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Abstract

In this paper we propose a generalized growth model for biological interaction networks, including a set of biological features which
have been inspired by a long tradition of simulations of immune system and chemical reaction networks. In our models we include
characteristics such as the heterogeneity of biological nodes, the existence of natural hubs, the nodes binding by mutual affinity and the
significance of type-based networks as compared with instance-based networks. Under these assumptions, we analyse the importance of
the nodes concentration with respect to the selection of incoming nodes. We show that networks with fat-tailed degree distribution and
highly clustered structure naturally emerge in systems possessing certain properties: new instances need to be produced through an
endogenous source and this source needs to provide a positive feedback favouring nodes with high concentration to receive new
connections. Furthermore, we show that understanding the concentration dynamics of each node and the consequent correlation
between connectivity and concentration is a more adequate way to capture the global properties of type-based biological networks.
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1. Introduction

It has been observed in biology that in order to
understand the functional properties of living systems,
one needs to get an understanding of the topology of the
underlying networks of interactions (Nol), the dynamics
that take place on these Nol and the topological dynamics
that have constructed them (Ito et al., 2000, 2001; Uetz,
2000; Li et al., 2004; Uetz and Finley Jr., 2005; Vidal, 2005;
Berg et al.,, 2004). Questions concerning the global
properties that organize these Nol are now asked at the
level of the complete cell, i.e. questions concerning the
interactome. From a statistical physics perspective, it has
been argued that these may be answered by studying the
global physical properties of these Nol. One critical
achievement is the observation that real-world biological
Nol are not structured randomly. The data reveals a
topology where few elements can interact with many other
elements (a.k.a. hubs) whereas many others can only
interact with very few (Uetz, 2000; Alam and Arkin, 2003;
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Barabasi and Oltvai, 2004; Vazquez et al., 2003; Wagner
and Fell, 2001; Wagner, 2003; Jeong et al., 2000).
Frequently, these Nol are referred to as scale-free networks
(with or without exponential cut-off) where the degree
distribution is a power-law. Moreover, general constructive
models have been designed to explain the origin of these
Nol (Barabasi and Albert, 1999; Dorogovtsev et al., 2001;
Newman, 2003; Pastor-Satorras and Vespignani, 2004;
Dorogovtsev and Mendes, 2003; Solé et al., 2002; Strogatz,
2001).

Due to, on the one hand, the expected simplicity of the
models and, on the other hand, the absence of any real-
world biological semantics (Alam and Arkin, 2003), these
models have suggested construction rules that are difficult
to justify in a biological context: the Barabasi and
Albert (BA) model' suggests a combination of growth

'The BA model for building scale-free graphs is made of two main steps:
(i) at each time step a new node with m links is added to the network
(growth); (ii) the probability p; that a new vertex will be connected to a
node i is p; =k;/> ki, k; being the degree of node i (preferential
attachment). The more partners a node has the more likely this same node
will be the partner of a new node that enters the network. The application
of this BA law during the growing of the network, instead of a pure
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and degree-preferential attachment to explain the origin of
these scale-free Nol. Although these rules make sense in
technological and social Nol (like the Internet or co-
authorship networks), the preferential attachment rule
poses serious difficulties in a biological context: how could
a new biological node, discovering and observing potential
partners, preferentially decide to connect with one of these
on the basis of its connectivity? Although a human being
can perform such a conscious choice while involved in the
construction of any technological network or entering a
sexual network, namely to express a certain preference for
some nodes to attach to, this same preferential choice
appears quite unlikely in natural systems growing with no
human intervention since it requires high-level cognitive
capacities. Moreover, most biological networks, even
having a fat-tailed degree distribution, are not truly scale-
free (Stumpf and Ingram, 2005; Tanaka et al., 2005).
Furthermore, experimental data on biological networks
should be treated carefully due to sampling effects and
experimental constraints (Stumpf et al., 2005; Han et al.,
2005). Having in mind these issues, the importance of the
models discussed here is not only whether the resulting
network is strictly scale-free or not. It should also provide
all of other relevant properties.

In acknowledgement of the first problem, the biological
realism of the preferential attachment, the gene-duplication
model was introduced to explain the Nol of gene-
regulation networks (Vazquez et al., 2003; Wagner, 2003;
Solé et al., 2002; Chung et al., 2003). The basic assumption
here is that the preferential attachment is a consequence of
similarity between genes that produce the proteins and the
initial topology of the Nol from which it is started: proteins
that have a high degree of interactions will have a higher
probability to gain new incoming links since they are more
likely to be connected to the protein whose gene is
duplicated. The mechanism will amplify the degree
differences in the initial Nol in a similar way as the
Dorogovtsev—Mendes—Samukhin model (DMS) proposed
earlier in Dorogovtsev et al. (2001). Although the gene-
duplication model has been shown to explain the scale-free
structure for one particular biological area, there is no
direct proof, as is argued by Barabasi and Oltvai (2004),
that this mechanism is the only one, or the one that
explains the power laws in cellular networks. In Berg et al.
(2004) it was shown that link-dynamics occur at a much
higher rate than gene-duplication, making it a more
important force in the shaping of the Nol observed in the
data. Furthermore, as shown in Hallinan (2004) and Bhan
et al. (2002) the clustering coefficient of the Nol produced

(footnote continued)

random attachment law (where a new node would randomly connect with
existing nodes), will give more chance to some nodes to acquire a larger
connectivity, driving the distribution to a power-law decay for the number
of nodes as a function of their number of partners (with an exponent —3)
rather than an exponential decay produced by a random growing
(Barabasi et al., 1999).

by the gene-duplication model depends strongly on the
initial seed network on which the duplication is performed.

Here another generalized growth model for biological
Nol is presented. The motivation for the introduction of
this new model comes from the shortcomings of the BA
model in a biological context and the limited validity of the
gene-duplication model to represent other biological Nol.
The goal here is to move beyond the gene-duplication
example by defining a model that encompasses a larger set
of dynamic biological networks: instead of focussing on
one particular biological context, we incorporate a set of
basic biological principles which lie at the foundation of an
entire spectrum of dynamic models that have been
constructed to gain understanding of different biological
and chemical phenomena (for instance see Varela and
Coutinho, 1991). The basic principles we examine are: (i)
every node has a different identity based on its physical
properties defining its zype and an associated concentration
that changes in time; (ii) since every node represents a type,
biological networks are type-based network instead of
instance-based like social and technological networks; (iii)
every node connects to a selected set of nodes based on
mutual attractiveness (affinity); (iv) certain nodes have
intrinsically more ways to connect than others, i.e. they are
natural hubs; and (v) which nodes will be added to the
network depends on the dynamics of the existing nodes in
the network.

Starting from these principles, we design a generalized
growth model where we show that the power-law degree
distribution with different y can be obtained under certain
conditions, i.e. endogenous production of similar instances
of the types that are present in the network and an
amplification mechanism concerning the concentrations of
the types. As soon as these conditions are relaxed, the
network looses its scale-free properties and moves to the
other extreme of the spectrum. This other extreme is
obtained by an exogenous production model that has
similarities with the growth only model defined in Barabasi
et al. (1999). Consequently, the proposed model allows one
to examine an entire spectrum of degree-distributions
incorporating well-known principles from his or her
favourite biological area. We believe that this model
provides a richer way to discuss and evaluate biological
networks than those have been proposed so far. Further-
more, the growth model discussed in this article is one of
the first to rely on the underlying type dynamics to explain
the topological evolution. This means that in terms of
protein—protein interaction networks, we assume here that
protein interactions do not occur at constant concentra-
tions as for instance in Berg et al. (2004). This choice was
motivated by the fact that the Nol as a whole have a
functional role which is influenced by the concentrations of
the proteins it consists of. This will also make it harder to
validate this work using biological data since high-
throughput techniques like yeast two-hybrid which are
used to determine protein interaction networks does not
provide information on the in vivo behaviour of the
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proteins. For now, we only discuss a simple birth-only
dynamics to create the Nol. This particular difference with
existing growth models is important since it means that we
do not put the emphasis on the static structure of the
network; we are also interested in the underlying dynamical
behaviour since we consider it to be imperative in the
shaping of the Nol (Monk, 2003).

The structure of the article is the following. In the next
section, the basic principles (i)—(iii) and (v) are discussed.
The goal of this section is to provide a motivation for their
importance and how they fit into our biological growth
model. In a following section, the growth model is
described and different node production schemes are
discussed. Both the physical properties and the degree
distributions are provided in this section. Afterward, we
discuss in a separate section the importance of the
concentration dynamics in the growth model. In the
next section, we introduce principle (iv) and show the
effect of this assumption on the properties of the network
topology. Finally, the article is ended with a discussion of
the models.

2. Basic ingredients of the biological growth model

In this section, four of the five basic principles listed in
the introduction are discussed in depth. In each section we
explain why the particular principle is important for a
biologically oriented growth model. This explanation is
followed by a set of growth models where we analyse the
physical properties of the resulting networks. The fifth
property of natural hubness is discussed in Section 5 in
combination with the results produced by the associated
growth model. The principles are mostly inspired by both
protein—protein interaction networks and chemical reac-
tion networks. Hence, in the following sections the
different assumptions of this model will be illustrated with
examples from these areas.

2.1. Defining nodes: types and concentrations

In biology, mean-field simulations are performed to
attain an understanding of certain dynamical phenomena.
This mean-field approach assumes that interactions be-
tween the instances in the model are equally likely. Since
these instances can be clustered into different zypes, the
likelihood of interaction between the types is determined by
their concentration or frequency in the system. Although
there might not be a direct causal relation, Nol of
biological phenomena make a similar assumption: the
nodes are types with particular physical properties and
associated instance concentrations. This is different from
technological and some social networks that have been
analysed in the past. In the latter cases, every node
corresponds to one particular computer or one particular
person, whereas in for instance signal transduction net-
works, each node of the network is a particular protein
type (see, among others, Ito et al., 2000; Li et al., 2004;

Uetz and Finley Jr., 2005). We come back to this difference
in Section 2.2, where we also briefly examine the
implications of moving between these two levels of
description.

Two further motivations for defining nodes as types are
important. First, most experimental data on biological Nol
produced by high-throughput techniques is type-based
since the technique assumes that proteins appear at
constant concentrations (Berg et al., 2004). Since no
distinction is made between the proteins in terms of their
concentrations nothing can be said about the individual
interactions of the proteins. Given this fact, networks of
individual protein interactions cannot be derived and it is
hence natural to study them at the type level. Second, many
interactions between biochemical instances result in the
disappearance of the original instances since they produce
another instance (or instances) of another type (or types).
Typical examples are chemical reactions between molecular
species and complex formation in protein—protein interac-
tions as in for instance signal transduction networks (Cho
and Wolkenhauer, 2003). When an instance of protein A
interacts with an instance of protein B through binding the
instance will be part of a complex. As a consequence this
same instance of protein A will not be able to interact with
another instance of protein B or C. Hence, in such a case,
all interactions are pair-wise and no structural analysis can
be performed at that level. Yet the collection of all these
interactions at the type-level may define a completely
connected Nol whose physical properties can be studied. In
that case, a type-based approach is more relevant than a
instance-based approach. Both observations should also be
reflected in the models that try to explain the different
biological Nol.

Thus to create a growth model for a biological Nol, the
resulting Nol has to be defined at the type-level instead of
the instance-level. The interaction dynamics between, for
instance the proteins, determines which new links appear in
the functional Nol. Note that, since it is instances that
appear in the system, concentration information about the
types needs to be maintained to ensure the proper workings
of the underlying dynamics.

The distinction between type- and instance-based Nol
has recently been touched in Alam and Arkin (2003). They
argue that, as opposed to social and technological Nol,
nodes, as in for instance metabolic networks, represent
distinct chemical species. By making this observation they
explicitly define the network at the level of the type and not
the instance. They further state that highly linked nodes in
biochemical networks like water and ADP/ATP may be
understood in terms of the large number of hydrolysis and
energy-utilization reactions and the convenience of having
the same component for particular functional tasks. Thus,
the type will have a high connectivity as a result of its
internal properties that makes it a good partner to react
with. The nodes like water and ADP/ATP will be highly
linked because they are needed frequently in different
reactions and in order to perform these reactions both
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elements have to be present (or produced) in high
concentration.

When one examines different biological disciplines where
interactions play a role, these two observations make sense.
Yet, how this distinction between instances and types may
reflect on the properties of the Nol is not clear: do any of
the previous conclusions change when shifting between
these two levels of description? A simple answer can be
obtained if we take an instance-based Nol and map it onto
a type-based Nol.

2.2. Instance networks versus type networks

Suppose that a connected Nol exists at the instance level
and that it has a certain scale-free degree distribution, what
will happen to this distribution if it is mapped to the type-
level? In other words, do switches in the level of description
of the Nol of biological systems change something to the
properties of the Nol? If this is the case, then a profound
investigation is required into the growth models that have
been proposed to explain certain degree distributions.
Moreover, it requires then to explicitly define the growth
models at the type-level. The motivation to go from
instance to type as opposed to from type to instance is that
the first is simpler. If one wants to do the same simulation
from type to instance, the transformation can produces
different results for the same type-network.

To get an understanding of mapping between instance
and type-level, we performed a very simple experiment to
investigate what happens when a scale-free instance-
based Nol is transformed into a type-based Nol. Im-
portant in this simulation is that the collection of types that
will be assigned to the instances can be sampled from
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different distributions. Here, the effects of using a uniform
random and a Gaussian distribution of types are investi-
gated. Yet, a bigger variety can be imagined. As discussed
earlier, we assume that there is a connected Nol at the
instance level. This assumption is purely made to simplify
the discussion. As argued in the previous section, in
biological systems, instances will be often consumed by the
interaction.

The simple test performed here is related to other
investigations on the effect of sampling in biological
systems (Stumpf et al., 2005; Han et al., 2005). The
importance of those analyses is that even when the real
biological distribution is a scale-free, sampling this
distribution and investigating the sampled distribution
may produce different results. The difference with our
simple experiment is that, in those sampling experiments,
the instance-type distinction and consequently the distribu-
tion of type concentrations is not considered. Nevertheless,
it is sufficient to say that it follows from those tests and the
one performed here, that one has to be careful when
discussing the networks of biological systems.

The results of the experiment are shown in Fig. 1. The
simulation starts from an instance-based Nol which has a
scale-free degree distribution. It was produced using the
well-known BA model. The scale-free distribution is
visualized in the leftmost plot in Fig. 1. In the middle plot
of the same figure the resulting degree distributions are
shown for both kinds of type-distributions. In both cases,
the nodes of the network are traversed randomly and a
type selected from the particular distribution is assigned to
each node. The major result from this exercise is that when
moving from instance to type the scale-free distribution
disappears. Moreover, the resulting distribution depends
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Fig. 1. Results of producing a type Nol from a scale-free instance Nol. In the leftmost plot, the original scale-free instance Nol (produced using the BA
model) is shown (log-log plot). The middle plot shows the degree-distribution of the type Nol when types are, on the one hand, assigned in a uniform
random manner and, on the other hand, assigned using a Gaussian distribution. The rightmost plot shows for each type-network the correlation between

degree and concentration.
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clearly on the type-distribution that was used to assign
types to the original nodes. This shows that one has to be
careful when applying known properties from instance-
based Nol to type-based Nol.

An interesting consequence of this experiment is shown
in the rightmost plot of Fig. 1. In both type Nol, there
exists a correlation between the degree of the node and its
concentration. This phenomenon is less clear when using
uniform random assignment of types to the instance-based
Nol than when using the Gaussian assignment. Never-
theless, nodes of higher degree tend to have a higher
instance concentration. From a biological perspective, this
is also what was expected: although at the type-level the
nodes with high degree are rare, they have many instances
because they interacted with this amount of instances of the
other types. Consequently, this correlation has to be there.

The simple exercise discussed in this section indicates
that a more thorough investigation of biological Nol as
type-based Nol is required. Furthermore, the correlation
between degree and concentration will be an important
aspect in deciding the validity of the proposed growth
models. Since, the type-distribution seems to play a
significant role, we need to take a closer look at the
mechanism that serves as the source of the instances in the
growth models.

2.3. Defining links: the attractiveness of types

Interactions in biological systems are restricted by the
physical properties of the types in question. For instance,
in protein—protein interactions, the domains on the
proteins define the set of possible interactions, i.e. domains
bind to other domains to form complexes (Jones and
Thornton, 1996). The structural properties of each domain
on a protein determines which other proteins can bind to it:
the domains of interacting proteins need to align in the
correct way and some form of matching is required to bind
them. This structural property of binding should form an
intrinsic part of the types in the Nol. We will refer to the
potential of types to connect to other types as their
attractiveness.

Since, structural differences are traditionally modelled
using strings of elements from a particular alphabet, the
same approach will be taken here. Each type has an
associated bit-string that is used to decide whether the
instances of some other type can connect to it. If the
difference between these structural properties of the types
is above some threshold, then they are sufficiently
complementary and can connect. This interpretation
immediately maps on what is known about protein—protein
interactions. As discussed by Jones and Thornton (1996),
there is a certain fundamental characteristics to protein—
protein interfaces. Two interfaces may bind but one has to
know the binding strength in order to say something about
the relation. In Jones and Thornton (1996), the change in
the solvent accessible surface arca (A4SA) is used. Here we
define a threshold value that will provide information on

the binding strength. The complementarity of the pro-
tein—protein interface is another important issue addressed
in Jones and Thornton (1996). There, the complementarity
is determined using a gap index which is the ratio between
the volume of the gap that is enclosed by the two molecules
and the accessible surface area. Since bit-strings are used
here to represent the interface structure, the hamming-
distance function will be used to calculate this property. A
similar key-lock issue can be observed in for instance
immunological models (De Boer and Perelson, 1994;
Detours et al., 1994; Varela and Coutinho, 1991). Although
not all biological systems require this kind of binding, it is
always the structural issues that decide whether the
interaction occurs or not. Therefore, we consider this
approach general enough to model an entire spectrum of
biological Nol.

By defining links as an attractiveness relationship, we
introduce two assumptions. First, the binding occurs
between instances of the types. This means that in the
growth model, new links in the Nol will only appear when
(1) the newly introduced instance represents a new type and
can connect to an instance of an existing type or (ii) when
the new instance belongs to a type that is already in the
network but it connects to an instance of another type
which was not yet bound to the first one. Second, as in
protein networks, one instance can bind to multiple other
instances. Which elements can bind is determined by the
available domains, i.e. the bit-string in our case. So we do
not consider here the case where there is a one-to-one
mapping between instances. The major motivation for this
latter assumption is simplicity: if only pair-wise connec-
tions can be made at the instance-level, the network at the
type-level can be disconnected, which complicates things a
bit. Thus, to keep things simple we assume that instances
can bind to different other instances simultaneously.

2.4. Node dynamics: source of instances

In a dynamical system, one assumes a collection of
elements and the rules that transform them. In such a
system, all elements are produced from what is known
about the state of the system. No elements appear that
cannot be explained by doing an analysis of the internal
dynamics. We refer to such a system as an endogeneous
system. At the other extreme, the internal dynamics
produce nothing and all new elements are inserted from
the outside. This is called an exogenous system.

This difference between endogenous and exogenous
production is important since the types created by the
internal system depend strongly on the constructive
interaction rules of the biological system that is investi-
gated. On the one hand, in for instance chemical or protein
interaction systems, a reactive interaction between two
instances may produce one or more new instances which
can be similar or completely different from the original
ones. On the other hand, in for instance immune models,
randomly constructed antibodies are continuously added
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to the immune system from the outside. What is the effect
of these different sources on the topology of the Nol?

Additionally, endogenous approaches make assumptions
about the probability of encounters between the instances
in the model: the likelihood of interaction will determine
whether two instances meet and one or more new instances
are produced. Does this mean that an underlying
concentration-based dynamics is required to produce
realistic biological topologies? It was already observed in
the previous section that a correlation exists between
concentration and degree: the higher the degree, the higher
the concentration. Can this be extended to scale-free
networks? Do the hubs correspond to the nodes with the
highest concentration? This feature was left unstudied in all
previous growth models like the BA model, DMS model or
the gene-duplication model. Yet, in our opinion, it is an
essential component that brings these growth models closer
to biological reality.

In light of the current questions, we will discuss three
approaches to the node dynamics. The first approach
assumes a uniform random introduction of nodes as in
immune networks: it is an outside source that introduces
new instances. This scheme will be called the random model.
The second approach assumes that instances are intro-
duced as mutated clones of the existing nodes in the
network. This model links our work to the gene-duplica-
tion model but extends it with the basic principles we
consider necessary for a biological growth model. We refer
to this scheme as the cloning model. The final approach
assumes that two instances collide producing one new
instance. This final model draws its inspiration from
bimolecular reactions in chemistry, genetic crossover or
the binding of different proteins in for instance signalling
networks. This approach is the collision model. Other
approaches or combinations of approaches can be possible.
For now we limit ourselves to these three.

These schemes were selected because they represent
orthogonal approaches for producing new instances:
exogenous versus endogenous node production, concentra-
tion dependent versus concentration independent produc-
tion and similar versus dissimilar type production. The
random model belongs to the class of schemes that produce
nodes exogenously without taking into account the current
concentrations of the types in the network. This means that
the current state of the system does not determine what the
next instance will be that is added to the system. In the
cloning and collision schemes the opposite is true: the
current distribution of instances determines what will be
produced next. The difference between the cloning and the
collision model is that the first will produce types that are
very similar to the original one (if p,,,, is low). The second
scheme makes a combination of the two types and
produces one new type which is related to the original
ones but can be completely dissimilar. This is done by
splitting the two bit-strings of the original types and
combining two parts from them to create a new bit-string
and hence a new type.

3. Growing biological networks with homogeneous types

Given the four basic ingredients that were discussed in
the previous sections, a set of growth models using these
properties is evaluated here. Every type in the network is
identified by a binary string of length N so that only 2V
types are possible. As already indicated in Section 2.3,
instances of a type n; will connect with other instances of
other types on the basis of their complementarity. Since we
are using bit-strings, the hamming distance (DH) is used
to calculate the difference. The resulting binding rule
for an instance of type n; to connect to another instance of
type n; is

DH(n;,nj)>t, M

meaning that the DH has to be superior to a given
threshold ¢. The value of ¢ influences only one physical
property of the Nol, i.e. the maximal number of links any
type in the Nol can possess. We will demonstrate this in
one of the following examples.

Because every node uses bit-strings of the same length N
and the same threshold value ¢ we refer to the types as
homogeneous. This assumption will be relaxed in Section 5
since types in biological system are not homogeneous. For
now, we show what can be observed in this first scenario.

The general structure of the growth model with
homogeneous types works as follows:

(a) Initially a few types with initial concentration equal to
one are recruited in the system in order to kick off the
growing.

(b) At each time step, do:

1. Produce a new instance x from the set of possible
types T using one of the three birth-dynamics
discussed in Section 2.4.

2. Select a set of possible partners P of a predefined size
trials from the collection of types 7T in the current
network relative to their concentrations.

3. Traverse P one by one and determine the affinity
between the new instance x and the potential partner
p from P. Examine the attractiveness between x and
p using Eq. (1).

(a) if a partner p is found then go to 5.

4. if no partner p was found go to 7.

5. If the type #(x) associated with the new instance x is
not yet in the network then add the type, set the
concentration of #(x) to 1 and connect the type #(x)
with the type #(p) of the partner.

6. If the type #(x) associated with new instance
x is already in the network then increase the
concentration with 1 and if the link between
t(x) and t(p) is not yet present in the network then
add it.

7. When the amount of types in the network reaches a
predefined number, the simulation stops. Otherwise
go back to 1.
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This growth model incorporates a biological interpreta-
tion of the growth and preferential attachment rules
proposed by Barabasi and Albert: at each iteration new
instances of a particular type are introduced to the Nol and
their type is added when it can connect to another type in
the Nol. This part simulates the growth process of the
model. Important now is the distribution of types that are
added (see the discussion in Section 2.2) and to which type
the recruited instances are connected. The three schemes we
mentioned in Section 2.4 will each provide a different
mechanism that produces the distribution of types. The
fundamental difference with all previously suggested
growth models is that node attachment does not depend
on the current connectivity of the node in the Nol. As we
will demonstrate, it is a function of the concentration of the
types.

Before this growth model can be used, the value of a
major parameter needs to be tuned: how many types will
we select from the Nol to decide whether the new instance
will be included? Or what is the value of trials (see step b2)?
Since, every instance in the models has the same
probability of encountering the new instance, the partners
are selected according to the concentrations of the types: a
highly concentrated type has a higher probability to
encounter the new instance. A small value for rrials
indicates only that there is a small chance that the node
will find a partner. The bigger the value of trials the higher
the possibility. As soon as the system encounters a possible
partner (p) for this new instance, the type of the new
instance can be added to the Nol. This assumption
introduces a natural preferentiallity for types which are
highly concentrated.

Further parameters are the size of the bit-string N, the
amount of types that will be added to the Nol and the
value of the threshold . All experiments in this section are
performed using N = 13, 1 = 9 and the amount of types is
limited to 1000. This limit for the Nol size is selected since
most of the experimental data of biological networks are of
modest size in terms of number of types.

Since the growth model introduces new instances of a
type at each iteration, the number of instances that are
actually presented and added can be much higher. In Fig. 2
one can observe three plots showing the speed with which
new types appear in the Nol until the limit is reached for all
three production schemes.

From this figure we can derive that in case of the random
introduction of new nodes, the amount of types almost
grows linearly with the amount of instances introduced.
The collision model requires a bit more time to produce
1000 different types. The delay is a consequence of the
concentration dependency in the production rule of the
collision model: two instances are selected and produce an
new instance that is a random combination of them. Since
the new type is a random combination of the old types, new
types appear still at a more or less regular basis but not as
quickly as in the random model. In the cloning model, the
delay is much larger. The motivation for this is similar to
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Fig. 2. Visualization of the rate of appearance of types over time. Time
corresponds only to the number of instances presented to the Nol.

the collision model. Yet, the delay is much larger because
newly produced instances are still very similar (or even
equal) to the original type that produced them. Conse-
quently, much more time is required to introduce 1000
different types. Of course in this last case, speed can be
increased by increasing p,,,. Yet, this extra amount of
noise will have its consequences on the degree distribution
(see Section 4). This difference in convergence speed will
also have its consequences on the concentrations of the
types in the different production schemes. It is expected
that for low mutation rates the cloning model will produce
higher concentrations than the random or collision model.

3.1. The random model

In the random model, new instances are introduced from
the outside in a uniform random fashion. We referred to
this as the exogenous production of nodes without taking
into account the concentrations of the types already
present in the Nol. In Fig. 3 both the resulting degree
distribution and the correlation between degree and
concentration are visualized. As can be seen in the right
plot, their are no hubs and the degree distribution follows
an exponential decay. Three distributions are shown for
different values of the parameter trials. The exact value of
this parameter does not seem to have an important effect in
the current model. The resulting degree distribution is not
surprising since the growth model with uniform random
recruitment corresponds to the BA model without pre-
ferential attachment (Barabasi et al., 1999). In fact, no
node is favoured during the attachment of any new node
since the concentration of all nodes in the Nol approxi-
mately remains the same (left plot Fig. 3). In Table 1 the
physical properties of these generated networks are listed.

The similarity between the networks for different values
of trials can again be observed in Table 1. They all have
similar average and maximum degrees, similar average
path length and average clustering coefficient and finally
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Fig. 3. Results of producing a type Nol using random recruitment. The left plot shows the correlation between degree and type. The right plot shows the

degree distribution of the Nol in terms of the number of types.

Table 1
Physical properties of networks with random recruitment

trials = 2 trials = 15 trials = 50
(k) 2.132 2.144 2.14
max 10 12 10
(L) 9.17 9.24 9.91
(C) <1073 <107° <1073
r —0.04484 —-0.01173 —0.08078

(k) refers to the average degree, max refers to the maximum degree in the
network, (L) refers to the average path length, (C) refers to the average
clustering coefficient and r refers to the assortativeness of the network.

they have similar assortativeness. The important thing
learned from this model is that connecting with higher
probability to types with higher concentration does not
produce long-tailed degree distributions and, consequently,
no hub pops up.

3.2. The cloning model

Although the random recruitment of new instances is
plausible in for instance the area of immune networks
(Varela and Coutinho, 1991; De Boer and Perelson, 1994;
Detours et al., 1994), different mechanisms are active in
other biological models. As argued in Section 2.4, the
dynamics that exist between the instances in the biological
model can also be an important source of new instances of
new and existing types. In this section, we examine a
production scheme where an instance of a type is cloned
and its clone is possibly mutated. Here mutation means
that the bits of the string are switched from 0 to 1 or vice

versa. Changing the bits has an effect on the attractiveness
of the new instance towards other instances in the system.
The probability of mutation is defined by a new parameter
pmut'

Every instance in the system has the same likelihood to
produce a mutated clone: at every iteration of our growth
model, an instance is randomly selected. Selecting a
random instance corresponds to selecting a particular type
relative to the concentrations of each type. Hence, types
with high concentrations have a higher probability to
produce the new clone than types with low concentrations.

The results of this node recruitment scheme are
visualized in Fig. 4 for different values of the parameter
trials. As can be observed, the degree distribution becomes
clearly scale-free for the case where trials = 2. For higher
values of trials, the distribution shifts a bit, but remains
close to the power-law distribution. These latter distribu-
tions are referred to as scale-free with exponential cut-off
and are often observed in real biological data (Jeong et al.,
2001). In the left-plot of Fig. 4, it can also be seen that there
exists a correlation between degree and concentration, i.e.
the higher the concentration, the higher the degree. This
correlation between concentration and degree becomes
very strong (polynomial) in the case where trials = 2. This
difference can also be observed in Table 2. The high
concentrations of the hubs are a consequence of the very
few possibilities that cloned instances have to reconnect to
the Nol.

These results are a consequence of the endogenous
production scheme and the amplification effect (or positive
feedback) produced by the concentration dependency: all
new instances are produced through cloning of an existing
instance. When p,,,, is small, this means that there is a high
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Fig. 4. Results of producing a type Nol using cloning and mutation. The left plot shows the correlation between degree and type. The right plot shows the

degree distribution of the Nol in terms of the number of types. p,,,, = 0.001.

Table 2
Physical properties of networks produced by clonal recruitment

trials = 2 trials = 15 trials = 50 t =2 and trials =2
(k) 10.42 10.39 9.37 4.044
max 421 180 143 211
(L) 2.82 3.01 3.11 3.51
(C) 0.00765 0.00097 0.00582 0.1219
r —0.33 —0.37 —0.36 -0.29
y 2.7 2.4 2.6 2.3

(k) refers to the average degree, max refers to the maximum degree in the
network, (L) refers to the average path length, (C) refers to the average
clustering coefficient, r refers to the assortativeness of the network and vy
refers the exponent of the power-law distribution that fits the data. The
fifth column contains data on an experiment with a different binding rule:
hamming distance smaller than a certain value ¢, instead of bigger than z.

probability that the node which is produced, is an exact
copy of the original one. In other words mutation did not
change the bit-string. Since this allows a new instance to be
added to the concentration of the highly concentrated
node, the probability of selecting this type again for cloning
increases. This explains the positive feedback mechanism:
the more clones a type produces the higher the probability
that it produces more clones in the future. Putting it in
more popular terms, the rich (in concentration) get richer.
To achieve these results the model did not make any
assumptions about the degree of the type in the Nol. The
time-dependent factor here is the concentration of the type
which is implicitly linked to its degree. As a matter of fact,
this aspect relates with the notion of natural hubness that
will be discussed in Section 5 since it is the concentration

that produces the high degree instead of the degree itself. A
highly concentrated node turns out to be a natural hub.

The clonal model discussed here is of course strongly
related to the gene-duplication model (Bhan et al., 2002;
Pastor-Satorras et al., 2003; Chung et al., 2003). In both
cases it is some kind of cloning mechanism in combination
with mutation which produces the new elements that are
added to the Nol. The important contribution of the
current model, next to providing an extension of the gene-
duplication model, is that it highlights the importance of a
positive feedback mechanism working on the concentration
of the type to produce the power-law distribution in
biological growth models. A similar amplification effect is
also at work in the gene-duplication model: highly
connected nodes will receive additional connections be-
cause they were linked to nodes that are duplicated. By
adding additional links the probability that they will
receive even more connections is increased. The difference
between the gene-duplication approach and our scheme is
that we do not explicitly link this positive feedback to the
degree of the node. Linking it to the concentration makes it
more plausible from a biological perspective.

Apart from all that, the cloning model presented here
also highlights the importance of the underlying dynamics
in the formation of the Nol. Identifying this relationship
with the dynamics is fundamental since it is an important
source of new types that can be added to the Nol. It is
therefore also an active research interest in the complex
network society at the moment (Caldarelli et al., 2004).

Differences between the degree distributions shown in
Fig. 4 become more clear when we examine their properties
listed in Table 2. Different from the table in Section 3.1 is
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that now the value of trials has an impact on the final Nol.
The average degree and max degree reduce when the
number of trials increases. When comparing the scenario
where trials = 2 with the other two, we can even conclude
that this reduction is high for the value of the maximum
degree. Since the degree reduces, an increase of the average
path length can also be observed. The motivation for the
reduction in the maximum degree is that the more trials
you introduce to find a partner, the less the concentration
plays a role in determining the hubness of the nodes. In
Table 2, we also added the y values for the exponents of the
power-law distribution that fits the data. It can be observed
that the values are within the interval between 2 and 3,
which is claimed to contain the networks with the most
interesting properties (Albert and Barabasi, 2002; New-
man, 2003).

One negative aspect of the table is that the clustering
coefficient is rather low. This is in contradiction with the
data that have been obtained on biological networks
(Newman, 2003). This problem in the current model is the
consequence of the simple binding rule. Since the hamming
distance has to be bigger than a particular threshold ¢, the
mutated clone cannot reconnect to the node which was
produced by. This problem is not fundamental and can be
easily resolved by defining an alternative binding rule:

l)]i(nhiy)<:t, (2)

which means that the hamming distance needs to be
smaller than some value. Using this binding rule does not
change anything in our discussion so far. The only
difference will be that now, the mutated clone can
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reconnect to the original one. In this way, transitive
relationships can emerge and the clustering coefficient will
increase. For instance, assume that in Eq. (2) the value of ¢
(threshold) is 2. This means that only nodes which differ in
two 0 or 1 bit can connect with each other. When p,,,, is
very low, this will often be the case and we obtain a Nol
with higher clustering coefficient. Results for an experiment
with trials =2 are visualized in Fig. 5 and in the fifth
column of Table 2.

From the right plot of Fig. 5, one can also derive that
there exists a particular community structure in this
experiment. This indicates that the Nol has a modular
structure (Barabasi and Oltvai, 2004). A final observation
for all the previous cloning models is that the Nol are
disassortative, a trait which is frequently encountered in
the topological analysis of biological networks. The
combination of this modularity and the fact that the
network is disassortative seems to indicate that it is not the
hubs that connect the different modules in the Nol
(Newman, 2003; Guimera and Amaral, 2005). We will
come back to this in the discussion section.

3.3. The collision model

As argued in Section 2.4, the cloning model presents only
one possible mechanism for endogenous instance produc-
tion based on the concentrations of the types in the
network. The production mechanism does not necessarily
have to produce types similar to the original one. The
new types can easily be dissimilar as in for instance
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Fig. 5. Results of producing a type Nol using clonal recruitment with 1 = 2. The left plot shows the correlation between the clustering coefficient and the
degree of the nodes of the network. The right plot shows the resulting degree distribution.



498

300 — — .
250
200
150
100
50

concentration
L)
°8 .

\

5

| | | |
100 150
degree
70 T I

60
50
40
30
20
10

o

50

N
o

concentration

o
Oql
440
- <
<
<

ettt

[é)]
-
o

degree

0

H. Bersini et al. | Journal of Theoretical Biology 241 (2006) 488-505

2 trials

¢ 15trials

b‘l TTTTT

V¥ 50 trials

o«
o <
Ll

0.1

(]
1

0.01

T T
3
*
®

Ll

T

o

L]
1

0.001

100

10
degree

—_

Fig. 6. Results of producing a type Nol based on the collision model. The left plot shows the correlation between degree and type. The right plot shows the

degree distribution of the Nol in terms of the number of types.

protein—protein interactions. The collision model repre-
sents this alternative idea: two instances of (possibly)
different types are randomly selected from the Nol relative
to their concentrations. From each instance a part is
randomly selected from the bit-string and two parts are
combined into a new instance with bit-string of the same
length (V). The growth model is then used as before to add
this newly created instance to the network (or not).

The results of this experiment for different values of
trials are visualized in Fig. 6. A first observation is that the
degree distribution is again (close to) a power-law
distribution. A second observation, as shown in Table 3,
is that again the increase in frials results in a decrease in the
degree of the hubs. Thus, as in the cloning model, the
endogenous source for instances in combination with the
preferential selection of highly concentrated nodes pro-
duces the distribution. But when comparing the actual
values of the maximum degree with those in Table 2 we can
see that for the collision model the values are much lower.
Even worse, in case of trials = 50, the maximum degree is
only 44 which indicates that the hubs gradually disappear
as we try harder to find a partner for a newly recruited
instance (as before in the cloning model). Another effect of
increasing the value of trials is that the y increases. For the
current values, the y is still within the interesting interval
(Table 3).

An additional difference from the cloning model is that
now for trials = 2 the concentration of the hubs (number
of instances) is not so excessive: when examining Fig. 6 and
comparing it to the degree—concentration correlation of
Fig. 4, one can conclude that there is a difference in final
concentration values between both models for similar

Table 3
Physical properties of networks produced by collisions
trials = 2 trials = 15 trials = 50
(k) 7.406 4.966 3.792
max 112 71 44
(L) 3.6 4.14 4.74
(C) <1073 0.00019 0.00117
r —0.16054 —0.05080 —0.046490
y 2.4 2.8 2.9

(k) refers to the average degree, max refers to the maximum degree in the
network, (L) refers to the average path length, (C) refers to the average
clustering coefficient, r refers to the assortativeness of the network and y
refers the exponent of the power-law distribution that fits data.

values of the parameter trials. The motivation for this
difference can be explained using Fig. 2. In the collision
model, the required 1000 types are recruited faster than in
the cloning model. As a consequence, the types in the
collision model have less time to increase their concentra-
tions before the experiment is finished. Yet the correlation
between degree and concentration remains. Even-more, as
in the cloning model, to obtain the power-law distribution,
this correlation needs to be some kind of polynomial
distribution as before (top left plot Fig. 6). If it becomes
linear and sub-linear (see bottom left plot Fig. 6), the scale
of the hubs decreases and the distributions becomes scale-
free with an exponential cut-off.

In general, the current production scheme shows that
creating new types which are dissimilar from the original
one does not necessarily produce a strict linear power-law
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distribution in the log—log plot. Only when a positive
feedback is present which can produce a polynomial
correlation between degree and concentration, will we
observe this strict linear relationship. The same observation
was made for the cloning model.

4. The influence of the source of instances

In the previous section, the growth model and its
variations were explained and their results were discussed.
In extension to this previous discussion, the importance of
concentration-dependence and the mechanism of type
production are examined more closely. First, one can
wonder whether concentration-dependence is that impor-
tant in the cloning model since the gene-duplication model
easily produces a similar power-law distribution without
taking concentration into account: do we need to select a
type relative to its concentration or is random selection of
types enough to produce the same results? If this would be
the case, the polynomial degree—concentration correlation
looses its relevance as an explanation for the power-law
distributions that can be observed in the cloning (and
collision) model. Second, in biological systems there is no
strict separation between exogenous and endogenous node
production. What will happen if the cloning model is
combined with the random model? Moreover, what ratio
of endogenous versus exogenous production will remove
the scale-freeness of the resulting degree-distribution?
These two problems are discussed here.

In Fig. 7, the results of an experiment useful to solve the
first problem are shown. If the type is not selected relative

1 LRRRLL

W without concentration

to its concentration, then the cloning model will not
produce the power-law distribution. The left plot in that
figure shows the results when the type is selected randomly.
This result clearly shows that without concentration-
dependent selection and the positive feedback mechanisms,
cloning does not produce the same results as the gene-
duplication model. This implies that both the type-
concentration and the degree—concentration correlations
play a crucial role in explaining the observed degree
distributions.

In Fig. 8, the results are shown for the second problem:
what happens when a mixture of endogenous and
exogenous production is used to recruit new types?
Increasing the mutation rate (value of p,,,) corresponds
to an increase in the exogenous production of nodes since
higher mutation rates alter the structure of cloned bit-
string faster, producing almost random new instances. In
the figure, it is observed that by an increase in exogenous
production, the degree distribution (left plot of Fig. 8)
looses its scale-free properties. This change is confirmed by
the degree—concentration correlations shown in the two
plots at the right in Fig. 8: the top-right plot shows a
polynomial relationship between degree and concentration
reflecting the power-law distribution of the Nol produced
for p,,.. = 0.01. The bottom-right plot shows that when
P INCreases, the correlation becomes linear which results
in a shift away from the scale-free distribution that we had
before. When p,,,,, = 0.5, the correlation between degree an
concentration becomes sub-linear indicating that we are
coming close to the exponential distribution that we
observed in Fig. 3. In summary, increasing the exogenous
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Fig. 7. Results of producing a type Nol using clonal recruitment. The left plot shows the degree distribution of the Nol for the clonal model where
concentration does not play a role in deciding which type will produce a clone. The right plot shows the degree distribution of the Nol when concentration
is used to determine which type will produce a new instance.
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Fig. 8. Results of producing a type Nol using clonal recruitment with increasing values of p,,,,. The left plot shows the degree-distributions for three
values of p,,,,. The two right plots visualize the correlation between degree and concentration for each p,,,, value.

production of nodes will remove all the hubs from the
system resulting in a growth-only model. The same
observation can be made for the collision model.

5. Growing biological networks with heterogeneous types

So far, the assumption was made that every type has
similar properties: a bit-string of length N and a common
threshold ¢. This homogenous-type scenario is not realistic
from a biological perspective (Caldarelli et al., 2002). As
argued in the introduction, some types are born to be hub
because of their intrinsic structural properties. In this
section, this notion of natural hubness and its effect on the
growth models is discussed. Before performing the actual
experiments, lets explore this issue a bit.

5.1. Natural hubs: heterogeneity in type properties

As argued in Section 2.3, every type has its particular
physical properties that decides with whom they can
interact. So far it was assumed that this is the same for
every type, i.e. every node uses the same threshold. From a
biological perspective, this does not make much sense: for
instance, molecules differ in their reactiveness when
colliding with other molecules. Proteins have differences
in the number and kind of domains which are used to bind
other proteins. Hence, some types, due to their intrinsic
properties, are more attractive than others. Due to these
differences in attractiveness, some types are naturally
inclined to become hubs of the network. Hence the hubness
is not only a result of the growing history of the network
(the degree) but is a consequence of nodes intrinsic
properties. We refer to these types as natural hubs.

This idea of natural hubness has been discussed before.
Alam and Arkin (2003) argue that highly linked nodes in
biochemical networks like water and ADP/ATP may be
understood in terms of the large number of hydrolysis and
energy-utilization reactions and the convenience of having
the same component for particular functional tasks. Thus,
the type will have a high connectivity as a result of its
internal properties that makes it a good partner to react
with.

To introduce this heterogeneity in types an additional
attribute called attractiveness threshold (AT;) that takes a
value in the interval [1,N — 1] is added to the type. This
means that each type is now defined by the bit-string of size
N and the corresponding attractiveness threshold. Thus
instances with the same bit-string but different values for
AT; are considered to belong to different types.

This new extension to the previous model requires a new
binding rule that takes into account the attractiveness
threshold. Two nodes can bind if and only if:

DH(n,,n])>mm(A T, ATj), (3)

where n; and n; refer to the bit-strings that represent the
structural properties of the types and the attractiveness
thresholds (47; and AT);) define the natural hubness of
each type: a node with a low attractiveness threshold has
much more possibilities to connect than a node character-
ized by the same binary string but with a higher threshold.
We take the minimum of the two attractiveness values since
a natural hub should have a higher probability of
connecting to the presented partners. So when an instance
of a type with AT = 10 encounters another instance with
the same attractiveness threshold, the two instances have to
be different in 10 bits. Yet if a natural hub instance with
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AT =1 is recruited and its partner has an 47 = 10, then
the instance only has to differ in one bit to connect to this
element. It is clear that in this case, all nodes with low
attractiveness threshold will have a higher probability to
connect to elements in the network.

Note that if the binding rule expressed by Eq. (3) is
replaced by

DH(n;, nj) <min(AT;, AT)), 4

one again obtains a system where the newly produced
instances can connect to their origin as discussed in Section
3.2.

Given this new binding rule, how does this change the
previous experiments and the corresponding results? Will
hubs appear in the random model? Will the natural hub
also become the highly concentrated node of the Nol?
These are only a few question that can be asked and which
we try to answer using the experiments discussed in the
following section.

5.2. Growing networks of heterogeneous types

As before, three modes of instance production are
considered in this section: the uniform random production,
production by cloning and production by collisions. The
difference with previous models is that now, for every
instance, we also need to determine a value for AT;. This
means that in the random model, next to the random bit-
string, we also randomly select a value from the interval
[1,N — 1]; in the cloning model, the bit-string is cloned as
before and the AT; value of the original instance is
modified to another value in the interval using the same
probability p,,.; finally in the collision model, the bit-
strings of each instance or recombined as before and the

cloning model

random creation of types

value of AT is determined by taking a value in between the
two original ones.

Given these setups, the resulting degree distributions and
degree—concentration correlations are shown in Figs. 9 and
10. All plots are shown here for trials = 2, N = 13 and for
a network of 1000 types.

As can be seen in those figures, the results of these
experiments are equivalent to those produced in the
previous section. A slight difference can be observed for
the collision model where the distribution is no longer
scale-free. The reason for this is that in the new definition
of the collision model, the natural hubs might not always
be present because they were not created by the endogen-
ous production. Moreover, since in this model a type is
defined by a bit-string and a threshold value, the
probability of generating instances of a type already
present in the network is smaller. This feature is responsible
for the increasing of the randommness of the resultant
distribution of connectivities.

More importantly for the discussion on natural
hubs is that we expect the natural hubs to be the nodes
with the highest concentration and highest degree.
Since these nodes were born to play this role in the Nol,
the topological dynamics should also assign this
role to them. In order to verify this hypothesis, we
examined the correlation between the values of AT for
each degree. Note that since multiple values exists for every
degree, the averages are plotted. The results are shown in
Fig. 11.

In the centre plot of Fig. 11, the results for a randomly
created Nol are shown. As can be seen there, there is a
nice correlation between degree and the attractiveness
threshold: the higher the degree, the lower the value
of the attractiveness threshold. This indicates that it is
the natural hubs that have the highest degree in the
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produced Nol. Note though, that these types are not really
hubs in this random model since they have a relative low
degree.

When examining the two other plots for the cloning and
collision model we see that things are not as clear as in the
random model. The noise on these plots is a consequence
of the concentration dynamics that plays a role in both
models. In this case, the effects of concentration and
natural hubness compete between each other. Although, it
is clear from Fig. 11 that the nodes with highest
connectivity, beside having highest concentration, are
nodes with low threshold. Moreover, in the cloning model,

one can observe that for low degrees the values of the
threshold are centred around the average. This is logical
since most types will have a low degree (see degree
distribution in Fig. 9) and these types can have all possible
attractiveness values. As we move to higher degree nodes in
the cloning model, the relation with the low attractiveness
values becomes clearer: there are no attractiveness values
bigger than 6 for nodes with degree higher than 300. For
the collision model similar things can be observed: there is
a tendency toward lower attractiveness values when the
types have a higher degree. Yet some outliers can be
observed.
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Given these results, it becomes clear that when a type is
constructed with the intrinsic properties to play the role of
hub in the Nol, the dynamics will also assign this role to it.

6. Discussion

In this article a new growth model has been proposed
which reflects naturally the kind of Nol one can find in real
biological systems. The approach taken here is to combine
general properties implicit in many biological simulations:
(1) Nol consists of types which are defined by their
structural properties; (ii) as a consequence biological Nol
are type-based and this has some implications on the
properties of the Nol; (iii) the links in the Nol are defined
by complementary or matching relations; (iv) certain types
are born to be hubs; and (v) exogenous and endogenous
mechanism produce the new instances of existing or new
types which are recruited into the Nol. This approach was
introduced since the BA model defines rules which are
biologically not completely realistic and the gene-duplica-
tion model focuses only on one particular biological area.
Furthermore, it is not clear whether the latter model is
actually responsible for the observed effect (Barabasi and
Oltvai, 2004).

To validate the model a set of experiments were
performed using different node production schemes: a
random model, a cloning model and a collision model. The
first model assumes that new instances of the possible types
are introduced from an outside source in a uniform
random manner. The second model produces new instances
from highly concentrated types using cloning and muta-
tion. Finally, the third model produces new instance by
combining the structural information of two highly
concentrated types. All three models provide different,
sometimes orthogonal, approaches to recruit nodes into the
Nol. As was discussed, the cloning model uses a similar
production system as the gene-duplication model. Never-
theless, the current model goes beyond the domain for
which the gene-duplication model was defined. One of the
differences being that here it is the underlying dynamics
that guide the Nol’s growth process.

The experiments discussed here show that a scale-free
Nol is only produced in systems where new instances are
recruited using an endogenous production scheme in
combination with a positive feedback mechanism. When
this scheme is combined with an exogenous production
mechanism or the noise level in the recruitment mechanism
increases, the scale-free property disappears leading, in the
worst case, to an exponential distribution. Different from
all previous growth models is that it is not the preference of
connecting to nodes with higher degrees that leads to these
results. Type concentration determines both which types
are endogenously reproduced and to whom this newly
produces instance are connected. Hence, rich types are
those which have a high concentrations and they will get
richer when the new nodes are endogenously produced.

This rich get richer phenomenon defines the positive
feedback or amplification mechanism.

The model discussed fits into the collection of other
models that have been constructed to investigate biological
Nol. The most well-known is the gene-duplication model.
The work by Rzhetsky and Gomez (2001) comes even
closer to the work described here. In their work, a model of
metabolic networks is proposed based on bindings between
domains. The important contribution of that work is that it
provides the prediction that the frequencies of distinct
DNA and protein domains is also a fat-tailed distribution.

A further result is that the correlation between degree
and concentration may provide a signature to distinguish
between scale-free and other kinds of Nol. In case of a
polynomial correlation the resulting degree distribution is
certainly scale-free. An almost linear correlation indicates
either that theirs is an exponential cut-off on the scale-free
Nol or that the we are in between a scale-free and an
exponential Nol. A smaller than linear or sub-linear
relationship is a signature for the gradual disappearance
of any kind of hubs. An important question in relation to
biological Nol is whether this relation between degree and
concentration can also be found. Here we want to stress
that this will probably not be the case since in realistic
contexts limits exist on the amount of instances that will be
produced. For instance, the proteins in the proteome
regulate their production by reducing the production when
concentration becomes to high. In this way different
switching functionalities as in the p53 system are produced
(Vogestein et al., 2000). Currently, we are extending the
current models to a dynamics where death of instances
compensates the birth-dynamics and which come closer to
realistic examples.

In relation to biological Nol, obtaining a real scale-free
distribution is not the main feature since their are mostly
only close to scale-free and have an exponential cut-off due
to finite size effects. Other features like -clustering
coefficient, modularity and hierarchy play also an im-
portant role. The presented model produces the expected
fat-tail distributions which can have high-clustering coeffi-
cients. The latter depends on the binding rule, i.e. whether
transitive relations are positive or not and not on the initial
seed of the model as is for instance the case in the gene-
duplication model (Hallinan, 2004; Bhan et al., 2002). In
Table 2, we saw that the average clustering coefficient
increased immensely, when the binding rule was changed,
moving the resulting network closer to the presence of
modularity in realistic biological data. Furthermore, from
Fig. 5, we derive that there exists a particular community
structure in this experiment: the nodes with high degree
have low clustering coefficient and the nodes with lower
degree have a high clustering coefficient. This seems to
indicate that the Nol has a modular structure where the
hubs connect nearly decomposable sub-networks (Barabasi
and Oltvai, 2004). In the literature of biological networks
equivalent plots have been shown for yeast protein
networks (Rives and Galitski, 2003). Such a relationship
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between degree and the clustering coefficient provides a
signature for modular structure. This feature enhances the
robustness of the Nol in terms of its functioning. As argued
in Maslov and Sneppen (2002) this increase in robustness is
a consequence of the lack of crosstalk between the different
functioning modules in the Nol.

Also, it has been suggested that biological networks are
organized in a hierarchical structure, where nodes are
organized in small modules which are in turn organized
into larger modules (Rives and Galitski, 2003; Hallinan,
2004). In Rives and Galitski (2003) it is argued that this
hierarchical modularity can be identified without identify-
ing the actual modules using a scaling law for the
connectivity of nodes in a hierarchical modular network:

Clky ~ k", )

with C(k) being the cluster coefficient. As can be observed,
the network produced by our model seems to come close to
the suggested law, indicating that the network has a
hierarchical modular structure. Note that this law does not
provide any information on the form of the modularity.
Further analysis needs to confirm the predicted outcome.

Finally, we showed that, natural hubs, when recruited
into the Nol, will assume their role as hubs in the final
topology. This means that types which possess the
structural properties to turn into a hub, will become the
actual hubs of the network. This feature is important since
it means that in existing networks, a naturally born hub
will be able to take up its position in the distribution of the
network.

Although the model uses a very simple birth-only
dynamics, we feel that this approach of incorporating
instance dynamics with network formation will play a
crucial role in finding a useful explanation for the origin,
dynamics and stability of the observed Nol in biological
systems.
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