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The goal of designing autonomous and successful agents is of-
ten attempted by providing mechanisms to choose actions that max-
imise some reward function. When agents interact with a static en-
vironment, the provided reward functions are well-defined and the
implementation of traditional learning algorithms turns to be feasi-
ble. However, agents are not only intended to act in isolation. Often,
they interact in dynamic multiagent systems whose decentralised na-
ture of decision making, huge number of opponents and evolving
behaviour stems a complex adaptive system [3]. This way, it is an im-
portant challenge to unveil the long term outcome of agents’ strate-
gies, both in terms of individual goals and social desirability [9]. This
endeavour can be conveniently achieved through the employment of
new tools from, e.g., population dynamics [4] and complex systems
research, in order to grasp the effects of implementing agents whose
strategies, even rational in the context of static environments, may
turn to be disadvantageous (individually and socially) when succes-
sively applied by members of a dynamic population.

In this paper, we present a paradigmatic scenario in which be-
havioural errors are pernicious if committed in isolation, yet are
the source of long-term success when considering adaptive popula-
tions. Moreover, errors support population states in which fairness
(less inequality) is augmented. We assume that the goals and strate-
gies of agents are formalised through the famous Ultimatum Game
(UG) [2]. We focus on the changes regarding the frequency of agents
adopting each strategy, over time. This process of social learning, es-
sentially analogous to the evolution of animal traits in a population,
enables us to use the tools of Evolutionary Game Theory (EGT),
originally applied in the context of theoretical biology [4]. We de-
scribe analytically the behavioural outcome in a discretised strategy
space of the UG, in the limit of small exploration rates (or the so-
called mutations) [1]. This allows us to replicate the results of large-
scale simulations [7], yet avoiding the burden of computational re-
sources.

1 Ultimatum Game

The rules of UG are quite simple: some amount of a resource is con-
ditionally endowed to one agent (Proposer) that must suggest a divi-
sion with a Responder; secondly, the Responder will accept or reject
the offer. The agents divide the money as it was proposed, if the Re-
sponder accepts. By rejecting, no one gets anything.

The rational behaviour in UG can be defined using a game-
theoretical equilibrium analysis, through a simple backward induc-
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3 CBMA and Departamento de Matemática e Aplicações, Universidade do

Minho

tion. Facing the decision of rejecting (earn 0) or accepting (earn some
money, even if a really small quantity), the Responder would always
prefer to accept. Secure about this certain acceptance, the Proposer
will offer the minimum possible, maximising his own share. De-
noting by p the fraction of the resource offered by the Proposer,
p ∈ [0, 1], and by q the acceptance threshold of the Responder,
q ∈ [0, 1], acceptance will occur whenever p ≥ q and the subgame
perfect equilibrium [5] of this game is defined by values of p and
q slightly above 0. This outcome is said to be unfair, as it presents
a profound inequality between the gains of Proposer and Respon-
der. The strategies of agents that value fairness are characterised by
prescribing a more equalitarian outcome: a fair Proposer suggests an
offer close to 0.5 and a fair Responder rejects unfair offers, much
lower than 0.5 (i.e. p = 0.5 and q = 0.5).

2 Analytical Framework and Results

We consider the existence of two populations (Proposers and Re-
sponders) each one composed by Z agents. Let us assume that a
Proposer and a Responder may choose one of S strategies, corre-
sponding to increasing divisions of 1. A Proposer choosing strategy
m ∈ {1, 2, ..., S} will offer the corresponding to pm = 1

S
m and a

Responder choosing strategy n ∈ {1, 2, ..., S} will accept any offer
equal or above qn = 1

S
n. The two-person encounter between a Pro-

poser and a Responder thus yields 1 − pm to the Proposers and pm
to the Responder if the proposal is accepted (n : qn ≤ pm) and 0 to
both agents otherwise.

We are concerned with the role of systematic errors in the execu-
tion of the desired strategy, namely, by the Responders. We assume
that each Responder with strategy n (and threshold of acceptance qn)
will actually use a threshold of q′n, calculated as q′n = qn+U(−ε, ε),
where U(−ε, ε) corresponds to an error sampled from a uniform dis-
tribution between −ε and ε. Thereby, a Responder (using strategy
n) accepts an offer pm ∈ [qn − ε, qn + ε] with a probability given
by P (q′n ≤ pm) = P (qn + U(−ε, ε) ≤ pm) = P (U(−ε, ε) ≤
pm − qn) =

∫ pm−qn

−ε
1
2ε
d(pm − qn) =

pm−qn+ε
2ε

. The probability
of acceptance is 0 if pm < qn − ε and is 1 if pm ≥ qn + ε. The re-
sulting payoff of a pair (proposal, acceptance threshold) is, thereby,
linearly weighted by the probability of acceptance, considering the
execution error (ε).

As we assume a well-mixed population, the fitness of each indi-
vidual is given by the average payoff earned when playing with all
the agents in the opposite population. Considering the existence of S
different strategies in the opposite population of the one from which
agent A belongs; denoting ki as the number of agents using strategy
i, in the opposite population of A; and regarding Rj,i as the payoff
(reward) earned by an agent A using strategy j, against an agent with
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strategy i, the fitness of agent A is given by FAj =
∑S

i=1
ki
Z
Rj,i.

The adoption of strategies will evolve following an imitation pro-
cess. We assume that at each step two agents are chosen, one that
will imitate (agent A) and one whose fitness and strategy will serve
as model (agent B). The imitation probability will be calculated us-
ing a function — (1+ e−β(FB−FA))−1 — that grows monotonously
with the fitness difference FB −FA [10]. The variable β in the equa-
tion above is well-suited to control the selection pressure, allowing
to manipulate the extent to which imitation depends on the fitness
difference. Assuming that two agents are randomly sampled from
the population in which ki agents are using strategy i (the remaining
are using strategy j), the probability of having ±1 (more or less 1)
individual using strategy i is given by

T±(ki) =
Z − ki

Z

ki
Z − 1

(1 + e∓β(Fi(ks)−Fj(ks)))
−1

(1)

assuming that in the opposite population the number of agents us-
ing another strategy s is ks and that the population size is Z. Note
that Z−ki

Z
(and ki

Z−1
) represent the sampling probabilities of choos-

ing one agent with strategy j(i).
With probability μ, a mutation occurs and individuals change their

strategy to a random one, exploring a new behaviour regardless the
observation of others. The imitation process described above will oc-
cur with probability (1−μ). If we assume that μ → 0, we are able to
derive analytical conclusions through a simpler apparatus [1]. Under
this regime in which mutations are extremely rare, a mutant strategy
will either fixate in the population or will completely vanish [1] and
the number of different strategies present in the population is at most
two. The time between two mutation events is usually so large that
the population will always evolve to a monomorphic state (i.e., all
agents using the same strategy) before the next mutation occurs. This
fact allows us to conveniently use Equation (1) in the calculation of
the transition probabilities between intermediate states (where a mu-
tant is still invading and two strategies co-exist in the population).
The transitions between monomorphic states are described through
the fixation probability of every single mutant of strategy i in ev-
ery resident population of strategy j. A strategy i will fixate in a
population composed by Z − 1 individuals using strategy j with a
probability given by

ρi→j (ks) =
1− e−βΔF (ks)

1− e−ZβΔF (ks)
(2)

These probabilities define an embedded Markov Chain, governed
by the stochastic matrix T , in which Ti,j = ρi→j defines the fixation
probability of a mutant with strategy i in a population with Z−1 indi-
viduals using strategy j. A derivation from Equation (1) to Equation
(2) and more details regarding Equation (2) can be found in [4, 10].
To calculate π, the stationary distribution of this Markov Process,
we compute the normalised eigenvector associated with the eigen-
value 1 of the transposed of T . πa,b represents the fraction of time,
on average, that is spent when the population of Proposers is using
strategy a and the population of Responders is using strategy b. The
number of possible states depends on the discretisation considered
in the strategy space available in Ultimatum Game. If the Proposer
and Responder have, each, S available strategies, there are S2 dif-
ferent monomorphic states. The resulting average fitness is provided
by the average fitness of a population in each monomorphic state,
weighted by the time spent in that state. Thereby, the average fitness
of the population of Proposers is given by F =

∑S

a=1,b=1
πa,bRa,b
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Figure 1. Analytical results showing the role of errors (ε) and population
sizes (Z) in the overall fitness of Proposers and Responders. β = 10,

Z = 100, S = 20

and the average fitness of the population of Responders is given by
F =

∑S

a=1,b=1
πa,bRb,a.

With this framework, we are able to show that the fitness of the
Responders will be maximised if they commit a significant execution
error, sampled from an interval close to [−0.3, 0.3] (Figure 1). More-
over, this framework is well suited to capture the stochastic effects of
considering finite populations and even the role of different popula-
tion sizes. We additionally verified that increasing β and Z promotes
determinism in the imitation process which benefits the fitness of the
Proposers and undermines the fair distribution of gains between Pro-
posers and Responders. Even employing a different methodology,
these results are in line with the discussions performed in [6, 8].
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