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From group hunting to global warming, how to deal with
collective action may be formulated in terms of a public goods
game of cooperation. In most cases, contributions depend on the
risk of future losses. Here, we introduce an evolutionary dynamics
approach to a broad class of cooperation problems in which
attempting to minimize future losses turns the risk of failure into
a central issue in individual decisions. We find that decisions
within small groups under high risk and stringent requirements to
success significantly raise the chances of coordinating actions and
escaping the tragedy of the commons. We also offer insights on
the scale at which public goods problems of cooperation are best
solved. Instead of large-scale endeavors involving most of the
population, which as we argue, may be counterproductive to
achieve cooperation, the joint combination of local agreements
within groups that are small compared with the population at risk
is prone to significantly raise the probability of success. In
addition, our model predicts that, if one takes into consideration
that groups of different sizes are interwoven in complex networks
of contacts, the chances for global coordination in an overall
cooperating state are further enhanced.
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Human cooperation in public goods problems is often
threatened by the immediate advantage of free riding, which

can drive the population into the tragedy of the commons (1). An
excellent example of such a class of problems concerns the
mitigation of the effects of global warming, which has been de-
scribed as one of the greatest public goods dilemmas that
humans face and the one that we cannot afford to lose (2–6).
Indeed, given that the welfare of our planet is an indivisible good
accessible by all, individuals, regions, or nations may opt to be
free riders, hoping to benefit from the efforts of others while
choosing not to make any effort themselves (1–12). Moreover,
nations and their leaders seek a collective goal that is shadowed
by the uncertainty of its achievement (13). Such types of
uncertainties have repeatedly happened throughout human his-
tory (14, 15) from group hunting (16, 17) to voluntary adoption
of public health measures (18) and prospective choices (19, 20).
Hence, in general, investments or efforts targeting the mitigation
of future losses will depend on how likely such losses seem to be,
which is beautifully illustrated in actual experiments making use
of a repeated game (3) in which the perception of risk was shown
to constitute an inescapable issue in dealing, in that case, with
the problem of climate change. In the following work, we shall
propose an evolutionary approach to such broad classes of col-
lective action problems in which the risk of group failure plays
a central role in individual decisions.
Let us consider a population of size Z in which individuals

engage in an N person dilemma characterized by a limited set of
behaviors: to cooperate or to defect. Game participants each
have an initial endowment b. Cooperators (Cs) contribute
a fraction c of their endowment, whereas defectors (Ds) do not
contribute. Furthermore, we require a minimum collective in-
vestment to ensure any benefit. If a group of size N does not

contain at leastM Cs (or equivalently, a collective effort ofMcb),
all members will lose their remaining endowments with a prob-
ability r (the risk); otherwise, everyone will keep whatever they
have. Imposing such a threshold mimics situations common to
most of the public endeavors described above, and it also extends
to nonhuman dilemmas (21–23), where a minimum combined
effort is needed to achieve a collective goal. This is also the case
in international environmental agreements (extensive reviews in
refs. 5, 6, 11, and 12), which demand a minimum number of
ratifications to come into practice (3, 24, 25).
Rational players facing this one-shot dilemma will opt for

defection, because Ds always get a higher payoff in mixed groups.
However, this reasoning ignores the collective (population-wide)
dynamics, where a continuous (and eventually, long-term) pro-
cess of behavioral revision (9, 26) takes place. One can model
this process in terms of a repeated game, or one can also use
a simpler evolutionary game theoretical formulation (9, 27–29),
where individuals tend to copy others whenever these seem to be
more successful. In the first case, strategies may be defined by
a contingency plan, which, as argued before (26), is unlikely to be
maintained on a long time scale. Differently, the evolutionary
approach allows policies to change as time goes by, and likely,
these policies will be influenced by the behavior (and achieve-
ments) of others, which was previously shown in the context of
donations to public goods (30–32). For instance, international
environmental agreements may be vulnerable to renegotiation,
because individuals may agree on intermediate goals or assess
actual and future consequences of their choices to revise their
position (5, 6, 9, 11–13).
In the framework of evolutionary game theory, the evolution

of the fraction x of Cs (and 1 − x of Ds) in a large population is
governed by the gradient of selection associated with the repli-
cator dynamics equation (33–35) _x ¼ xð1− xÞð fC − fDÞ, which
characterizes the behavioral dynamics of the population, where
fC (fD) is the fitness of Cs (Ds), here associated with the game
payoffs. According to the replicator equation, Cs (Ds) will in-
crease in the population whenever _x> 0 ð_x< 0Þ. Fig. 1A shows
that, in the absence of risk, _x is always negative, leading to the
extinction of Cs (x = 0) regardless of the initial fraction of
cooperators. The presence of risk, in turn, leads to the emer-
gence of two mixed internal equilibria, rendering cooperation
viable. For finite risk r, both Cs (below xL) and Ds (above xR)
become disadvantageous when rare. Coexistence between Cs and
Ds becomes stable at a fraction xR, which increases with r. Hence,
collective coordination becomes easier to achieve under high
risk, and after the coordination barrier is overcome (xL), high
levels of cooperation will be reached.
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The appearance of two internal equilibria under risk can be
studied analytically, which we do in Methods. In Fig. 1B, we show
the location of these equilibria as a function of the cost to risk
ratio γ, defined as γ = c/r, and coordination threshold M. Sce-
narios with zero, one, and two interior fixed points are possible
depending on γ, whether it is smaller than, larger than, or equal
to, respectively, a critical value γ− (defined in Methods by an im-
plicit equation). Hence, the cost to risk ratio γ plays a central role
in dictating the viability of an overall cooperative state. Intuitively,
the smaller the contribution required, the easier it will be to reach
such a globally cooperative state. Moreover, the higher the per-
ception of the risk at stake, the more likely that individuals will
react to overcome such a cooperation dilemma. Fig. 1B also
shows the role played by the threshold M: for fixed (and low) γ,
increasing M will maximize cooperation (increase of xR) at the
expense of making it more difficult to emerge (increase of xL).
In reality, however, populations are finite and in some cases,

may be small, because in many collective endeavors, from animal
group hunting and warfare to numerous human affairs such as
small community collective projects, macroeconomic relations,
and famous world summits on climate change, group and pop-
ulation sizes are of comparable size and of the order of the
hundreds (5, 6, 14–17, 21, 22, 36). For such population sizes,
stochastic effects play an important role, and the behavioral
dynamics are best described by a finite population gradient of
selection G(k/Z) (35, 37) (defined in Methods as the difference
between the probabilities of increasing and decreasing the
number of Cs by one) and the stationary distribution (38) of the
population, which characterizes the pervasiveness in time of
a given composition of the population. Stochastic effects are
amplified in the presence of errors of different sorts (inducing
behavioral mutations) (39), including errors of imitation (37, 40).
Consequently, they may play an important role in the collective
behavior at a population level.
In Fig. 1C, we show the stationary distributions for different

values of risk for a population of size Z = 50 where n = 2M = 6.
Although the finite population gradient of selection G(k/Z)
exhibits a behavior qualitatively similar to _x in Fig. 1A, Fig. 1C
shows that the population spends most of the time in config-
urations where Cs prevail, regardless of the initial condition. This
is a direct consequence of stochastic effects, which allow for
tunneling through the coordination barrier associated with xL,
rendering such coordination barrier (xL) irrelevant and turning
cooperation into the prevalent strategy.

Besides perception of risk, group size must also be considered,
because it defines the scale at which reaching an overall co-
operative state may be optimized. In particular, cooperation for
climate control can be pursued at different scales from regional
to global agreements. Hence, even if the problem is certainly
global, its solution may be attempted through the combination of
several local agreements. So far, attempts have been concen-
trated in a single global group (12, 41). As shown by the sta-
tionary distributions of Fig. 2, cooperation is better dealt with
within small groups, even if, for higher M/N values, coordination
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Fig. 1. Evolutionary dynamics of cooperation under the collective risk dilemma. (A) For each fraction x of Cs, if the gradient of selection _x is positive
(negative), the fraction of Cs will increase (decrease). Increasing risk (r) modifies the population dynamics, rendering cooperation viable depending on the
initial fraction of Cs (N = 6, M = 3, and c = 0.1). (B) Internal roots x* of _x for different values of the cost to risk ratio γ = c/r at fixed group size (N = 6) and
different coordination thresholds (M). For each value of γ, one draws a horizontal line; the intersection of this line with each curve gives the value(s) of x*,
defining the internal equilibria of the replicator dynamics (M = 4 and γ = 0.15 in the example). Empty circles represent unstable fixed points (xL), and full circles
represent stable fixed points (xR). Whenever γ ¼ γ− (which also depends onM), there will be only one internal equilibrium at x ¼ �x (Methods), whereas for γ> γ− ,
no internal equilibrium will occur. (C) Stationary distribution describing the prevalence of each fraction (k/Z) of cooperators in finite populations (Z = 50 in the
presence of mutations and imitation errors). Whenever risk is high, stochastic effects (i) turn collective cooperation into a pervasive behavior and (ii) favor the
overcome of coordination barriers, rendering cooperation viable regardless of the initial configuration (N = 6, M = 3, and c = 0.1).
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Fig. 2. Evolutionary dynamics of cooperation for different group sizes. (A)
Stationary distributions for different group sizes and constant threshold
M = 2. Cooperation will be maximized when risk is high and groups are small
(small N), because goal achievement involves stringent requirements. (B) The
same trend remains valid (to a lesser extent) whenever the threshold M
increases linearly with the group size [here chosen as M = N/2 (c/r = 0.1 in
both A and B)]. In C and D, we picture the internal roots of G(k) ≡ T +(k) −
T−(k) for different values of the cost to risk ratio γ = c/r for (C) M = 2 and (D)
N/M = 2. Regardless of the scenario, coexistence occurs for a higher fraction
of cooperators whenever groups are smaller. However, whenever the
threshold increases with the group size (D), cooperation becomes in-
creasingly more sensitive to the group size and the level of risk. In A–D, the
population size is Z = 50.
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is harder to attain (Figs. 1B and 2C). Moreover, in some types of
cooperation problems, such as CO2 emissions, larger groups may
require a larger number of cooperative parties to ensure the
same population-wide reduction level of emissions. In such cases,
it is likely that M is no longer fixed but an increasing function of
the group size N. In practice, we expect real problems to fall
somewhere between the limits of constant and variable M, given
the plethora of possibilities underlying both the definition of the
dilemma and the setup of a particular group. Here, we explore
the simplest choice for variable M assuming that it increases
linearly with N (M/N = a with a being a fixed positive constant).
The dynamical outcome from this limit is pictured in Fig. 2 B and
D (a = 1/2). As before, cooperation prevails mostly when groups
are small. Moreover, the minimum coordination (xL) needed to
reach the cooperative basin of attraction is reduced for smaller
groups, contrary to the scenario of constant M. However, as
shown in Fig. 2D, this scenario shows the central importance of
risk, because the decrease of cooperation occurs faster for high
values of the cost to risk ratio.
Taken as a whole, Fig. 2 confirms that, with increasing group size,

cooperation is inhibited in both scenarios. When applied to the
problem of climate control, the present results suggest that de-
centralized agreements between smaller groups (smallN), possibly
focused on region-specific issues where risk is high and goal
achievement involves tough requirements (large relative M), may
be preferable to world summits, because they effectively raise the
probability of reaching an overall cooperative state. This is par-
ticularly relevant, because in this case, collective perception of risk
is not necessarily high, whereas social, economic, and technologic
constraints still require sizeable costs from the parties involved (6).
The success in self-organizing cooperative behavior within small

groups compared with global dilemmas naturally begs the question
of how these groups should be organized to maximize the chances
of cooperation. So far, all groups and individuals have been as-
sumed as identical. However, sociopolitical dynamics are often

grounded on a strong diversity in roles and positions (10). As
previously discussed in the context of international summits (5),
countries or regions are part of intricate networks of overlapping
and interrelated alliances or agreements that also involve geo-
graphical neighbors and others with a global character that tran-
scends geography. Similarly, diversity in geographical positions or
social or political configurations means that some players may play
a pivotal role in a global outcome, because they may participate in
a larger number of collective dilemmas than others. The overall
number and size of the dilemmas faced by each individual may be
seen as a result of a complex interaction network, where nodes
represent individuals and links represent exchanges, collective
investments, or shared interests (28, 30, 42–49). As exemplified in
Fig. 3A, each neighborhood of such structure may represent a
group with a size given (e.g., by the connectivity of the focal in-
dividual). In Fig. 3B, we show the effect of such heterogeneity or
diversity of group sizes in the problem at stake, comparing the
finite gradients of selection in a homogeneous setting—taking the
well-mixed population as reference*—with a heterogeneous case.
For the latter, we adopt the ubiquitous power law distribution of
connectivities resulting from a scale-free interaction network (51)
(Methods) and a constant M. This leads to distributions of group
sizes and numbers of games played by each player, which also
follow a power law. As shown in Fig. 3B, a heterogeneous contact
network changes the location of the internal equilibria without
changing either the nature of the effective game or the nature of
the internal equilibria. However, the impact of such a diversity on
the type of game played in each local group is sizeable. In large
groups, coordination is easier to achieve (M/N is small), but co-
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Fig. 3. Evolutionary dynamics in heterogeneous populations. (A) Given an interaction network of size Z and average degree <ζ>, where nodes represent
individuals and links represent exchanges or shared goals, collective risk dilemmas may be associated with neighborhoods in this network. As an example, the
central individual (blue) participates in six groups, hence participating in six public goods games, each with a given group size. The individual fitness derives
from the payoff accumulated from all games in which the individual participates. (B and C) Gradients of selection (Gs) for a homogeneous (well-mixed)
population (dashed lines) and heterogeneous (scale-free) networks (solid lines) for different values of risk, a population size of Z = 500, and an average group
size of <N> = 7 = <ζ> + 1 (Methods). In B, coordination requirements are kept constant at M = 3, whereas in C, M increases linearly with the group size; our
choice of M = 3N/7 in C ensures that the average value of M is the same in both B and C. In the heterogeneous cases, both size and number of the N person
games in which each individual participates follow a power law distribution.

*The gradients of selection in well-mixed populations can be shown to be equivalent to
those associated with a population structured as a lattice or homogeneous random
network (50) for the studied dilemma, because all groups share the same size and all
players participate in the same number of games.
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existence occurs for a lower fraction of cooperators; in small
groups, coordination faces stern requirements (M/N increases),
but after these requirements are met, most group members will
actually cooperate. Hence, in heterogeneous environments, one
obtains, in a single population, a combination of the different
scenarios pictured in Figs. 1B and 2C. Fig. 3B indicates that,
whenever the risk of failure is high, introducing group diversity
primarily enlarges the stable fraction xR at equilibrium, also de-
termining a slight increase of the size of the cooperative basin of
attraction. Because coordination is easily achieved in large groups,
highly connected players at the group centers will acquire a larger
fitness. Whenever such hubs happen to be occupied by coopera-
tors (shown in ref. 46), they will influence the participants of small
groups (the majority) to cooperate, hence enabling small groups
to overcome their stringent coordination requirements. Overall,
this will act to reduce the average xL of the population. After this
coordination barrier is surpassed, coexistence will be determined
by the small size of the majority of the groups, leading to the
dominance of cooperators at xR. The same trend remains valid,
to a lesser extent, whenever we assume that, instead of a fixed
M, we fix the ratio M/N for all groups, as shown in Fig. 3C. In this
case, the positive effect resulting from having most (small) groups
turning to cooperation is hampered by the fact that now it is more
difficult for large groups to foster any cooperation in the rest of
the population, which was previously shown in Fig. 2D. None-
theless, regardless of the limit chosen, the equilibrium fraction of
cooperators is clearly enhanced in heterogeneous environments.
Overall, the increase in risk transforms a dilemma in which

contributors are always disadvantageous into one in which they
may prevail. The impact of risk is enhanced in the presence of
small behavioral mutations and errors and when global coordi-
nation is attempted in a majority of small groups under stringent
requirements to meet goals. The combination of a small average
group size and the inherent diversity of modern interaction net-
works also improves the chances of cooperation. Additionally, we
would like to emphasize that, although our model may be simple
enough to be applicable as a bare metaphor for a large plethora
of collective dilemmas in which risk management plays an im-
portant role, it is inevitably stripped of many of the complexities
present in modern human decisions. In dealing with climate
change—an example of the class of problems to which this for-
mulation may apply—countries (or regions or whatever unit of
negotiation is best found) in general will be better informed, and
this will condition decisions contingent on presently available
information. Also, we have opted to limit individuals’ behavior to
binary choices, where in fact, there are several issues related to
the amount each participant might decide to contribute and the
ensuing returns attained. Needless to say, other mechanisms (10,
29, 52–58), from kinship-based relations to reciprocity (direct and
indirect), punishment, or multilevel selection as well as exoge-
nous measures of community enforcement (known to encourage
collective action) may also enlarge the window of opportunity for
cooperation to thrive in the presence of risk.

Methods
Internal Roots of the Replicator Equation in Infinite Well-Mixed Populations.
Let us use an infinite well-mixed population with a fraction x of Cs
and the remaining fraction (1 − x) of Ds. Random sampling leads to
groups with compositions that follow a binomial distribution. Hence,
we may write the average fitness of Cs (fc) and Ds (fD) as

(35, 59, 60) fC ¼ PN− 1
k¼0

�
N− 1
k

�
xkð1− xÞN− 1− kΠCðk þ 1Þ and fD ¼

PN− 1
k¼0

�
N− 1
k

�
xkð1− xÞN− 1−kΠDðkÞ, where ΠD(k) (ΠC(k)) stands for the

payoff of a D (C) in a group of size N and k Cs. The payoff of a D can be
written as ΠD(k) = b{θ(k − M) + (1 − r)[1 − θ(k − M)]}, where θ(x) = 0 if
x < 0 and θ(x) = 1 otherwise, whereas the payoff of a C is given by ΠC(k) =
ΠD(k) − cb (0 ≤ c ≤ 1). M < N stands for the coordination threshold (3, 35)
necessary to achieve a collective benefit. For sufficiently high risk, new in-

ternal roots appear in the replicator equation _x ¼ xð1− xÞðfC − fDÞ (34) that
are associated with the roots of fC − fD in the open interval (0, 1). From the
equations above, we may write, after some algebra, that fC − fD = b(Γ(x)

r − c), where ΓðxÞ ¼
�
N− 1
M− 1

�
xM−1ð1− xÞN−M . Defining the cost to risk ratio as

γ = c/r (i.e., the ratio between the fraction of the initial budget invested by
every C and the risk of losing it), the sign of fC(x) − fD(x) is conveniently
analyzed by using the polynomial p(x,γ) = Γ(x) − γ, which in turn, can be used

to determine the critical value γ− below which an interior fixed point x* ∈
(0, 1) emerges (Fig. 1B) (obtained by finding the roots of _x numerically).

Given that
dΓðxÞ
dx

¼ −
�

N− 1
M− 1

�
xM− 2ð1− xÞN−M− 1sðxÞ, where s(x) = 1 +

(N − 1)x − M, and because N > 2 and 1 < M < N, then
dΓðxÞ
dx

has a single

internal root for x
− ¼ M−1

N− 1
. In addition, s(x) is positive (negative) for

x < x
− ðx > x

− Þ, which means that Γ has a global maximum for x ¼ x
−
.

Let γ− ¼ Γðx− Þ, where x
−
is defined as above (see also Fig. 1B). Then, it can be

shown that (i) whenever γ> γ− , the evolutionary dynamics does not exhibit
interior fixed points, (ii) whenever γ ¼ γ− , there is one single interior fixed
point, which is unstable, and finally, (iii) whenever γ< γ− , there are two in-
terior fixed points xL < x

−
< xR, such that xR is stable and xL is unstable. Let us

first prove i and ii. Because Γ has a maximum at x
−
, it follows that Γ(x) = 0 has

no solutions for γ> γ− and a single solution, at x
−
, for γ ¼ γ− . Moreover, both

when x → 0 and x → 1, p(x,γ) < 0, making x = 0 a stable fixed point and x = 1
an unstable fixed point. Therefore, if x

−
is a root, it must be unstable. To prove

iii, we start by noticing that Γ(0) = Γ(1) = 0. From the sign of s(x) (above), Γ(x)
is clearly monotonic increasing (decreasing) to the left (right) of x

−
. Hence,

there is a single root xL (xR) in the interval 0< x < x
− ðx− < x < 1Þ. Because x =

0 is stable and x = 1 is unstable, xR must be stable, and xL must be unstable.

Evolutionary Dynamics in Finite Well-Mixed Populations. For finite well-
mixed populations of size Z, the binomial sampling is replaced by a hyper-
geometric sampling (sampling without replacement). As a result, the aver-
age fitness of Ds and Cs in a population with k Cs is now written as

(35, 60, 61) fDðkÞ ¼
�
Z − 1
N− 1

�−1PN− 1
k¼0

�
k
j

��
Z − k− 1
N− j− 1

�
ΠDðkÞ and

fCðkÞ ¼
�
Z − 1
N− 1

�− 1PN− 1
k¼0

�
k− 1
j

��
Z − k

N− j− 1

�
ΠCðk þ 1Þ, respectively. We

adopt a stochastic birth–death process (38) combined with the pair-wise
comparison rule to describe the social dynamics of Cs (and Ds) in a finite
population. Under pair-wise comparison (37, 62), each individual i adopts the
strategy of a randomly selected member of the population j, with probability
given by the Fermi function (from statistical physics) p ≡ [1 + e−β(fj − fi)]−1.
Here, β (an inverse temperature in physics and equal to 5.0 in Figs. 1–
3) controls the intensity of selection. For β << 1, selection is weak, and
individual fitness is but a small perturbation to random drift in behav-
ioral space. Under this regimen, one recovers the replicator equation
in the limit Z → ∞ (37). For arbitrary β, the quantity _x
specifying the gradient of selection is replaced in finite populations by

GðkÞ≡TþðkÞ− T − ðkÞ ¼ k
Z

Z − k
Z tanh

�
β
2
½fCðkÞ− fDðkÞ�

�
, where k stands for the

total number of Cs in the population and T ± ðkÞ ¼ k
Z

Z − k
Z ½1þ e∓β½fC ðkÞ− fDðkÞ��−1

stands for the probabilities to increase and decrease the number of Cs in the
population by one individual (37).

In the presence of behavioral mutations, the populationwill neverfixate in
any of the two possible monomorphic states (63). This fact, together with the
stochastic nature of the dynamics in finite populations, renders the sta-
tionary distribution an important tool to analyze the behavior of the pop-
ulation.† Consequently, we compute the stationary distribution P(k/Z) of the
complete Markov chain with Z + 1 states shown in Figs. 1C and 2 A and B.
The probabilities entering the tridiagonal transition matrix S = [pij]

T are
defined as pk;k± 1 ¼ T ±

μ ðkÞ and pk,k = 1 − pk,k − 1 − pk,k + 1, where T ±
μ stands

for the transition probabilities for an arbitrary mutation rate μ, which are
given by Tþ

μ ðkÞ ¼ ð1− μÞTþðkÞ þ μðZ − kÞ=Z for the probability to increase
from k to k + 1 Cs and T −

μ ðkÞ ¼ ð1− μÞT − ðkÞ þ μk=Z for the probability to
decrease to k − 1 (39). Figs. 1C and 2 A and B were obtained for μ = 0.01. The
stationary distribution is then obtained from the eigenvector corresponding
to the eigenvalue 1 of S (38).

†In the absence of mutations, evolution will only stop whenever the population reaches
a monomorphic state (63). In this case, the time required for the population to reach any
of the two absorbing states may be, however, arbitrarily long (64). This will happen
whenever G(k) exhibits basins of attraction to stable polymorphic configurations.
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Evolutionary Dynamics in Structured Populations. The finite gradients of se-
lection G(k) = T+(k) − T−(k) for structured populations (Fig. 3 B and C) were
computed numerically by adopting the same stochastic update rule defined
above (37). For each random distribution k/Z of Cs, we compute numerically
the average probability that each C (D) imitates a D (C) randomly chosen from
the population. Scale-free networks of average degree <ζ> were constructed
according to the Barabási–Albert model of growth and preferential attach-
ment. Starting from a small number of nodes m0, at each time step, we add
a new node with degreem = <ζ>/2 =m0. Assuming a probability θi ¼ ζi=

P
j ζj

that the new node will be connected to an existing node i of degree ζi, we

get a power-law distribution d(ζ) ∝ ζ−3 (47, 51) of degree and consequently,
of group sizes and collective endeavors that each individual that participates.
G(k) is obtained from the computation of all possible transitions, averaging
over 2 × 104 different distributions and 10 different scale-free interaction
structures of size Z = 500 and average degree <ζ> = 6. Both homogeneous
and heterogeneous interaction schemes represent populations experiencing
games with the same average group size (<ζ> + 1 = <N> = 7). By construction,
the Barabási–Albert model imposes a minimum group size of <ζ>/2 + 1 = 4
(47, 51) in all scale-free networks. This means that, in the limit of a constant
threshold, collective coordination may be achieved in all groups for M = 3.
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