain a
level of stimulation which lies between the two threshold
limits. Insufficient stimulation causes antibodies to be
eliminated almost immediately; excess stimulation similarly
causes antibodies to be suppressed. In both cases, a
network cannot be maintained and therefore any antigens

to which the system is exposed remain in the system
indefinitely.

Fig. 1 shows, however, that there is a wide range of
parameters over which a stable network can emerge. For
example, the network is stable over a wide range of values
of r, springing into existence when r> 10. Behaviour as a
function of antigen concentration is as expected; at high
doses, even though a proportion of antigens are recognized
by the network, and correspondingly reduce in concentra-
tion, they cannot be completely eliminated in the time
allowed during the experiment, hence 100% tolerance is
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Fig. 2. Bit-string model with complementary affinity function: graphs show % of tolerated antigens as the recognition threshold of cells varies (top left),
the size of the repertoire (top right), the average degree of the biggest connected component of the network (bottom left) and the average cluster coefficient
of the network (bottom right). The network is intolerant for almost all values of the threshold. When 7' > 10, the network cannot survive and the repertoire
is basically constituted by antigens. (initial concentration (Abs) = 20; initial concentration (Ags) = 90; number of iterations: 107; average over 20
simulations; Upper limit: 1000; lower limit: 500; a random set of antigens is introduced every 10° iterations after a transient period of 10* iterations.

observed. The lower threshold limit L affects the stimula-
tion level at which antibodies are suppressed. When it rises
over 150, an abrupt change in network behaviour is
observed, and the repertoire is no longer maintained, again
allowing any added antigen to be tolerated. Correspond-
ingly, if the upper threshold U is reduced, a similar
transition occurs, and no network emerges. The final
diagram in Fig. 1 shows the response of the network as the
concentration at which new antibodies are added is
increased. Although this has little effect on the emergence
of a stable network and the corresponding behaviour of
that network to presented antigens, it has a profound
influence on the size of the repertoire. In the remainder of
this paper, for the 2D model, the following set of
parameters is used in the experiments described, unless
stated otherwise: (r =15, f =100, L = 100, U = 10,000,
new Ag,,,. = 100, new Ab.,,. = 10). These parameters are
chosen as being representative of the range of parameters
over which a stable network can emerge. However, as the
discussion above shows, the model is relatively robust to
changes in these values.

In contrast to this, experimentation with the bit-string
model shows very different results. For threshold 7'< 10,
the network shows zero tolerance to antigens. At greater
thresholds, the network cannot survive, and the repertoire
is constituted entirely by antigens (see Fig. 2, top left). A
wide-ranging exploration of the parameter space of the bit-

string model was performed before coming to this
conclusion; experimental results are not given for the full
investigation as they show little of interest. The results
shown in Fig. 2 are typical of those obtained with all
combinations of parameters. Therefore, we conclude that
the bit-string model used in conjunction with a comple-
mentary affinity function does not produce similar results
to the 2D model used with a complementary affinity
function. This suggests that different network dynamics
emerge due to the intrinsic features of the model, that is the
node definitions and binding rules used.

3.2. Further analysis of results

Following a cell’s birth, its ultimate outcome, i.e.
whether it is tolerized or immunized, is determined by the
level of stimulation or field strength it receives from cells
currently sustained in the network. Therefore, an analysis
of the field at all potential locations in the shape space
ought to indicate local tolerant and reactive zones. This is
straightforward to visualize in 2D; Fig. 3 shows the
potential field received by a hypothetical cell occupying
each of the potential sites on the grid given the existing
network after 10,000 iterations. This field is calculated
according to Eq. (2). Darker shading indicates higher field,
and vice versa. Two distinct zones are apparent. The top
half of the diagram clearly shows a zone in which all
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Fig. 3. Field experienced by a cell occupying each potential site of the grid
following emergence of the network.

potential sites experience some field; the strength of the
field itself varies throughout the zone. In the lower half of
the diagram, the majority of sites experience no field
at all (antibodies cannot survive in the complementary
zone) therefore are tolerant to any cell. Transient reactive
regions occur in this region; due to the nature of the
algorithm, cells are continuously added to the grid and
survive for a minimum of 10 iterations. If these cells occur
in the intolerant zone, they temporarily stimulate cells in
the lower half—observe, however, that the shading
indicates that the reactivity is very low at these sites. Note
that the position of the boundary line separating the two
zones is entirely an emergent result of the network
dynamics, and does not require any pre-labelling of cells
as being of a particular type, e.g. to be tolerated or to be
rejected.

Although straightforward visual representation cannot
be achieved in the bit-string model, we can compare the
distribution of field strengths received by a potential node
placed at each possible location in the shape space, given
the networks that emerge from both models. In the 2D
model, the results above imply a distribution in which a
large number of the cells receive little or no field, and the
remainder receives high field. Figs. 4 and 5 illustrate the
result for both shape spaces. The histograms obtained in
both models show very similar distributions—in both cases
a very broad degree distribution is observed. For the 2D
shape space, as expected, a large number of sites receive no
field whatsoever. The remainder receive a spread of field-
values, indicating their reactivity. The bit-string results are
similar—despite the fact that the experimental results
suggested that a much more homogeneous field distribu-

tion, with every site receiving approximately the same
average field. Thus, the field distributions appear to both
support the notion that tolerant and non-tolerant regions
should be observed in the shape space. One possible
explanation is that although these distinct zones do exist in
a bit-string space, they are so intertwined that no
separation in behaviour can occur. We explore this
hypothesis in the next section considering the topology of
the networks.

4. The relationship between affinity and topology

An affinity function based on complementarity between
cells appears to give rise to networks with very different
topological properties. In order to investigate this further,
we examine some physical properties of the observed
networks in each model. These are given in Table 1. One
main difference between the networks is obvious; the
networks obtained in the bit-string universe with a
complementarity-based affinity function and threshold
T =7 have a cluster coefficient which is one order of
magnitude larger than that obtained using the 2D model
also with a complementarity-based affinity. In contrast, the
bit-string model with 7 =8 has a cluster coefficient of
zero. The cluster coefficient stands for a rough measure of
the number of triangles present in the network, providing a
normalized value indicating the extent to which direct
neighbours of a given node are direct neighbours of each
other. Hence, the high value of the cluster coefficient in
the bit-string model at 7 =7 can be explained by the
occurrence of the motif shown on the left in Fig. 7 in the
topology of the networks, when compared with the 2D
model. The fact that this motif can occur at all is an
artefact of the affinity function which permits such
connections via a series of different matching sequences,
over a certain range of thresholds. Fig. 8 illustrates one
such sequence for "= 7. In contrast, at 7= 8, no such
motif can occur. In fact, it can trivially be shown that
for any bitstring of length L, then such triangles can
occur given that T<2L/3, where T is the threshold
used in Eq. (4)—this is confirmed experimentally by the

2Note that a discussion of topological properties of a network often
includes reference to the average path length of the network (APL), but we
have omitted this information, as it is in fact impossible to perform a
correct analysis of this property for the networks under discussion. This
results from the fact that the topological structure of the networks co-
evolve with the concentrations of the cells present, and thus the structure is
continuously and dynamically changing. Therefore, during any simula-
tion, there will inevitably be a number of time-steps at which the network
is not connected anymore, and therefore the APL cannot be calculated.
Specifically in the case of the 2D model, the resultant effective immune
network is often a collection of disconnected components, which become
connected and then disconnected again through topological fluctuations
during the evolution of the network. In the bit-string model, a similar
situation is observed, particularly following the collapse of unstable,
temporary hubs at high values of 7. At time-steps when the networks
obtained are connected, the networks are observed to have a very small
APL due to the large degree heterogeneity of these topologies. (This is
particularly true in the bit-string model.)
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Fig. 4. The diagrams examine the field that would be experienced by a potential cell (antibody or antigen) placed at each of the possible 10,000 sites on the
100 x 100 grid given an existing evolved network. In these diagrams, S, stimulation, L, lower limit (100) and U, upper limit (10,000). The upper left
diagram depicts the number of antibodies, which if occupying these sites, would have a total stimulation which (a) lies in the window L<S< U and
therefore increase in concentration, and (b) falls outside this window and would decrease in concentration (the field is calculated according to Eq. (2)). The
upper right diagram depicts the situation should each potential site be occupied by an antigen, and shows the number of antigens which would decrease in
concentration (L <S), or remain unaltered (field calculated according to Eq. (3)). The lower diagram shows the full distribution of field strengths of cells
placed at each potential site (in order to facilitate plotting, the concentration term in Eq. (2) is assumed to be 1 for all cells).
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Fig. 5. Field experienced by every potential bit-string in the bit-string space, following emergence of the network, for four different affinity thresholds.

relationship between threshold and cluster coefficient The presence of this motif would explain the observed
shown in Fig. 2, bottom right, which shows zero cluster  results; any antigen can always find itself with two kinds of
coefficient for 7>8. responding antibodies closely located in the bit-string
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Fig. 6. Final degree distribution d(k) for the bit-string model with 7" =7 and 8. d(k) = Ny /N where N gives the number of nodes with k connections
(degree) and N the total number of nodes. The figure illustrates an important point: at both thresholds, the observed distributions are similar, exhibiting
high levels of heterogeneity. However, the internal structure of the networks at 7= 8 and 7' = 8 is completely different, with the former exhibiting high
levels of clustering, while the latter has zero cluster coefficient. The existence of this kind of random network with hubs is very unstable because hubs
cannot remain in network for a long time. After appearing they will get over-stimulated and will collapse immediately after.

Table 1
Network properties of shape spaces with varying affinity measures (2D
results obtained with r = 15 and with 7' = 7, 8 for the bit-string model)

2D complementary 2D similar  Bit-string model

T=17 T=38
Number of nodes 167.8 102.42 209.7 153.2
Maximum degree  29.4 18.17 158.8 113.5
Average degree 4.7 8.52 10.9 5.2
Cluster Coeff. 0.022 0.792 0.13 0.0

This corresponds to a space of size 10,000 in 2D and of 8192 in the bit-
string model. The values of r =15 and T =7 are chosen such that the
number or potential matching pairs in each model is as close as possible.
Results with 7= 8 are also included to illustrate the difference in the
network structure when the threshold level prevents the formation of
clusters. Each value results from an averaging over 20 simulations. The
degree of a node is defined as the number of connections existing between
a node and other nodes. The cluster coefficient of the network is calculated
by averaging over all vertices, the fraction of vertices adjacent to a given
vertex that are adjacent to each other. Therefore, its possible values range
from 0 to 1, with 1 indicating that all the neighbouring nodes are
connected to one another.

Fig. 7. (a) Motif obtained using similarity-based affinity metric. (b) Motif
obtained using complementary-based affinity metric.

space, one in high and the other in low concentration. At
the end, the response of the network to any antigen
intrusion just depends on the initial concentration of this
antigen and therefore no longer on the position of this

1001 1001 1001 1
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@9
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Fig. 8. The figure shows an actual example of a triangular motif that
could be obtained in a network where nodes are represented by bit-strings
of length 13, with threshold 7' = 7. A non-zero affinity exists between all
pairs of cells with HD>7. In this example, A connects with B, as the
hamming distance HD = 9. Similarly, a connection exists with A and C
(HD = 8), and also with B and C (HD =9).

antigen, as the space has been uniformly filled up with all
types of antibodies.

In contrast, in the network obtained in 2D, there is a
high incidence of the motif shown in the right hand side of
Fig. 7, creating the conditions for a zero cluster coeffi-
cient—if «a stimulates b and b stimulates ¢, then ¢ cannot
stimulate «. This automatically creates a Dbi-partide
structure which does not allow any creation of loops
among sets of three nodes. It is clear that a network
composed predominantly of motifs of this type will
necessarily have cluster coefficient close to 0. In fact, the
value obtained in the 2D space used is slightly larger than
zero (see Table 1) as clustering can occur between cells
located very close to the centre of the space, where
(X —x,Y —y) is approximately equal to (x,y). The
network topology therefore prevents clusters, but facilitates
the emergence of chains of cells which are able to separate
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the space into distinct regions. Therefore, the location of
any antigen in shape space will determine whether it is
tolerated or eliminated. Thus, we hypothesize that an
affinity function which tolerates the existence of a
triangular motif as observed in the bit-string universe will
result in a topology in which it is impossible to separate
distinct zones of high reactivity from those of low
reactivity, therefore resulting in a network which reacts
identically to any presented antigen. On the other hand, an
affinity function which supports the emergence of the “V”
shaped motif obtained with the 2D model will result in a
topology which clearly separates reactive zones from non-
reactive zones. In the following sections, we present some
supporting evidence for this argument.

The cluster coefficient is just one indicator of the
topology of a network, and appears to provide some
justification for the existence of intertwined tolerant and
reactive zones as outlined above. Clearly, however, there
are other factors which could also result in mixed zones in
which it is impossible to separate tolerant from reactive
behaviours. This is apparent from Fig. 2 which shows that
the bit-string network is still unable to tolerate any antigens
when the threshold >8, despite the fact that the cluster
coefficients of such networks are zero. However, other
types of motifs could also occur in these networks which
potentially may result in the same end result, i.e. that there
is intermingling of zones of high and low field. For
example, it is likely that a number of closed loop motifs, of
the form A — B« C«> D < E < A exist which result in the
same effect. The main message of this paper remains the
same, however; the topology of network impacts its
behaviour. The clustering coefficient is one of a number
of ways in which topology can be defined, and appears to
explain the 2D results and provide partial explanation in
the bit-string case.

A further insight into network topology can be gleaned
by examining the average degree of the obtained networks.
Fig. 6 compares the degree distribution of two bit-string
networks at 7= 7 and 8. Both show a high heterogeneity
in terms of degree, and similar distributions, despite the
fact the network with 7 =8 has a completely different
internal structure. The existence of nodes with such high
degree shows that hubs can appear in the immune-network

models used. However, this topological feature is very
unstable—hubs easily appear but disappear promptly due
to becoming over-stimulated as result of an excessive
number of connections. The structure of such networks is
therefore very unstable, even if their capacities to reject
antigens are extremely powerful. The fact that the
distributions of both networks shown are similar despite
the differences apparent in the structure of the networks
emphasizes the role of the overall topology of a network
rather than individual cell connectivity in determining
functionality.

4.1. A similarity-based affinity function in 2D

In order to confirm our hypothesis that the presence of
the triangular motif in the network topology prevents the
emergence of distinct tolerant and intolerant zones, we
perform one further experiment in the 2D space, modifying
the affinity function to one which is based in similarity
between nodes. Thus, we assume a cell 4 recognizes
another cell B if B lies within a circular recognition region
centred on A. It is trivial to see that such a function
supports the emergence of the triangular motif. For
example, any three points lying at the corners of an
equilateral triangle of side length <r will be connected in
this model as points in the 2D space are connected if the
Euclidean distance between them is less than the recogni-
tion radius r. If the hypothesis is true, we would therefore
expect this affinity function to result in a network topology
which has high cluster coefficient and is intolerant of
antigens, as in the bit-string case.

Similar experiments to those described in Section 3 are
performed. Fifty antigens are presented to a evolved
network, and the percentage of them tolerated measured,
as a function of ¢, the concentration at which antigens are
added, and f, the scaling factor in the antigen concentra-
tion-update function introduced in Section 2.1. The results,
presented in Fig. 9 show two distinct behaviours.
Essentially, two extremes are observed; zero tolerance or
100% tolerance, depending on the balance between
concentration, radius and scaling factor, with a switch
between the two behaviours over a small concentration
range when f is very low. This is in accord with Eq. (2).
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Fig. 9. 2D model with similarity-based affinity function: graphs show % of tolerated antigens as the recognition radius of cells varies (left) and as a

function of antigen concentration and scaling factor f (right).
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Fig. 10. Examination of field and stimulation received at potential network sites for 2D shape space with similarity-based affinity.

An analysis of the field strength (Fig. 10) at each site
corroborates the explanation suggested by bit-string
results; the field is relatively homogeneous across the entire
network, caused by the intertwining of tolerant and
intolerant regions. This averages out the total field received
at any site, resulting in the behaviours observed above.

Analysis of the bit-string model with a similarity-based
affinity measure is not included in this manuscript, as it
follows from the discussion just presented that such an
analysis would not contribute any further evidence to our
argument for the following reason: as in the 2D model, an
affinity function based on similarity would only serve to
further enhance the incidence of the triangular motif in the
networks (reflected in the value of the cluster coefficient),
therefore magnifying the effect already observed with bit-
strings and a complementary affinity function. Such a high
cluster coefficient simply creates conditions under which
antigens are all tolerated or all eliminated, depending on
the initial concentration of the antigens.

5. Potential networks

The 2D shape-space network described above defined a
potential network of 10* cells. This potential network is
almost completely homogeneous in that the majority of
cells in the network can potentially stimulate exactly the
same number of other cells.” The average degree of any cell
in the network is influenced by the size of the stimulation
zone surrounding the cell, i.e. by r. The potential degree of
any cell is therefore the maximum number of other cells to
which it can potentially connect, governed of course by the
area defined by r and is equal for all cells. The results
described above have shown that depending on the affinity
rule chosen, the effective network, i.e. the one that actually
emerges, is a homogeneous graph with high or low cluster
coefficient. Likewise, the N-bit-string model implies a
potential network of 2V cells. This potential network is

*Note, however, that due to the boundary effects discussed earlier cells
lying within a distance r of the boundaries of the space have fewer
potential connections due to the fact that part of their stimulation zone
will lie outside of the shape space.

also homogeneous as the affinity rule is the same for every
cell. In this case, the affinity rule implicitly defines the
average path length in the network, and the global affinity
threshold 7' defines the average degree in the network.
Therefore, in both cases, in our experiments we have
implicitly created a homogeneous potential network con-
taining all possible cells, and have studied the dynamics on
this network of all cells with concentration greater than 0.
The resulting real immune network is simply a sub-graph
of the potential network in which nodes are defined by cells
with concentration greater than 0, and links by edges
connecting cells with non-zero concentration.* Based on
these results, we make a tentative claim that potential
networks in which the cluster coefficient does not equal
zero cannot sustain a separation between tolerant and non-
tolerant regions of the shape space.

Clearly, the 2D and bit-string models presented here
with simple affinity functions represent a gross simplifica-
tion of real interactions between immunological cells.
However, let us assume that there exists a plausible
representation £ in which cells interact via a realistic
affinity function .o/. This gives rise to a network N with a
particular topology. This facilitates an alternative experi-
mental approach: Assume a potential, homogeneous graph
G which defines a potential network. This network
implicitly defines a shape space (by defining a certain
topology), and affinity function, and even the stimulation
area of any cell (by defining the individual potential
degree). This allows us to bypass any definitions of these
parameters and directly study the effect of network
topology on the emergence of tolerant zones within a
shape space.

Therefore, we consider graphs in which a cell X
stimulates another cell Y if X has concentration different
from 0 and if X has a link with Y in the underlying
potential network. All connections are assumed to have the
same weighting. The stimulation sy, y) received by a cell X

“This viewpoint corresponds exactly to that observed in Stumpf et al.
(2005) by Stumpf et al. who note that real-world protein networks
correspond to potential networks, and that experimental results corre-
spond to a sampling of this network.
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from Y is zero if X does not have a link with Y in the
potential network, and is equal to o * Cy otherwise, where
o is simply a pre-defined constant and Cy is Y’s
concentration. Depending on the total amount of stimula-
tion received by X, its concentration will either increase or
decrease, just like in the previous models. If the total
stimulation is between a lower and a higher stimulation
thresholds its concentration will increase by one, and
decrease also by one unit otherwise. The ability of the
evolving network to tolerate antigens is measured by
exposing the network to a set of 50 randomly generated
antigens every 1000 iterations. The antigens are permitted
to remain in the network for a period of 1000 iterations. At
the end of this period, the number which have non-zero
concentration is recorded, and these antigens are consid-
ered as tolerated. These remaining antigens are then
removed from the network before a new set of 50 antigens
is added again.

Therefore, for a potential network of 10* nodes, at each
time-step:

o Introduce a new antibody cell by randomly choosing an
empty node (C; =0) from the potential network and
assign it a concentration C;>0.

e Calculate the total stimulation of each cell with non-zero
concentration, summing the stimulation received from
each first neighbour in the potential network.

o Update the concentration of each cell as before, using
the usual stimulation window.

e Every 1000 generations, record the number of tolerated
antigens. Following this, remove them from the network
and then add a new set of 50 random antigens.

5.1. Results in homogeneous potential networks

In this section, we study the topological effects on the
emergence of tolerance assuming a homogeneous graph in
which all nodes share the same potential degree. We
consider potential networks of the same size as before—10*
nodes. To tackle the main differences between the studied
affinity functions in terms of a potential network approach,
we study two kinds of regular graphs: a regular ring
of size N and a bi-partide regular network made of two
rings of size N/2 (see Fig. 11) with an average degree (k).
The former case corresponds to an affinity function
based on the similarity between cells. This creates a
potential network where triangles or loops are often
present. In the latter case, we create a regular network
that can pictured as two parallel rings of nodes—ring
A and B. Nodes belonging to the first ring can only be
connected with nodes of ring B and vice versa. For
instance, for an average degree of 4, a node i belonging to
the ring A will be connected to the node at the position
i—1,i—2,i+ 1 and i+ 2 of the ring B. In this way, we
produce the bi-partide equivalent of a regular network,
with exactly the same spatial constraints and average
degree, but implicitly defining two groups of interacting
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Fig. 11. This scheme illustrates a bi-partide equivalent of a regular graph
corresponding to the complementarity affinity rule. In this example the
average degree is 4 (see main text). The ring made of circles on the top is
the complement of the ring formed of square on the bottom.

cells in a bi-partide fashion. The cluster coefficient will be
trivially equal to zero in this case, where in the normal
regular network will be given by (3k — 6)/(4k — 4), with k
standing for the average degree of the network (Dorogot-
sev and Mendes, 2003). This bi-partide regular graph
corresponds to the complementarity affinity function,
which has been shown to give rise to two perfectly distinct
areas in terms of tolerating antigens, contrary to the
similarity rule (see previous sections). The results for
this simplified model are shown in Fig. 12. They can
be compared directly to the previous results in 2D in
which we plot radius vs % tolerated antigens, as the
potential average degree is topologically equivalent
to the radius of stimulation. It shows that the existence
of a bi-partide topology defining the set of all possible/
potential interactions promotes the emergence of high
levels of tolerance for most of the values of (k). This
result corroborates with the previous results obtained with
the 2D shape-space model and validates the simplification
and abstraction introduced here. This emphasizes our main
point, i.e. that the existence of a non-null value for the
cluster coefficient emerges acts as an important deterrent
for the existence of tolerance zones in the shape space, at
least when homogeneous potential networks are consid-
ered. Moreover, Fig. 12 shows three regions (regarding (k))
limited by abrupt transitions. The first one occurs when the
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Fig. 12. In the upper panel we show the percentage of tolerated random antigens as a function of the average degree of the underlying regular network for
two types of regular networks: a regular ring and bipartide regular ring. Previously we have shown that similarity and complementarity can give a
completely different outcome in terms of tolerance probability. Here we study the same phenomena after isolating the topologically characteristics
for each affinity definition (see main text for details). These results correspond to an average over 50 runs. In the middle panel we show the dependence of
the equilibrium size of the network in the potential average degree. The lower panel represents the relationship between the potential average
degree and the effective average degree of the nodes with concentration different from 0. (initial Ab concentration = initial Ag concentration = 200;

upper stimulation limit = 1000 = 2 - lower stimulation limit).

potential network does not provide enough stimulation to
maintain the majority of the antibodies inside the window
range (low potential average degree). For a moderate level
of potential links, a second type of behaviour emerges.
Here the potential network offers the ideal conditions for
the emergence of a self-sustained system of antibodies,
avoiding both under and over stimulation. In this range the
effective size of the network increases together with the
effective average degree. Finally, when the potential
average degree becomes too high, the majority of nodes
are able to become over-stimulated. Under these condi-
tions, the equilibrium size of the network collapses together
with the effective average degree.

6. Discussion and future work

We have presented results using two instantiations of a
homogeneous network model coupled with various affinity

measures, and obtained with more abstract potential
networks. Our work, as in the majority of previously
published models of idiotypic models, has made the
assumption that the affinity function is defined in such a
way that every cell type has intrinsically the same number
of potential stimulation partners. This disregards a
plethora of recent results in the area of complex
biochemical networks showing that the majority of the
real-world network do not share this homogeneous feature.
In fact, it has been extensively shown that most of the
biological networks are intrinsically heterogeneous, where
some nodes, considering their intrinsic chemical properties,
are able to stimulate a large number of cells, contrary to
others that stimulates only a few number of cell types. The
first ones are naturally made to connect to a large number
of other cells—they are natural hubs. Moreover, it has been
shown that most of the biochemical networks can be
characterized with broad-scale degree distribution or even
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by a scale-free degree distribution, recently popularized
by their remarkable robustness properties. Therefore,
although our results provide a novel connection between
the topological characteristics of a network (resulting from
the affinity measure) and its ability to tolerate or immunize
antigens, a natural extension to this work would therefore
be to consider the emergence of effective networks on
heterogeneous potential graphs, and furthermore, potential
graphs exhibiting scale-free (or nearly scale-free) degree
distributions. Heterogeneity in a network may offer the
potential for certain types of antigen (depending on their
degree and position in the global interaction network) to
become topologically protected against antibodies, which
are not able to destroy them, therefore increasing the
global level of tolerance. Moreover, heterogeneity effects
also play an important role in determining the equilibrium
size of the repertoire, which in turn influences the capacity
of an idiotypic immune network to tolerate antigens.
Therefore, this avenue of research is clearly ripe for further
exploration.

In addition, we have alluded to the existence of the
affinity .o which has biologically plausibility and at the
same time results in a network with the topological
properties required to create tolerant and immunizing
zones in a network. Therefore, in conjunction with
continuing studies of abstract potential networks, it may
also be fruitful to continue with the search for an affinity
measure which gives rise to the identified motifs. The vast
amount of biological data now available pertaining to
protein—protein interaction networks no doubt holds clues
to such measures, though clearly it remains a non-trivial
task to make use of this data in this way.

7. Conclusion

We have shown the role played by the affinity function
and the corresponding potential network (the network
defined by all possible cells and all possible interactions) in
defining whether or not it is possible for tolerant and
intolerant zones to co-exist in a idiotypic immune net-
works. We showed that affinity functions assuming
connections between complementary regions of the shape
space promotes the emergence of tolerant areas of the
shape space, contrary to configurations based on stimula-
tion of cells with similar properties. We also identified the
topological features inherent in both definitions by defining
an abstract model to describe an generalized way of
defining affinity among cells jumping over a explicit
definition of an affinity equation. Under this approach, it
has been shown that a null cluster coefficient and the
bipartide topology resulting from the manner in which
potential networks are organized in the complementarity
scenario creates the possibility of two distinct zones being
able to co-exist.

Ever since the idea of networks in immunology
(essentially with idiotypic networks) was first postulated,
the topology of these networks has always raised a great

deal of interest. However, the majority of previous
simulations have never addressed the nature of the binding
in such detail, particularly in terms of its impact on the
final outcome of a simulation, i.e. the structure of the
resulting network. We have shown for the first time that
the topology of a potential network—defined by the choice
of affinity function—influences the effective network that
actually emerges, and that the effective network in turn
influences one of the network’s essential capabilities: to
separate zones of tolerance from immunization zones. In
addition, the results offer further support to the notion that
intrinsic features of biological nodes create non-trivial
shape spaces which require careful analysis, in conjunction
with the sampling dynamics responsible for the emergence
of the effective network. While previous authors have often
arbitrarily selected affinity functions, this paper intends to
show that this choice is far from neutral. Although we have
selected to define binding functions at the extrema of the
potential spectrum (i.e. binding occurs if antibodies have
symmetrical or equal profile) in order to illustrate our
point, many more intermediary functions could have been
studied without changing the essential message of this
paper. There is now a wealth of literature concerning
protein networks and their topology. This paper lends
further weight to the growing evidence that the topology of
a biological network plays a key role in understanding its
behaviour, by presenting experimental evidence showing
that this phenomena is indeed true in the case of idiotypic
networks.
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