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Abstract. The design of artificial intelligent agents is frequently accomplished
by equipping individuals with mechanisms to choose actions that maximise a sub-
jective utility function. This way, the implementation of behavioural errors, that
systematically prevent agents from using optimal strategies, often seems base-
less. In this paper, we employ an analytical framework to study a population of
Proposers and Responders, with conflicting interests, that co-evolve by playing
the prototypical Ultimatum Game. This framework allows to consider an arbi-
trary discretisation of the strategy space, and allows us to describe the dynamical
impact of individual mistakes by Responders, on the collective success of this
population. Conveniently, this method can be used to analyse other continuous
strategy interactions. In the case of Ultimatum Game, we show analytically how
seemingly disadvantageous errors empower Responders and become the source
of individual and collective long-term success, leading to a fairer distribution of
gains. This conclusion remains valid for a wide range of selection pressures, pop-
ulation sizes and mutation rates.

1 Introduction

The attempt to model artificial intelligent agents, revealing human-like behaviour, is
often implemented through utility-maximisation heuristics, as rationality fits the role
of stylised model of human behaviour. When empirical evidence shows that humans
systematically deviate from the rational model, explanations suggest the lack of in-
formation or computational power. Consequently, the concept of bounded rationality
relaxes the strongest assumptions of the pure rational model [15, 27]. Either way, the
existence of seemingly irrational decisions is often disadvantageous, if one considers
agents in isolation.

Agents are not only intended to act alone in environments, however. Often, they in-
teract in multiagent systems, whose decentralised nature of decision making, huge num-
ber of opponents and evolving behaviour stems a complex adaptive system [19]. When
agents interact with a static environment, the provided reward functions are well-defined
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and the implementation of traditional learning algorithms turns to be feasible. Yet, in the
context of the mentioned large-scale multiagent systems, the success of agents strongly
depends on the actions employed by the opponents, very much in the same way as we
observe in the evolutionary dynamics of social and biological ecosystems [21, 29]. The
adaptation of agents, and the learning procedures devised, face important challenges
that must be considered [37]. Likewise, the strong considerations about what means
to be a rational agent in Artificial Intelligence should be relaxed, or extended. This
endeavour can be conveniently achieved through the employment of new tools from,
e.g., population dynamics [21] and complex systems research [20], in order to grasp the
effects of implementing agents whose strategies, even rational in the context of static
environments, may turn to be disadvantageous when successively applied by members
of a dynamic population.

In this paper, we present a paradigmatic scenario in which behavioural errors are
the source of long-term success. We assume that the goals and strategies of agents
are formalised through the famous Ultimatum Game (UG) [11], where the conflicting
interests of Proposers and Responders likely result in an unfair outcome favouring the
former individuals. Additionally, we simulate a finite population of adaptive agents that
co-evolve by imitating the best observed actions. We focus on the changes regarding the
frequency of agents adopting each strategy, over time. This process of social learning,
essentially analogous to the evolution of animal traits in a population, enables us to
use the tools of Evolutionary Game Theory (EGT), originally applied in the context of
theoretical biology [18]. We start by describing analytically the behavioural outcome in
a discretised strategy space of the UG, and in the limit of rare mutations. Additionally,
we test the robustness of the results obtained, showing that this analytical approximation
remains valid for an arbitrary i) strategy space, ii) selection pressure and iii) mutation
rates, via comparison with results from agent-based computer simulations. We shall
highlight that this framework, together with a small part of the derived results, were
briefly introduced in a short paper [35].

The structure of this paper will continue as follows: Section 2 presents the related
work in the scope of the game we experiment with, in the field of EGT and, specifically,
in its connections with multiagent learning (MAL). Section 3 will present the methods
employed, namely, the analytical model that we employ to study evolution as a stochas-
tic process and the analogous agent-based Monte Carlo simulations. In Section 4, we
present the results derived from both methods. Finally, Section 5 is used to provide con-
cluding remarks about the role of execution errors, the nature of its long-term benefits
and its relation with the own irrational action.

2 Background

In the present work, we assume that the success of agents is directly derived from the
UG [11]. The rules of this game are simple: two players interact in two distinct roles.
One is called the Proposer and the other is denominated Responder. The game is com-
posed by two subgames, one played by each role. First, some amount of a given re-
source, e.g. money, is conditionally endowed to the Proposer, and this agent must then
suggest a division with the Responder. Secondly, the Responder will accept or reject the
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offer. The agents divide the money as it was proposed, if the Responder accepts. By re-
jecting, none of them will get anything. The actions available to the Proposers compose
a very large set, constituted by any desired division of the resource. The strategies of the
Responders are typically acceptance or rejection, depending on the offer made. We can
transform this sequential game in a simultaneous one, if one notes that the strategy of
the Responders may be codified a priori in a minimum threshold of acceptance [22, 38].
This game condenses a myriad of situations in daily life encounters and in economic
interactions. Its use is threefold ideal for the situation we want to analyse; for one way,
it allows a simple and objective qualification of utility, as we assume that the success
of each agent is uniquely defined by the payoffs earned in the context of this game; for
other, this game metaphor is the source of multiple studies that account for an irrational
behaviour by human beings [11, 4], considerably hard to justify mathematically; lastly,
by being the last round of a bargaining process, the pertinence of this game and its pre-
dicted outcome is specially important in artificial intelligence, namely in the design of
artificial bargaining agents [16, 14, 17].

The rational behaviour in UG can be defined using a game-theoretical equilibrium
analysis, through a simple backward induction. Facing the decision of rejecting (earn
0) or accepting (earn some money), the responder would always prefer to accept any
arbitrarily small offer. Secure about this certain acceptance, the Proposer will offer the
minimum possible, maximising his own share. Denoting by p the fraction of the re-
source offered by the Proposer, p ∈ [0, 1], and by q the acceptance threshold of the
Responder, q ∈ [0, 1], acceptance will occur whenever p ≥ q and the subgame perfect
equilibrium [16] of this game is defined by values of p and q slightly above 0. This
outcome is said to be unfair, as it presents a profound inequality between the gains of
Proposer and Responder. The strategies of agents that value fairness are characterised
by prescribing a more equalitarian outcome: a fair Proposer suggests an offer close to
0.5 and a fair Responder rejects unfair offers, much lower than 0.5 (i.e. p = 0.5 and
q = 0.5).

The rational predictions regarding this game were repeatedly refuted by experi-
mental results. The methods employed to make sense of human decision making and
adopted behaviour in UG have, necessarily, to be extended beyond pure rational choice
models. The need to disuse optimal methods to model human behaviour, and the rel-
evance of including culturally dependent features, were pointed out in previous works
[27, 1]. To overcome the limitation of an optimal rational model, methods related with
psychological features and machine learning techniques were proposed [28]. We follow
a different path, adopting methods from population ecology, as EGT. EGT was, in the
past, successfully used to predict how individual choices may influence the collective
dynamics of self-regarding agents, from cells to climate negotiations — see, e.g., [21,
38, 29, 45, 33]. We employ the UG as a game metaphor, without assuming individual
or collective rationality. In a social context, EGT describes individuals who revise their
strategies through social learning, being influenced by the behaviours and achievements
of others [38, 12, 25]. These dynamics of peer-influence allows one to evaluate the ex-
tent of the errors and the impact of the own irrational action.

One of the most traditional tools to describe the dynamics of an evolutionary game
model is the replicator equation [40]. This equation, justified in a context of trait evo-
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lution in biology or cultural evolution across human societies, poses that populations
are infinite and evolution will proceed favouring strategies that offer a fitness higher
than the average fitness of the population. The fact that replicator equation describes
a process of social learning does not prevent it from being convenient in understand-
ing individual learning. A lot of effort has been placed in bridging the gap between
replicator dynamics and multiagent learning [2]. Borgers and Sarin showed that there is
indeed an equivalence between replicator dynamics and a simple reinforcement learn-
ing model (Cross learning) [3]. Also, the relationship between Q-learning and replicator
dynamics was positively evidenced [43]. It is also important to highlight that EGT is
not confined to infinite populations as the replicator equation. The finite nature of real
multiagent systems poses the need to consider stochastic effects related with the proba-
bilistic sampling of peers to interact and imitate, a feature that may significantly impact
the resulting description of the evolutionary dynamics and the obtained results [13, 33].
This is particularly relevant within multiagent systems research. Thus, in both analytical
and numerical computations, we consider evolution as a stochastic process occurring in
finite populations [42].

The role of erroneous behaviour during UG encounters was modelled in the past,
however in different flavours. Rand et al. studied, both analytically and resorting to ex-
periments, the role of mistakes and stochastic noise in the imitation process of strategies
[26]. While that work focus on the role of mutations (or exploration rate) and selection
strength (see next section for more details), here of focus on strategic noise, affect-
ing directly the adopted strategies by agents and not the own strategy update process.
Notwithstanding, we verify the same general principle: increasing stochasticity, either
through high execution errors, low selection strength or small population sizes, has a
positive effect on Responders’ fitness and overall population fairness. Also in [10] the
authors studied errors in executing actions, considering a two-strategy version of UG
(the so-called Minigame). The role of errors (in the strategic update process, however)
was also studied in the context of multiplayer Ultimatum Games (MUG), both in EGT
models [34] and populations with reinforcement learning agents [31]. Next, we present
the steps to model the role of execution errors considering large populations of agents,
and an arbitrary strategy-space discretisation of UG.

3 Model and Methods

To study the impact of errors in the long-term fitness of agents, we employ two distinct
methods. In the first, we describe the prevailing (emergent) behaviours analytically,
while resorting to two approximations: we discretise the strategy space of the Ultima-
tum Game and assume a small mutation (or exploration) probability. These simplifica-
tions allow a convenient analytical computation of the most prevailing states, without
the need of massive simulations. Notwithstanding, we complement our study with a
second method, achieved through simulations that consider the full Ultimatum Game.
The simulations are repeated for 100 times (runs) and during 5000 generations. We
conclude that the analytical framework proposed provides equivalent results, and may
constitute a convenient way of accessing the role of errors in the natural selection of
behaviours.
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In both methods we consider the existence of two populations (Proposers and Re-
sponders) each one composed by Z agents. The adoption of strategies will evolve fol-
lowing an imitation process. The successful individuals will be imitated, thereby, their
strategies will prevail in the population. This process of imitation, akin to social learn-
ing, fits well with studies that argue for the importance of observing others in the ac-
quisition of behavioural traits [12, 25]. We assume that at each step two agents are
chosen, one that will imitate (agent A) and one whose fitness and strategy will serve
as model (agent B). The imitation probability will be calculated using a function —
(1 + e−β(fB−fA))−1 — that grows monotonously with the fitness difference fB − fA
[42]. The variable β in the equation above is well-suited to control the selection pres-
sure, allowing to manipulate the extent to which imitation depends on the fitness dif-
ference. Whenever β → 0, a regime of random drift is attained, in which the imitation
occurs irrespectively of the game played, whereas for β → +∞ the imitation will occur
deterministically, as even an infinitesimal fitness difference will persuade the imitation
of the fitter individual. It is worth to note that, when deciding about imitation, an agent
will only observe the fitness of the other agent and the respective strategy; the agents
do not have full-information about all interactions of all agents, neither observe the
outcome of all individual interactions.

It is also worth to point out that our model copes with fitness, rather than utility.
A utility function could vary from agent to agent and could be defined, for instance, to
incorporate equality preferences [8], or even a risk-aversion component in the Proposers
decision making. Differently, here fitness is uniquely defined by the payoffs of the game,
and defines which strategies prevail. The differences between coping with behavioural
deviations from rationality through the inclusion of parameters in the utility functions
or the study of learning models, is well discussed in [6].

3.1 Analytical framework

Let us assume that a Proposer and a Responder may choose one of S strategies, corre-
sponding to increasing divisions of 1. A Proposer choosing strategy m ∈ {1, 2, ..., S}
will offer the corresponding to pm = 1

Sm and a Responder choosing strategy n ∈
{1, 2, ..., S} will accept any offer equal or above qn = 1

Sn. The two-person encounter
between a Proposer and a Responder thus yield 1− pm to the Proposers and pm to the
Responder if the proposal is accepted (n : qn ≤ pm) and 0 to both agents otherwise.

We are concerned with the role of systematic errors in the execution of the desired
strategy, namely, by the Responders. The class of these errors should not be mixed with
errors implemented in learning procedures, which favour exploration over exploitation,
and may naturally provide advantages in deriving optimal policies (as ε-greedy methods
or softmax action selection [39]). Indeed, the errors considered in this paper do not
provide a direct feedback to their practitioners and they do not interfere in the social
learning procedure. We assume that each Responder with strategy n (and threshold of
acceptance qn) will actually use a threshold of q′n, calculated as q′n = qn + U(−ε, ε),
where U(−ε, ε) corresponds to an error sampled from a uniform distribution between
−ε and ε. Thereby, a Responder (using strategy n) accepts an offer pm ∈ [qn−ε, qn+ε]
with a probability given by P (q′n ≤ pm) = P (qn + U(−ε, ε) ≤ pm) = P (U(−ε, ε) ≤
pm − qn) =

∫ pm−qn
−ε

1
2εd(pm − qn) = pm−qn+ε

2ε . The probability of acceptance is 0
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if pm < qn − ε and is 1 if pm ≥ qn + ε. The resulting payoff of a pair (proposal,
acceptance threshold) is, thereby, linearly weighted by the probability of acceptance,
considering the execution error (ε).

This allows us to compute the average payoffs of each strategy in each interaction,
its average fitness and respective transition probabilities (see below). As we assume a
well-mixed population, the fitness is given by the average payoff earned when playing
with all the agents in the opposite population. Considering the two populations (Pro-
posers and Responders), we say that the population of Proposers is opposite to the
population of Responders, and vice-versa. Payoff will be defined by encounters be-
tween agents from opposite populations and imitation will happen within a population.
Thereby, considering the existence of S different strategies in the opposite population
of the one from which agentA belongs; denoting ki as the number of agents using strat-
egy i, in the opposite population of A; and regarding Rj,i as the payoff (reward) earned
by an agent A using strategy j, against an agent with strategy i (calculated following
the rules of UG with execution errors as detailed above), the fitness of agent A is given
by

fAj
=

S∑
i=1

ki
Z
Rj,i (1)

To model the dynamical behaviour of agents when two strategies are present in
the population, we adopt the pairwise comparison rule (see [42]), where the imitation
probability increases with the fitness difference (see above). Assuming that two agents
are randomly sampled from the population in which ki agents are using strategy i (the
remaining are using strategy j), the probability of having ±1 individual using strategy
i is given by

T±(ki) =
Z − ki
Z

ki
Z − 1

(1 + e∓β(fi(ks)−fj(ks)))
−1

(2)

assuming that in the opposite population the number of agents using another strategy s
is ks and that the population size isZ. Note that Z−kiZ (and ki

Z−1 ) represent the sampling

probabilities of choosing one agent with strategy j(i) and (1 + e∓β(fi(ks)−fj(ks)))
−1

translates the imitation probability.
Additionally, with probability µ, a mutation occurs and individuals change their

strategy to a random one, exploring a new behaviour regardless the observation of oth-
ers. The imitation process described above will occur with probability (1−µ). As said,
if we assume that µ → 0 [9, 30, 44, 33, 5], we are able to derive analytical conclusions
through a simpler apparatus. This simplified limit turns out to be valid over a much
wider interval of mutation regimes [44, 33]. Also, while this assumption reduces the ran-
dom exploration of behaviours, it does not prevent us from considering other stochastic
effects, as ε, the execution error of Responders. Under this regime in which mutations
are extremely rare, a mutant strategy will either fixate in the population or will com-
pletely vanish [9]. The time between two mutation events is usually so large that the
population will always evolve to a monomorphic state (i.e., all agents using the same
strategy) before the next mutation occurs. Thus, the dynamics can be approximated by
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means of a Markov chain whose states correspond to the different monomorphic states
of the populations. This fact allows us to conveniently use Equations (2) in the calcu-
lation of transition probabilities, as will be detailed below. Moreover, the time that the
populations spend in polymorphic populations is merely transient, thereby disregarded
[13, 9].

The transitions between states are described through the fixation probability of every
single mutant of strategy i in every resident population of strategy j, that translate how
easy is for a strategy originated by a rare mutation, to fixate in a population. A strategy
i will fixate in a population composed by Z − 1 individuals using strategy j with a
probability given by [23]

ρ
i→j

(ks) = (

Z−1∑
l=0

l∏
k=1

T−(ks)

T+(ks)
)

−1

(3)

where ks is the number of individuals using strategy s, in the opposite population.
Also, while we are calculating the fixation probability in a specific population, the
opposite one will remain in the same monomorphic state. This fact allow us to even
simplify the calculations [42]. Writing fi(ks) − fj(ks) as ∆f(ks) and noting that
T−(ks)/T

+(ks) = e−β∆f(ks), Equation (3) reduces to,

ρi→j (ks) =
1− e−β∆f(ks)

1− e−Zβ∆f(ks)
(4)

These probabilities define an embedded Markov Chain, governed by the stochas-
tic matrix T , in which Ti,j = ρ

i→j
defines the fixation probability of a mutant with

strategy i in a population with Z − 1 individuals using strategy j. To calculate π, the
stationary distribution of this Markov Process, we compute the normalised eigenvec-
tor associated with the eigenvalue 1 of the transposed of T . πa,b represents the frac-
tion of time, on average, that is spent when the population of Proposers is using strat-
egy a and the population of Responders is using strategy b. The number of possible
states depends on the discretisation chosen, regarding the strategy space considered in
Ultimatum Game. If the Proposer and Responder have, each, S available strategies,
there are S2 different monomorphic states. The resulting average fitness is provided
by the average fitness of a population in each monomorphic state, weighted by the
time spent in that state. Thereby, the average fitness of the population of Proposers is
given by f =

∑S
a=1,b=1 πa,bRa,b and the average fitness of the population of Respon-

ders is given by f =
∑S
a=1,b=1 πa,bRb,a. Our results refer to S = 20. We tested for

S = 10, 20, 30, 40 and the conclusions remain the same.

3.2 Agent based simulations

The simplifications considered in the previous subsection enable the description of the
system as a convenient stochastic process, whose dynamics can be studied without ef-
fort. Yet, to know whether the results achieved are sound, we proceeded through agent
based simulations, in which agents may choose a continuity of strategies (i.e. S →∞)
and mutations are arbitrary.
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We employ a general procedure to simulate evolving agents in the context of EGT.
At each time step, a population is picked with probability 0.5. From that population,
two agents are chosen (agent A and agent B). The fitness of each agent is calculated by
using their strategy against all agents from the opposite population, each with their own
strategy. Agent A will then imitate agent B with a probability provided by the sigmoid
function — (1 + e−β(fB−fA))−1 — presented in the beginning of this section. With a
small probability of µ, imitation will not take place and agent A updates the own strat-
egy to a randomly picked one, between 0 and 1. In biology, this corresponds to a genetic
mutation while, in social learning and cultural evolution (and also in typical reinforce-
ment learning algorithms [39]), this mimics the random exploration of behaviours.

The same procedure takes place in the opposite population. When 2Z steps of imi-
tation occur, Z in each population, we say that one generation has elapsed. We evolve
our system for 5000 generations, and we save the average fitness and average strategy
used, for each population. In the beginning, agents start with random strategies, sam-
pled from a uniform distribution between 0 and 1. We repeat the simulation for 50 times,
each time starting with random conditions. The results presented (average fitness and
average strategy) correspond to a time average over all generations and an ensemble
average over all repetitions. In all plays done by the Responders, a noise factor will be
added to their base strategy. Thus, the real strategy employed by Responders will cor-
respond to q′, their base strategy (q), plus U(−ε, ε), a random value between −ε and ε
sampled from a uniform distribution in each interaction. Additionally, we followed the
same procedure yet assuming a normal distribution with ε defining the variance and q
defining the mean of the distribution. The same conclusions were obtained, however,
the optimal value of ε that maximises the Responders’ fitness is lower than the one
observed with a uniform distribution (but still higher than 0).

4 Results

In this section we report the analytical and numerical results. Anticipating the detailed
presentation, we show that the fitness of the Responders will be maximised if they com-
mit a significant execution error, sampled from an interval close to [−0.3, 0.3]. Both
methodologies are in consonance with this conclusion.

In Figure 1 we show how the average fitness of Proposers and Responders is affected
by changing the range of possible execution errors (ε) committed by Responders. For
different β the conclusion remains equivalent: if the error increases, Responders are
endowed with increased fitness. The Proposers are always harmed by the erroneous
behaviour of Responders. The subgame perfect equilibrium prediction poses that Pro-
posers will earn all the pot, by offering almost nothing to the Responder and assuming
an unconditional acceptance by this agent. Yet, if it is assumed that Responders will
commit execution errors, which, in the case of heighten the threshold of acceptance
may be seen as an irrational behaviour, the Proposers necessarily have to adapt to have
their proposals accepted and earn some payoff. This adaptation leads to increased of-
fers (see Figure 3), favouring the average fitness of the Responders. Additionally, we
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Fig. 1. Analytical results, reporting the average fitness (f ) of Proposers (empty circles), average
fitness of Responders (filled triangles) for different spans of error committed by the Responders
while choosing a strategy, ε. It is notorious that it is beneficial for the Responder to behave
erroneously, to some extent. If Responders reject irrationally some proposals, the Proposers have
to adapt and start to offer more, beneficing, in the long run, the Responders; If Responders reject
too much, they will harm themselves and the population of Proposers, as they will waste too
much proposals. Z = 100, S = 20.

note that if the Responders error unreasonably, both Proposers and Responders will be
impaired.

One may argue that the results presented in Figure 1 strongly depend on the sim-
plifying assumptions made: the discretisation of strategy space; the assumption of hav-
ing an equivalence between an average error committed by all agents and the different
errors committed individually, within a range; the assumption that most of the time,
populations are in a steady monomorphic state, only perturbed by rare mutations. Yet,
Figure 2 shows that our conclusions, and the applicability of the analytical model, are
more general than one may initially expect. Figure 2 reports the almost exact same re-
sults as Figure 1 whereas in this case, they refer to agent based simulations. In these
simulations, the assumptions made are disregarded: agents may use any strategy be-
tween 0 and 1, each Responder commits a different error within the same range, every
time an interaction occurs and no impositions are posed, regarding the time spent in
monomorphic states.

The results arguing for an optimal value of error that maximises the fitness achieved
by Responders, are also robust for different values of Z (population size), µ (mutation
rate) and β (selection pressure). We tested with µ ranging from 0.001 to 0.1 (Figure 2),
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Fig. 2. Results from agent-based computer simulations, reporting the average fitness (f ) of Pro-
posers (empty circles), average fitness of Responders (filled triangles) for different spans of error
committed by the Responders while choosing a strategy. It is notorious that it is beneficial for the
Responder to behave erroneously, to some extent. The results confirm that for a wide range of
mutation values (µ), the conclusions regarding the role of execution error (ε) in the emergence of
fairness remain valid. Z = 100, β = 10

and the conclusions remain valid. Further analytical results regarding β and Z can be
accessed in Figures 4 and 5.

In Figure 3 we present the emerging strategies of Proposers (p), regarding the ex-
ecution error by the Responders (ε). The fairer offers made by the Proposers coincide
with the highest fitness achieved by the Responders (when ε=0.3).

Using both methods (analytical and simulations) it is also possible to assess the
impact of β (intensity of selection) and Z (population size) in the emerging average
fitness (Figures 4, 5). Again, the analytical and numerical results coincide. Increas-
ing β and Z promotes determinism in the imitation process (see Section 3). Thereby,
if the strategy update depends on the fitness difference between agents and no execu-
tion errors are considered, the system evolves into a state in which Proposers offer less
and Responders accept everything. As an outcome, Proposers keep almost all the pay-
offs. Even employing a different methodology, these results (regarding the connection
between stochasticity and fairness) are in line with the discussion performed in [26, 34].

5 Discussion

In this paper, we apply a novel analytical framework to study UG in a finite popula-
tion, with an arbitrary state space discretisation. This framework enables the evaluation
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p0.1 1 0.1 1
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0

0.3

Fig. 3. Prevailing behaviour of Proposers (p) for different execution errors (ε) and selection pres-
sure (β), calculated using the proposed analytical framework. Circles coloured using a grayscale
represent the stationary distribution over possible base strategies, calculated analytically. Darker
colours mean that the system spends more time in the corresponding state. It is possible to observe
that the Proposers maximise their offers (towards fairer proposals) when ε = 0.3. That increased
offer coincides with the increase in the average fitness earned by the Responders. Z = 100,
S = 20
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Fig. 4. Analytical results showing the role of selection pressure (β) in the overall fitness (f ) of
Proposers (empty circles) and Responders (filled triangles), considering two different execution
errors by Responders ε = 0 and ε = 0.3. An increase in β undermines the fitness of Responders.
For high intensities of selection, the advantages for Responders of behaving erratically is evident.
Z = 100, S = 20

of stochastic parameters (i.e. selection pressure and different population sizes) in the
dynamics of strategy usage in UG. We are able to show, both analytically and through
agent-based simulations, how execution errors (ε) may promote increased fitness and
fairer offers in UG. If the Responders are induced to commit execution errors (which
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Fig. 5. Analytical results showing the role of different population sizes (Z) in the overall fitness
(f ) of Proposers (empty circles) and Responders (filled triangles), considering two different ex-
ecution errors by Responders ε = 0 and ε = 0.3. An increase in Z undermines the fitness of
Responders, similarly to what happened with an increase in β. In fact, high values of Z trans-
late into a population more deterministic, as the fixation of disadvantageous traits by stochastic
perturbations turns to be harder. Again, for high population sizes, it is clear the advantage for
Responders of behaving erratically. β = 10, S = 20

should not be confused with a mixed strategy, mutation or exploration rate), the seem-
ingly disadvantageous nature of errors turns to be, indeed, an illusion. As Responders
error, the Proposers need to adapt and necessarily have to propose generous offers to
cover possible errors. Yet, it is also important to understand the extent to which should
Responders error. Clearly, being overly erroneous is not beneficial. Other than avoid-
ing the proper adaptation of Responders through the adoption and use of strategies that
conduce to fair payoffs, an exaggeration in error span would waste too much proposals,
harming both Proposers and Responders. This said, we find an optimal error value in
the range [−0.3, 0.3] (i.e., ε = 0.3), meaning that, if Responders evolve their base strat-
egy to be close to 0, they would still reject low offers, up to a 0.3 of the total amount
help by the Proposer. Despite the plethora of experimental studies in the context of UG,
where humans are asked to play this game, a common result is that proposals giving
the responder shares below 0.25 are rejected with a very high probability [7], which is
interestingly close to the results we obtain.

Finally, we shall highlight that the model we propose avoids the rationality suppo-
sition of classical game theory, by assuming that strategies are adopted as the outcome
of an evolutionary process of social learning. The relation between our conclusions
and eventual results derived from an equilibrium analysis that incorporates noise, as
trembling hand perfect equilibrium or quantal response equilibrium, are naturally in-
teresting. However, by using those game theoretical tools, one would ease the fact that
games are often played by agents within adaptive populations, and overall, what seems
rational as an individual behaviour may not constitute a good option regarding the col-
lective results [36, 24]. Indeed, in our model, we may identify actions that, even if not
rational at an individual scale, turn to be justifiable from an evolutionary point of view.
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Execution errors may be seen as a pernicious individual feature that provides collective
benefits. Resorting to a multi-level selection mechanism [41], our results may indicate
how little pressure evolution may exert to diminish those errors, leading to a plausible
argumentation for the natural selection of ”erroneous” behaviours, fostered by psycho-
logical and emotional factors [4]. Moreover, the fixation of these execution errors is
the source of a fairer distribution of payoffs in the UG, as the gains of Responders ap-
proximate the gains of the Proposers. As future work, we intend to adapt the proposed
framework to analyse the role of errors in group decision making (specifically in mul-
tiplayer ultimatum games), where fairness and conflicting interests are paramount [34,
32]
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