

UNIVERSIDADE TÉCNICA DE LISBOA
INSTITUTO SUPERIOR TÉCNICO

Ninteger v. 2.3
Fractional control toolbox

for MatLab

Duarte Pedro Mata de Oliveira Valério

User and programmer manual

Beta release — comments and bug reports are welcome

2005 / 08 / 17

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

Abstract

Ninteger is a toolbox for MatLab intended to help to develop fractional order
controllers and assess their performance. This manual contains a thorough description of
all files in version 2.3 of this toolbox.

Keywords

Fractional order calculus, fractional order control, MatLab.

Table of contents

1. Introduction..3
1.1. Requirements ..3
1.2. Installation procedure..3
1.3. How files are organised...4
1.4. About this manual ...4

2. Approximations of fractional order derivatives and integrals..............................6
2.1. Function nid ..6
2.2. Function nipid ...15
2.3. Function crone1 ..17
2.4. Function newton ..19
2.5. Function matsudaCFE ..22
2.6. Obsolescent functions ...24

3. Functions ensuring a real fractional order behaviour for the open-loop............25
3.1. Function crone2 ..25
3.2. Function crone2z...30

4. Functions ensuring a complex fractional order behaviour for the open-loop35
4.1. Function crone3 ..35

5. Identification of fractional models ...46
5.1. Function hartley ..46
5.2. Function levy ...47
5.3. Function vinagre ...49
5.4. Function sanko ..51
5.5. Function lawro ..52

6. Analysis and norms..55
6.1. Function freqrespFr ..55
6.2. Function bodeFr..56
6.3. Function nyquistFr ..57
6.4. Function nicholsFr ..58
6.5. Function sigmaFr ..59
6.6. Function normh2Fr ...60
6.7. Function normhinfFr...64

7. Graphical interface ...66
7.1. User manual ..66
7.2. Programmer manual ..74

8. Simulink ...85
8.1. Block Fractional derivative ..85
8.2. Block Fractional PID ...86

9. Functions for continued fractions ..88

1

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

9.1. Function contfrac ..88
9.2. Function contfracf ...89
9.3. Function contfraceval ...90
9.4. Function contfracfeval ..91

10. Final Remarks ..92
Bibliography...93
Appendix..96

Table of figures

Figure 1. Nichols charts with curves of constant values of closed-loop gain and damping
coefficient ..36

Figure 2. The main dialog of ninteger before being filled in. ...66
Figure 3. Example of an error message. ..67
Figure 4. Dialogue nipidGui filled in. ...67
Figure 5. The main dialogue displaying a Bode diagram..68
Figure 6. Dialogue crone2Gui. ..70
Figure 7. Dialogue crone3Gui1. ..71
Figure 8. Dialogue crone3Gui1 filled in. ..72
Figure 9. Dialogue crone3Gui2 filled in. ..72
Figure 10. Two views of resulting dialogue ninteger..73
Figure 11. Simulink library ...85
Figure 12. Dialogue of block Fractional derivative..86
Figure 13. Dialogue of block Fractional PID ...87

2

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

1. Introduction

Ninteger is a toolbox for MatLab intended to help developing fractional order
controllers and assess their performance. Its code may be freely distributed and altered
provided that the source of the code is acknowledged and this warning is kept in all
further copies and/or alterations. This manual contains a thorough description of all files
in version 2.3 of this toolbox1.

This version is, like its predecessors, a Beta release. Reports of eventual errors
(the absence of which the author cannot ensure) and suggestions of improvements will
be gladly accepted. Please the author’s e-mail given in the Internet site given below.

1.1. Requirements

The requirements for using this toolbox are:
 MatLab version 7.0 (release 14) or above. Actually most functions run under

version 5, but the graphical interface and the Simulink library do not.
 Control toolbox.
 Optimisation toolbox.
 Map toolbox. Actually this toolbox is only needed because of functions

rad2deg and deg2rad. If these are not available, see the next section.

1.2. Installation procedure

The several files of the toolbox are available through the Internet, compressed into
a file with the Zip format, in Matlab File Exchange site (Control Design category)

http://www.mathworks.com/matlabcentral/fileexchange

and in2

http://www.gcar.dem.ist.utl.pt/pessoal/dvalerio/ninteger/ninteger.htm

To install the toolbox, decompress the file into the location you want, and add folder
ninteger to the MatLab path together with its subfolders3.

If functions rad2deg and deg2rad are not available4, download them from the
same address given above and put them in some folder found in MatLab’s path.
Alternatively, create them yourself and type their code as found in the Appendix.

1 A version history is available at the Internet site given below. See (Valério, 2001a, 2001b) about

version 1.0, (Valério et al., 2004b) about version 2.1.
2 This manual is available in this last site only, together with the version history and other data.
3 In versions 6.5 and 7.0 of MatLab this means choosing Set path… from the File menu, clicking in

button Add with subfolders…, selecting the path for folder ninteger and pressing OK.
4 You may check if they are by typing exist('rad2deg') and exist('deg2rad') at the command

prompt. The result should be 2 for both. If is it something else, they are not.

3

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

1.3. How files are organised

The files of the toolbox were divided into three categories:
 Those that are to be accessible to the user are placed in the ninteger folder.
 However, a separate folder, cfractions, was provided for those functions that

deal with continued fractions, so that they may be easily distinguished from the other
functions. These functions may be useful for purposes other than this toolbox, and thus
ought to be accessible to the user.

 Another separate folder, called gui, was provided for those files necessary to
the graphical user interface only.

 A last separate folder, obsolescent, contains functions that are no longer
necessary, but are still included to ensure compatibility with older versions of the
toolbox.

1.4. About this manual

This document is organised as follows:
 In chapter 2 functions are described that provide integer order transfer

functions approximating fractional order transfer functions.
 In chapter 3 functions are described fit for implementing controllers that ensure

an open-loop dynamic given by

() () ,vG s C s ks v= \∈ (1.1)

where G is the plant to control.

 In chapter 4 functions are described that ensure the open-loop’s Nichols plot to
fall outside an area corresponding to the closed-loop behaviour to avoid. So as to ensure
a simple design methodology the transfer functions are normally restricted to
expressions like

() Re ,zC s k s z⎡ ⎤= ⎣ ⎦ ^∈ (1.2)

 In chapter 5 functions for finding fractional models of plants from its

experimental data are found.
 In chapter 6 function are described for analysing the frequency behaviour of

fractional plants and finding important norms.
 In chapter 0 a graphical user interface is described that makes use of the

toolbox’s functions relieving the user from having to call them from the command
prompt.

 In chapter 8 a Simulink library is described containing blocks to implement
approximations of fractional plants.

 Chapter 9 describes functions for handling continued fractions, mathematical
entities useful when working with fractional controllers.

 Chapter 0 concludes with some final remarks.

This manual no longer has separate chapters for user-oriented and programmer-

oriented information. Programmer-oriented material is now found in sections titled

4

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

Algorithm that exist for every function of the toolbox. Hence, these may be skipped by
users with little interest in programming details.

5

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

2. Approximations of fractional order derivatives
and integrals

Functions dealt with in this chapter provide integer order frequency domain or
discrete-time domain approximations of transfer functions involving fractional
(fractional or irrational) powers of s.

2.1. Function nid

This function is fit for implementing a controller given by the frequency domain
transfer function

() ,C s ksν ν= \∈ (2.1)

by providing both continuous and digital approximations thereof.

Five continuous approximations are available:

 The (first generation) Crone approximation. Crone is the (French) acronym of
Commande robuste d’ordre non-entier (robust fractional order control). This
approximation uses a recursive distribution of N poles and N zeros leading to a transfer
function as follows:

()
1

1

1

N
zn

n

pn

s

C s k
s

ω

ω
=

+
′=

+
∏ (2.2)

k’ is an adjusted gain so that if k is 1 then the gain is 0 dB for a 1 rad/s frequency. Zeros
and poles are to be found within a frequency range [];l hω ω (inside of which the
approximation is valid, being somewhat poor near the limits of the interval) and are
given, for a positive v, by

N
h

l

ν

ωα
ω

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (2.3)

1
N

h

l

ν

ωη
ω

−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (2.4)

1z lω ω η= (2.5)

, 1 , 1pn z n n Nω ω α−= = … (2.6)

, 1 , 2zn p n n Nω ω η−= = … (2.7)

For negative values of ν the role of zeros and poles is interchanged (1p lω ω η= and so

6

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

on). From (2.3) and (2.4) we see that there are N poles and N zeros in [];l hω ω , and that
the logarithms of frequencies of zeros and poles are equidistant.

 The Carlson approximation, that is the application to (2.1) of the method
described below, in subsection 2.4, for function newton. This is done by letting g = s.

 The Matsuda approximation, that is the application to (2.1) of the method
described below, in subsection 2.5, for function matsudaCFE. Gains of transfer function
(2.1) are found at logarithmically spaced frequencies and these are the values entered in
expressions (2.45) and (2.46).

 The high-frequency continued fraction approximation, that consists in a
truncated continued fraction expansion of approximation

1 , ifss
ν

ν νλ ω
λ

⎛ ⎞≈ +⎜ ⎟
⎝ ⎠

� λ (2.8)

It may be shown that the continued fraction is

()

()
()

()
()

1

2 1 2 2 2 110; , , , , for
1 1 1 1

N

i

i i i is ss
i i i i

C s ν

ν ν
ν λ λλλ ω λ

=

⎡ ⎤+ −⎧ ⎫
⎢ ⎥⎪ ⎪− − +⎪ ⎪⎢= >⎨ ⎬⎢ ⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦

⎥
⎥

 (2.9)

 The low-frequency continued fraction approximation, that consists in a

truncated continued fraction expansion of approximation

1 , ifs
s

ν
ν ν λλ ω

−
⎛ ⎞≈ +⎜ ⎟
⎝ ⎠

� λ (2.10)

It may be shown that the continued fraction is

()

()
()

()
()

1

2 1 2 2 2 110; , , , , for
1 1 1 1

N

i

i i i i
i i s i i ssC s ν

ν νλ λλν
λ ω λ

=

⎡ ⎤− +⎧ ⎫
⎢ ⎥⎪ ⎪− +⎪ ⎪⎢= <⎨ ⎬⎢ ⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦

⎥
⎥

 (2.11)

Thirty-two digital approximations are available, resulting from choosing a

formula (out of eight) and a method of expansion (out of four). Available expansion
methods are:

 truncated MacLaurin series expansions;
 truncated time developments;
 truncated continuous fraction expansions;
 inverted and truncated MacLaurin series expansions;
 inverted and truncated time developments;
 inverted and truncated continuous fraction expansions.

The eight possible formulas are:

7

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

 first order backwards finite difference:
11 zs

T

−−
≈ ;

 second order backwards finite difference:
1 23 4

2
z zs

T

− −− +
≈ ;

 third order backwards finite difference:
1 211 18 9 2

6
z z zs

T

3− − −− + −
≈ ;

 Tustin formula:
1

1

2 1
1

zs
T z

−

−

−
≈

+
;

 Simpson formula:
2

1 2

3 1
1 4

zs
T z z

−

− −

−
≈

+ +
;

 delta transform formula;
 impulse response formula;
 time response formula.

Continued fraction expansions (inverted or not) may be applied to all these formulas;
MacLaurin series expansions (inverted or not) may be applied to first six only; the last
two may be expanded into time developments (inverted or not). Since formulas that can
be the object of a MacLaurin series expansion cannot be the object of a time
development and vice-versa, these two expansion methods are, for simplicity, returned
by this function for a single value of variable expansion, as seen below.

In the following expressions, T is the sampling time.
First order backwards finite difference formula, raised to a fractional exponent v,

expanded into a truncated MacLaurin series, gives

() ()1

0

1 1
n

k k

ks

C z z
kTν

ν−

=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ − (2.12)

Second order backwards finite difference formula, raised to a fractional exponent

v, expanded into a truncated MacLaurin series, gives

() ()
()

()
() () () ()

2

1

0 0

1

2

3 1
1 1 1

kjN k
k

k j

C z
T

z
j j k j k

ν

ν

ν

ν ν

−

−
−

= =

Γ +⎡ ⎤⎣ ⎦= ×

−
×

1jΓ + Γ − + Γ − + Γ − + +∑ ∑
 (2.13)

Third order backwards finite difference formula, raised to a fractional exponent v,

expanded into a truncated MacLaurin series, gives

8

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

() ()
()

()
() ()

() () () ()

3

1

0 0 0

1 1
1 13

7 39 7 39
4 4 4 4

1 1 1

pN k t
k

k t p

t p k t

C z z
p pT

j j

t p t p k t k t

ν

ν ν

ν
ν

ν ν

− −

= = =

− + − +

⎡Γ +⎡ ⎤ −⎣ ⎦= ⎢
Γ + Γ − +⎢⎣

⎤⎛ ⎞ ⎛ ⎞

1

⎥− − − +⎜ ⎟ ⎜ ⎟
⎥⎝ ⎠ ⎝ ⎠
⎥Γ − + Γ − + + Γ − + Γ − + + ⎥
⎥
⎦

∑ ∑∑

 (2.14)

(In the above, j is the imaginary unit; in the end, all coefficients turn up to be real.)

Tustin formula, raised to a fractional exponent v, expanded into a truncated
MacLaurin series, gives

() () ()

()
() () () ()

1

0 0

2 1 1

1
1 1 1 1

jN k
k

k j

C z
T

z
j j k j j k

ν

ν ν

ν ν

−

−

= =

⎛ ⎞= Γ + Γ − + ×⎜ ⎟
⎝ ⎠
⎡ ⎤−

× ⎢ ⎥
Γ − + Γ + Γ − + Γ − + − +⎢ ⎥⎣ ⎦

∑ ∑
 (2.15)

Simpson formula, raised to a fractional exponent v, expanded into a truncated

MacLaurin series, gives

() () () ()
() ()

() ()
() () () ()

22

0 0 2

2

13 1 1
1 1

2 3 2 3

2 1 2 1 1 1

q
nqN

q

q n p n

p n q p

C s z
T n

p n p n q p q p

ν

ν ν

ν ν
ν

ν ν

⎛ ⎞
⎜ ⎟
⎝ ⎠

−

= = =

− − + − − +

⎡
−⎛ ⎞ ⎢= Γ + Γ − +⎡ ⎤⎜ ⎟ ⎣ ⎦ ⎢ nΓ + Γ − +⎝ ⎠ ⎢⎣

⎤− + ⎥
⎥Γ − + Γ − − + + Γ − + Γ − − + +
⎥⎦

∑ ∑ ∑
C

 (2.16)

Delta transform formula, raised to a fractional exponent v, expanded into a

truncated MacLaurin series, gives

()1

0

N
i

i
i

C z g zν
−

−
=

= ∑ − (2.17)

where

(){

() () () () ()
() ()

1

0

1 1

1 1

log 2

1
2 1 log 2

1 2

N
i

i
i

N i
i j i j

iji
i j

g z T

z D
i j i

νν
ν

ν ν
ν

− −

=

+ − − +

= =

= +

⎫⎡ ⎤Γ + ⎪+ − − ⎬⎢ ⎥Γ − + Γ + ⎪⎣ ⎦⎭

∑

∑ ∑

…

…
 (2.18)

A truncated time development based on impulse response gives

9

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

() () ()
()
()

11
1

11

N
s is s

i

iTT TC z z
v

νν ν

ν ν

− −− − −
−

=

= − +
Γ − + Γ − Γ −∑ −

−

 (2.19)

A truncated time development based on step response gives

()1

0

N
i

i
i

C z a z−

=

= ∑ (2.20)

where

() ()
()
()

1

0

1

0

1

, 1,2,
1

s s

k
s

k i
i

T Ta
v v

kT
a a k

ν ν

ν

ν

− − −

−−

=

= −
Γ − + Γ −

= − + =
Γ − +∑ …,n

 (2.21)

Continued fraction expansions of all eight formulas above may be reckoned as

follows. Let be the formula to expand. Then 1 2 3
10 11 12 13c c z c z c z− − −+ + + +…

00 0

2,0 2, 1
, 1,0 2, 1 2,0 1, 1

1,0 1, 1

1; 0,i i

j j
j i j j i j j i

j j i

c c
c c

c c c c c
c c

∈

i− − +
− − + − − +

− − +

= = ∀

= − = −

`

 (2.22)

()
1

1,01 10

00 ,0 1

0; ;
N

j

j j

c zcC z
c c

−
+−

=

⎡ ⎤
= ⎢
⎢ ⎥⎣ ⎦

⎥

)

 (2.23)

If an inverted formula is wanted for a controller of fractional order ν, then one of

the possibilities above is used for obtaining an approximation for an order –ν , which
we will call ; and finally (1Ĉ z−

() ()
1

1

1
ˆC z

C z
−

−
= (2.24)

is returned.

Syntax

C = nid(k, v, bandwidth, n, formula, expansion, decomposition)

Arguments

 k — gain, as seen in (2.1).
 v — fractional order ν, as seen in (2.1).
 bandwidth — a bandwidth specification, depending on variable formula as

follows:
♦ ‘crone’ and ‘matsuda’ — bandwidth must be a two number vector,

10

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

containing the limits, given in rad/s, of [];l hω ω , the frequency range where the
approximation is valid.
♦ ‘carlson’ — bandwidth can be the frequency, given in rad/s, around which
the approximation will be valid. It can also be a two number vector, containing
the limits, given in rad/s, of a frequency range. In that case the approximation
will be valid around the geometric mean of the interval's limits. Depending on
the number of poles and zeros, the approximation may cover the whole
frequency range, cover a larger range, or cover only its central region.
♦ ‘cfehigh’ — bandwidth is λ in (2.9). (If bandwidth is a vector, the first value
is chosen.)
♦ ‘cfelow’ — bandwidth is λ in (2.11). (If bandwidth is a vector, the last value
is chosen.)
♦ ‘1ofd’, ‘2ofd’, ‘3ofd’, ‘tustin’, ‘simpson’, ‘delta’, ‘impulse’ and ‘step’ —
bandwidth is the sampling time, in seconds.

 n — specification about the number of zeros and poles of the approximation. If
decomposition is ‘all’, what n means depends on variable formula as follows:

♦ ‘crone’ — the approximation has n zeros and n poles;
♦ ‘carlson’ — the approximation has at least n zeros and n poles, but may
have more;
♦ ‘matsuda’ — the number of zeros plus the number of poles is n; if n is odd,
the resulting transfer function will be improper (zeros being more than poles by
a difference of 1);
♦ ‘cfehigh’ — the approximation has n – 1 zeros and n poles;
♦ ‘cfelow’ — the approximation has n zeros and n poles;
♦ ‘1ofd’, ‘2ofd’, ‘3ofd’, ‘tustin’, ‘simpson’, ‘delta’, ‘impulse’ and ‘step’ — n
is the number of delays in the transfer function; if there are poles and zeros, it
is the sum of the number of delays in the numerator and denominator (Tustin
formula expanded into a continued fraction—inverted or not—does not accept
odd values. If one is given, the even number immediately above is assumed).

If decomposition is ‘frac’, n affects the fractional part only. When the integer part is
added, the number of poles or zeros will be increased accordingly.

 formula — the approximating formula used. It should be one of the following
strings:

♦ ‘crone’ — (continuous) Crone approximation;
♦ ‘carlson’ — (continuous) Carlson approximation;
♦ ‘matsuda’ — (continuous) Matsuda approximation;
♦ ‘cfehigh’ — (continuous) high-frequency continued fraction approximation;
♦ ‘cfelow’ — (continuous) low-frequency continued fraction approximation;
♦ ‘1ofd’ — (digital) first order backward finite differences approximation;
♦ ’2ofd’ — (digital) second order backward finite differences approximation;
♦ ‘3ofd’ — (digital) third order backward finite differences approximation;
♦ ‘tustin’ — (digital) Tustin continuous-discrete transform;
♦ ‘simpson’ — (digital) Simpson continuous-discrete transform;
♦ ‘delta’ — (digital) Delta transform based approximation;
♦ ‘impulse’ — (digital) approximation based on the impulse response;
♦ ‘step’ — (digital) approximation based on the step response.

 expansion (optional) — method used, when a digital approximation is built, for
expanding a power of the formula chosen with variable formula. It should be one of the

11

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

following strings:
♦ ‘mcltime’ (default) — truncated MacLaurin expansion or truncated time
development;
♦ ‘cfe’ — continued fraction expansion;
♦ ‘mcltimeINV’ — truncated MacLaurin expansion or truncated time
development, reckoned for a symmetrical value of v, and inverted;
♦ ‘cfeINV’ — continued fraction expansion, reckoned for a symmetrical value
of v, and inverted.

This parameter is neglected when formula is ‘crone’, ‘carlson’, ‘matsuda’, ‘cfehigh’ or
‘cfelow’.

 decomposition (optional) — determines how the approximation is performed. It
may have two values:

♦ ‘frac’ (default) — Parameter v is split into an integer and a fractional part.
The integer part is the largest integer smaller than v. The fractional part is
approximated using the method chosen with formula. The integer part is
approximated, depending on variable formula, as follows:

• ‘crone’, ‘carlson’ and ‘matsuda’ — no approximation is needed: zeros
and poles are added as necessary;
• ‘1ofd’, ‘2ofd’, ‘3ofd’, ‘tustin’ and ‘simpson’ — each zero or pole is
approximated with the chosen formula;
• ‘delta’, ‘impulse’ and ‘step’ — each zero and pole is approximated with
Tustin formula.

The fractional and the integer parts are then joined together.
♦ ‘all’ — An approximation corresponding to order v is found. This option is
often inferior to the former. Also, it cannot be used together with Carlson
method when v is larger than 1 or less than –1.

Return values

 C — tf object given according to the applicable formulas referred to above.

Error messages

 The method has an invalid format. — See above the available options.
 The expansion has an invalid format. — See above the available options.
 The decomposition has an invalid format. — See above the available options.
 Variable bandwidth should consist of two frequencies. — This appears when

bandwith must consist of two frequencies but contains only one number.
 Carlson method with |v|>1 demands that decomposition be ‘frac’.

Warnings

 Order v was rounded to (followed by a numerical value) — This may happen
when Carlson approximation is used, since not all values of v are possible, as explained
below, in subsection 2.2, for function newton.

Limitations

With digital approximations and with continuous continued fraction
approximations, there is no way to specify the range of frequencies in which the
approximation will be valid.

12

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

Some formulas only perform acceptably for positive or negative values of v, and
some only perform acceptably in one of the time or frequency domains. Literature
should be checked to choose in advance the formulas that are expected to perform
according to what is desired given the particular requirements of the problem under
consideration.

Algorithm

The first thing this function does is providing default values for input variables
that may not exist (this is checked by means of nargin). According to the value of
formula, bandwidth may be required to have two elements, or decomposition may be
required to be ‘frac’. That is checked by means of if structures. If bandwidth consists of
two values, these will be the limits of a frequency range, and are stored in two variables
called wl and wh. If a digital approximation is to be found, bandwidth is renamed Ts to
stress that it is a sampling time.

By means of an if structure the two possible cases of variable expansion are
handled. If it is ‘frac’, the approximation of the fractional part is reckoned by calling nid
again, and stored in variable C. Then, according to formula, zeros or poles are added. If
expansion is ‘all’, one of six functions is called to handle the approximation. This is to
simplify the code and render it easier to read. Five of these functions are internal to nid
and are described below. Function crone1, used for the Crone approximation, is
described in section 2.3. Function newton, used for the Carlson approximation, is
described in section 2.4, and is called here with function g set to a zero.

Function matsuda

This function handles the Matsuda approximation case. Frequencies are obtained
in the range from wl to wh by means of function logspace, that provides a
logarithmically spaced set. The number of frequencies is equal to n plus 1, since a single
frequency results in no zeros and poles, and each additional frequency adds a zero or a
pole (a zero if the number of zeros and poles is equal, a pole if there are more zeros than
poles). Gains of (2.1) at frequencies w are found and fed to function matsudaCFE,
described below in section 2.5, that takes care of the rest.

Function cfehigh

This function handles the high-frequency continued fraction approximation. It
builds vectors a and b with the numerators and the denominators of continued fraction
(2.9) and then assembles it using function contfraceval, described below in section 0.

Function cfelow

This function handles the low-frequency continued fraction approximation. It is
similar to cfehigh. Since several unnecessary zeros and poles in the origin appear, they
are done away with by converting the transfer function into a state-space representation
and then back into a transfer function again.

Function digital

This function handles all digital approximations, since they all have common
characteristics.

In this function switch structures are used to select the appropriate expression to
apply. The outermost one copes with the four possibilities of parameter expansion.
Corresponding case tags are marked with whole lines of %, so as to render them more
visible.

If variable expansion is equal to ‘mcltime’, another switch structure is used to

13

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

cope with the several possible values of variable method. Most methods deserve little
comment: coefficients are reckoned with one or two for cycles and stored into vector dc,
according to the formulas given above. Method ‘delta’ requires an auxiliary matrix, and
dc is first of all reckoned as a vector with coefficients for a δ-domain discrete transfer
function, corresponding to a differentiation order of –ν. A for cycle is then required for
converting each monomial into a z-domain transfer function. The sum of all these is
stored into variable temp, and then the order of coefficients is inverted so as to cancel
the effect of the changed signal of ν.

Last of all the transfer function C is obtained from vector dc with function tf,
property Variable being set to z^-1.

If a continued fraction expansion is chosen, the following formulas, reckoned
using function contfraceval, are used for methods ‘tustin’ and ‘1ofd’:

1 2

1

1 1
1

1 21; ,1 2 11
i

z
iz

z z

ν
ν ν

ν

2i

+∞

−

−

− −
=

⎡ ⎤⎧ ⎫
⎢ ⎥⎪ ⎪⎛ ⎞− −

= ⎢ ⎥⎨ ⎬⎜ ⎟ ++⎝ ⎠ ⎢ ⎥⎪ ⎪− − −
⎢ ⎥⎩ ⎭⎣ ⎦

 (2.25)

()
()

()
()
()

1 1
1

1

1

2 1 2 2 2 111 0; , , ,
1 1 1 1

i

i i i i
z z

i i i izz
ν

ν ν
ν

+∞

− −
−

−

=

⎡ ⎤+ −⎧ ⎫
− −⎢ ⎥⎪ ⎪− +⎪⎢ ⎥− = ⎨⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦

⎪
⎬ (2.26)

These formulas provide the same results that would be obtained using (2.22) and (2.23).
For all other methods, a MacLaurin series expansion is performed first. The resulting
polynomial is expanded into a continued fraction with function contfracf. Then the
fraction is expanded with contfraceval.

All continued fractions are expanded up to n+1 terms, so that the sum of the
number of delays in the numerator and denominator will be n. The sole exception is
Tustin formula. Formula (2.25) adds one pole and one zero per iteration, and so the
expansion is carried out to the smaller integer right above n/2 (above and not below, so
that there will not be too few delays). That is why no odd values of n are possible.

If an inversion is asked for, the function calls itself for a symmetrical value of v.
Then the result is inverted.

References

On the Crone approximation, see (Outaloup, p. 154-174, 1991).
On the Carlson approximation, see (Carlson et al., 1964), (Vinagre, p. 153, 2001).
On the Matsuda approximation, see (Matsuda et al., 1993), (Vinagre, p. 153-154,

2001).
On continuous continued fraction approximations, see (Vinagre, p. 153, 2001).
On digital approximations, see (Machado, 1999, 2001), (Lubich, 1986), (Vinagre

et al., 2000), (Valério et al., 2002, 2005a).
A revision of all this material is found in (Valério, p. 59-85, 2005c).

14

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

2.2. Function nipid

This function is fit for implementing a controller given by the frequency domain
transfer function

() , ,D

I

I
P D D I

kC s k k s
s

ν
ν ν ν += + + ∈\ (2.27)

by providing both continuous and digital approximations thereof. Controllers with this
structure are known as fractional PIDs. In this function, however, no conditions are
imposed on the orders, that may be both positive or both negative (even though strictly
speaking C will be a fractional PID only if one order is negative and the other positive
as seen in (2.27)).

The available approximations are those listed in the previous subsection for
function nid. But function newton, described below in section 2.4, may also be used for
particular cases of fractional PIDs.

Syntax

function C = nipid(kp, kd, vd, ki, vi, bandwidth, n, formula,...
 expansion, decomposition)

Arguments

 kp — proportional gain, as seen in (2.27).
 kd — derivative gain, as seen in (2.27).
 vd — fractional derivative order, as seen in (2.27).
 ki — integral gain, as seen in (2.27).
 vi — fractional integral order, as seen in (2.27).
 bandwidth — a bandwidth specification, depending on variable formula as

follows:
♦ ‘crone’ and ‘matsuda’ — bandwidth must be a two number vector,
containing the limits, given in rad/s, of [];l hω ω , the frequency range where the
approximation is valid.
♦ ‘carlson’ — bandwidth can be the frequency, given in rad/s, around which
the approximation will be valid. It can also be a two number vector, containing
the limits, given in rad/s, of a frequency range. In that case the approximation
will be valid around the geometric mean of the interval’s limits. Depending on
the number of poles and zeros, the approximation may cover the whole
frequency range, cover a larger range, or cover only its central region.
♦ ‘cfehigh’ — bandwidth is λ in (2.9). (If bandwidth is a vector, the first value
is chosen.)
♦ ‘cfelow’ — bandwidth is λ in (2.11). (If bandwidth is a vector, the last value
is chosen.)
♦ ‘1ofd’, ‘2ofd’, ‘3ofd’, ‘tustin’, ‘simpson’, ‘delta’, ‘impulse’ and ‘step’ —
bandwidth is the sampling time, in seconds.

 n — specification about the number of zeros and poles of the approximation. If
decomposition is ‘all’, what n means depends on variable formula as follows:

♦ ‘crone’ — the approximation has n zeros and n poles;

15

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

♦ ‘carlson’ — the approximation has at least n zeros and n poles, but may
have more;
♦ ‘matsuda’ — the number of zeros plus the number of poles is n; if n is odd,
the resulting transfer function will be improper (zeros being more than poles by
a difference of 1);
♦ ‘cfehigh’ — the approximation has n – 1 zeros and n poles;
♦ ‘cfelow’ — the approximation has n zeros and n poles;
♦ ‘1ofd’, ‘2ofd’, ‘3ofd’, ‘tustin’, ‘simpson’, ‘delta’, ‘impulse’ and ‘step’ — n
is the number of delays in the transfer function; if there are poles and zeros, it
is the sum of the number of delays in the numerator and denominator (Tustin
formula expanded into a continued fraction—inverted or not—does not accept
odd values. If one is given, the even number immediately above is assumed).

If decomposition is ‘frac’, n affects the fractional part only. When the integer part is
added, the number of poles or zeros will be increased accordingly.

 formula — the approximating formula used. It should be one of the following
strings:

♦ ‘crone’ — (continuous) Crone approximation;
♦ ‘carlson’ — (continuous) Carlson approximation;
♦ ‘matsuda’ — (continuous) Matsuda approximation;
♦ ‘cfehigh’ — (continuous) high-frequency continued fraction approximation;
♦ ‘cfelow’ — (continuous) low-frequency continued fraction approximation;
♦ ‘1ofd’ — (digital) first order backward finite differences approximation;
♦ ‘2ofd’ — (digital) second order backward finite differences approximation;
♦ ‘3ofd’ — (digital) third order backward finite differences approximation;
♦ ‘tustin’ — (digital) Tustin continuous-discrete transform;
♦ ‘simpson’ — (digital) Simpson continuous-discrete transform;
♦ ‘delta’ — (digital) Delta transform based approximation;
♦ ‘impulse’ — (digital) approximation based on the impulse response;
♦ ‘step’ — (digital) approximation based on the step response.

 expansion (optional) — method used, when a digital approximation is built, for
expanding a power of the formula chosen with variable formula. It should be one of the
following strings:

♦ ‘mcltime’ (default) — truncated MacLaurin expansion or truncated time
development;
♦ ‘cfe’ — continued fraction expansion;
♦ ‘mcltimeINV’ — truncated MacLaurin expansion or truncated time
development, reckoned for a symmetrical value of v, and inverted;
♦ ‘cfeINV’ — continued fraction expansion, reckoned for a symmetrical value
of v, and inverted.

This parameter is neglected when formula is ‘crone’, ‘carlson’, ‘matsuda’, ‘cfehigh’ or
‘cfelow’.

 decomposition (optional) — determines how the approximation is performed. It
may have two values:

♦ ‘frac’ (default) — Parameter v is split into an integer and a fractional part.
The integer part is the largest integer smaller than v. The fractional part is
approximated using the method chosen with formula. The integer part is
approximated, depending on variable formula, as follows:

• ‘crone’, ‘carlson’ and ‘matsuda’ — no approximation is needed: zeros
and poles are added as necessary;

16

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

• ‘1ofd’, ‘2ofd’, ‘3ofd’, ‘tustin’ and ‘simpson’ — each zero or pole is
approximated with the chosen formula;
• ‘delta’, ‘impulse’ and ‘step’ — each zero and pole is approximated with
Tustin formula.

The fractional and the integer parts are then joined together.
♦ ‘all’ — An approximation corresponding to order v is found. This option is
often inferior to the former. Also, it cannot be used together with Carlson
method when v is larger than 1 or less than –1.

Return values

 C — tf object given according to the applicable formulas referred to above.

Error messages and warnings

Errors and warnings are those described above in subsection 2.1 for function nid.

Limitations

Comments above in subsection 2.1 about digital approximations are valid for this
function also.

Algorithm

The first thing this function does is providing for inexistent input variables, just
like function nid does. Then a switch structure handles different possible values of
variable formula.

When formula is ‘crone’, ‘carlson’, ‘cfehigh’ or ‘cfelow’, function nid is called
twice to handle the derivative and the integral parts, which are then summed up with the
proportional part. These calls have parameter n set to ceil(n/2) so that, when adding the
integral part to the derivative part, no more than n (n+1 if n is odd) zeros or poles appear
(if decomposition is set to ‘all’—check the warnings above).

Case ‘matsuda’, after an initial check on variable bandwidth, is handled with
function newton just as nid does. The only difference lies in the expression that reckons
the gain to approximate.

All other (digital) cases are handled together, with another switch structure,
required to deal with the several possible cases of variable expansion, since the number
of terms that must be used for approximating the derivative and integral parts is not
always the same.

References

On this subject, see (Podlubny, p. 249-250, 2001), (Valério, p. 121-127, 2005c).

2.3. Function crone1

This function is fit for implementing a controller given by the frequency domain
transfer function

() ,C s ksν ν= ^∈ (2.28)

17

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

by providing a continuous Crone approximation thereof. The form the approximation
takes for real differentiation orders was given above in section 2.1, equation (2.2). For
complex differentiation orders 1a bν = + − , a recursive distribution of poles and zeros
is used:

() 1

1

1

1

M

n zn
N

n pn

s

C s k
s
ω

ω

=

=

+
′=

+

∏

∏
 (2.29)

Notice that the number of zeros and poles is no longer the same. k’ is an adjusted gain
so that if k is 1 then the gain is 0 dB for a 1 rad/s frequency. Zeros and poles are to be
found from frequency lω on and are given by

N Ma
NM

h

l

ωα
ω

+

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (2.30)

()
() ()

10

10

log

2 log 10 log tgh
210

bb

π α
ππ α

η
−

= (2.31)

1z lω ω η= (2.32)

1p lω ω α= (2.33)

, 1 , 2pn p n n Nω ω α−= = … (2.34)

, 1 , 2zn z n n Mω ω η−= = … (2.35)

Syntax

C = crone1(k, v, wl, wh, n)

Arguments

 k — gain, as seen in (2.28).
 v — non-integer order, as seen in (2.28).
 wl — lower limit, given in rad/s, of [];l hω ω , the frequency range where the

approximation is valid.
 wh — upper limit, given in rad/s, of [];l hω ω , the frequency range where the

approximation is valid. Notice that, according to formulas (2.32) to (2.35), this limit is
not taken into account for complex differentiation orders.

 n — order of the approximation. If v is real, the number of zeros and poles is
the same; so only the first element of n is taken into account. If v is complex, n is to
contain two values: these are []N M as seen in equation (2.29).

Return values

 C — tf object given according to the applicable formulas referred to above.

18

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

Error messages

 Complex differentiation orders require a different number of zeros and poles.
— If argument v is complex but n contains only one value, or contains two equal values,
no approximation may be built.

Algorithm

If v is real, the value of product αη is reckoned and stored in variable alphaXeta.
From (2.3) and (2.4) it is given by

1
N

h

l

ωαη
ω

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (2.36)

Values for alpha and eta are reckoned from this variable.

In what follows vectors with the frequencies of poles and zeros (called poles and
zeros) are obtained using formulas (2.3) to (2.7). If v is negative the roles of zeros and
poles are interchanged.

A tf object is built using these frequencies. Minus signs are needed since zeros
and poles are stable. This tf object, called C, does not have a unit gain at frequency 1
rad/s. For that reason it is divided by bode(C, 1). Function bode returns gains and
phases, but the first value it returns it that of gains. Frequency 1 is specified and so this
ensures the desired gain. Multiplication by k ends the function.

If v is complex, n is split into n and m, and v split into a and b, to simplify the
following commands. Variables alpha and eta are found and vectors with zeros and
poles built, much like the real case.

References

On this subject, see (Oustaloup, p. 154-174 and 336-353, 1991), (Valério, p. 59-
61 and 120-121, 2005c).

2.4. Function newton

This function provides an approximation of a fractional order power of a transfer
function using Newton’s iterative method. The power must be the inverse of an integer
number, since the equation solved is

() ()aC s g s= (2.37)

In the end we will have an approximation of

() ()
1
aC s g s= (2.38)

The recursive expression

19

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

() () () () () ()
() () () ()

1
1

1

1 1
1 1

a
n

n n a
n

a C s a g s
C s C s

a C s a g s
−

−
−

− + +
=

+ + −
 (2.39)

is used, C0 being set to 1.

This function uses the method outlined above for approximating

() ()C s kg sν= (2.40)

When ν is larger than 1 or less than –1, it is split into an integer part and a fractional
part. The integer part is the largest integer smaller than ν. The fractional part is
approximated using Newton’s method. The integer part is found without any
approximation and joined together with the fractional one.

When ν is between –1 and 1, no such splitting is needed. But in both cases the
fraction has to be rounded off to the nearest inverse of an integer.

Syntax

C = newton (k, v, bandwidth, n, g, stop)

Arguments

 k — gain, as seen in (2.40).
 v — fractional order, as seen in (2.40). This may have to be rounded off as

explained above.
 bandwidth — a bandwidth specification. It can be the frequency, given in rad/s,

around which the approximation will be valid. It can also be a two number vector,
containing the limits, given in rad/s, of a frequency range. In that case the
approximation will be valid around the geometric mean of the interval’s limits.
Depending on the number of poles and zeros, the approximation may cover the whole
frequency range, cover a larger range, or cover only its central region.

 n — number of iterations (given by (2.39)) performed, or number of zeros and
poles of the approximation, depending on the value of stop.

 g — function raised to a fractional power, as seen in (2.40).
 stop (optional) — criterion for stopping the iterations. It should be one of the

following strings:
♦ ‘iter’ (default) — n iterations are performed;
♦ ‘zp’ — iterations are performed until the approximation has at least n zeros
and n poles (but it may have more).

Return values

 C — tf object given according to the applicable formulas referred to above.

Limitations

Two things should be noticed. Firstly, that the number of zeros and poles grows
very quickly with the number of iterations. When these are performed until n is reached,
this usually means that n was largely exceeded.

Secondly, that the expressions (2.37) to (2.40) give no choice as to the frequency
range where the approximation will be valid. So in the end poles and zeros must be

20

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

conveniently augmented or diminished according to what is desired. This requires
correcting the gain accordingly. A consequence is that if bandwidth is set so that the
range of frequencies where the approximation is good does not include 1 rad/s there will
be an error in the gain. This is because this function sets the gain to its proper value at 1
rad/s, which will be a cause of error if the gain is no longer properly approximated at
that frequency.

How to use function newton with fractional PIDs

Function newton may be used to implement a fractional PID in one of two cases:
 the fractional derivative order is the inverse of an integer and the fractional

integral order is a multiple of the fractional derivative order;
 the fractional integral order is the inverse of an integer and the fractional

derivative order is a multiple of the fractional integer order.
In the first case, (2.27) becomes

() ()
1

11

11

1 D
D

D D D D

DD D

a
aa n a a a

P D I P D I n

aa an
D I

P n

C s k k s k s k k s k
s

k s kk
s

−

+

⎛ ⎞= + + = + + =⎜ ⎟
⎝ ⎠

⎛ ⎞+
= + ⎜ ⎟

⎝ ⎠

 (2.41)

So function
1D Da an

D I
n

k s k
s

+ + may be given to function newton, together with order 1/aD.

Proportional gain kP must be added in the end.
In the second case, (2.27) becomes

() ()
1

11

11

1 I
I

I I I I

II I

a
an a a a an

P D I P D I

aa an
D I

P

C s k k s k s k k s k
s

k s kk
s

−

+

⎛ ⎞= + + = + + =⎜ ⎟
⎝ ⎠

⎛ ⎞+
= + ⎜ ⎟

⎝ ⎠

 (2.42)

So function
1I Ia an

D Ik s k
s

+ + may be given to function newton, together with order 1/aI.

Proportional gain kP must be added in the end.

Algorithm

The first thing this function does is providing the default values for input variable
stop, that may not exist (this is checked by means of nargin). The frequency around
which the approximation is valid may be given in bandwidth, or may have to be
reckoned from the two variables therein. Then v is decomposed into an integer part m
and a fractional part, which is the inverse of a, rounded so as to be an integer. Values of
1 or –1 would not do, and in those cases a is set to 2 or –2. It should be noticed that if m
is not zero, a will always be positive. A warning is given if the decomposition of v
changed its value. It may happen that this warning appears solely because of slight
round-off errors, but this is hard to avoid.

An if structure is used to deal with both possible cases of stop, which are then

21

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

handled with a while or a for. In the implementation of formula (2.39), the only detail
worth of notice is that the intermediate results are stored in tf objects. Since this usually
introduces several zeros and poles in the origin, a final double conversion to state-space
and back to transfer function is included to eliminate them.

At the end of the function zeros, poles and gain are extracted using function
zpkdata and stored in the variables with the corresponding names. The tf object is
rebuilt with poles and zeros multiplied by wc and the gain of g at 1 rad/s, so that the
frequency range where the approximation is valid is recentred. The gain is then
corrected with input parameter k and the ratio between its correct value at 1 rad/s and
the value of the former approximation at the same frequency. That the correction be
done at 1 rad/s is the reason why, if at that frequency the approximation is poor, the gain
will be incorrect everywhere. At the same time, m poles (or zeros if m is negative) are
added.

It should also be noticed that although a provision is included in this function for a
gain k, this is strictly not necessary since it could always be made a part of g. It was
included to ensure similarity with function nid.

References

On this subject, see (Carlson et al., 1964), (Vinagre et al., 2000), (Vinagre, p. 153,
2001), (Valério, p. 61, 2005c).

2.5. Function matsudaCFE

Matsuda method approximates a function by a continued fraction (the CFE in the
name of the function stands for continued fraction expansion). If the value of function f
is known in a set of points x0, x1, x2, x3, …, then the following set of function is
recursively defined:

() ()

() () ()

0

1 , 0,1,2k
k

k k k

d x f x
x x

d x k
d x d x+

=

−
=

−
…=

 (2.43)

Function f is approximated by

() ()
()

()
()

0
0 0

1
1 1

2
2 2

3
3 3

x x
f x d x

x x
d x

x x
d x

x x
d x

−
= +

−
+

−
+

−
+
…

 (2.44)

This method may be applied for transfer functions using their gain as the value

known at several frequencies and replacing variable x by s in (2.44). Thus, for a transfer
function C,

22

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

() ()

() () ()

0

1 , 0,1, 2k
k

k k k

d C j

d k
d d

ω ω

ω ωω
ω ω+

=

−
= =

−
…

 (2.45)

() ()
()

()
()

0
0 0

1
1 1

2
2 2

3
3 3

s
C d

s
d

s
d

s
d

ω
ω ω

ω
ω

ω
ω

ω
ω

−
= +

−
+

−
+

−
+
…

 (2.46)

Syntax

C = matsudaCFE(w, gain)

Arguments

The function receives the following parameters:
 w — vector (row or column) with a list of frequencies, given in rad/s.
 gain — vector (row or column) with a list of gains, in dB, at frequencies given

in vector w.

Return values

 C — tf object given according to the applicable formulas referred to above.

Algorithm

In this function, and since gains are received in dB, the first thing to do is to
convert them into absolute values, which are stored in variable f. Since the indexes
begin at 1, frequency iω is to be found in w(i+1) and the corresponding gain is to be
found in f(i+1).

Functions d are to be evaluated at frequencies w, and a matrix is built with such
values: different lines correspond to different functions, and different columns to
different frequencies. Again, since indexes of columns and lines begin at 1, the value of

()i jd ω
 is to be found at d(I+1,j+1); hence the +1 operation whenever indexes appear.

But while the value of d0 is needed for all frequencies, the value of d1 is only
needed for 1 2 3, , ,ω ω ω …; the value of d2 is only needed for 2 3, ,ω ω … ; and, generally
speaking, the value of di is only needed for frequencies from iω onwards. This means
that the matrix may be upper-triangular.

As a consequence, matrix d is built while being swept by two different for cycles.
The first sweeps columns; the innermost sweeps lines down from the top until the main
diagonal. Function d0 is dealt with outside this innermost loop, since it is given by a
different expression. Inside the loop lines below the first are reckoned. At the end of the
outermost cycle the main diagonal is copied to a variable called alpha; in the end, we
shall have

()i i idα ω= (2.47)

23

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

these being the values needed for the continued fraction.
The fraction is reckoned from its innermost part out, which is the most efficient

way since its length is known.

References

On this subject, see (Matsuda et al., 1993), (Vinagre et al., 2000), (Vinagre, p.
153-154, 2001), (Valério, p. 61-63, 2005c).

2.6. Obsolescent functions

In previous versions of this toolbox, there were several functions doing the job
now committed to functions nid and nipid. So that code based upon these no longer
necessary functions may still be used, compatibility is ensured by still providing them
(in a separate folder called obsolescent).

It is recommended that they should not be used. They may be removed in future
versions.

In their present forms, they merely call nid or nipid with the appropriate
parameters, as follows:

Function… … is the same as…

C = carlson (k, a, wc, n) C = nid(k, v, wc, n, 'carlson', [], 'all')

C = matsuda(k, v, wl, wh, n) C = nid(k, v, [wl wh], n, 'matsuda', [],...
'all')

C = nidiz(k, v, n, Ts, formula, expansion) C = nid(k, v, Ts, n, formula, expansion,...
'all')

C = nipidcrone(kp, kd, vd, ki, vi, wl,...
wh, n)

C = nipid(kp, kd, vd, ki, vi, [wl, wh],...
n, 'crone', [], 'all')

C = nipidcarlson(kp, kd, ad, ki, ai, wc, n) C = nipid(kp, kd, 1/ad, ki, 1/ai, wc, n,...
'carlson', [], 'all')

C = nipidmatsuda(kp, kd, vd, ki, vi, wl,...
wh, n)

C = nipid(kp, kd, vd, ki, vi, [wl, wh],...
n, 'matsuda', [], 'all')

C = nipidz(kp, kd, vd, ki, vi, n, Ts,...
formula, expansion)

C = nipid(kp, kd, vd, ki, vi, Ts, n,...
formula, expansion, 'all')

In version 2.2 function crone1 was also considered obsolescent. This is no longer

the case.

24

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

3. Functions ensuring a real fractional order
behaviour for the open-loop

The two functions described in this section reckon controllers that ensure an open-
loop dynamic described by (1.1). Function crone2 works in the frequency domain and
crone2z works in the discrete-time domain5.

3.1. Function crone2

This function identifies a frequency domain controller that will ensure an open-
loop dynamic given by (1.1). The corresponding phase ought to be constant:

() ()arg ,
2

G j C j πω ω ν= ∀⎡ ⎤⎣ ⎦ ω (3.1)

Suppose you know the frequency behaviour of plant G at N frequencies ω1, ω2,… ωN.
Equation (3.1) implies that at those frequencies

() ()arg arg , 1
2i iC j G j i Nπω ν ω= − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ … (3.2)

Let us call the right hand difference φ. Suppose that the controller is given by

()
1

1

j zj

j pj

s

C s k
s
ω

ω

+

=
+

∏

∏
 (3.3)

where the ωzj are the frequencies of the poles and the ωpj are the frequencies of the
poles. If we replace each stable zero by an unstable pole at the same frequency, and
each unstable zero by a stable pole at the same frequency, the phase of C will be just the
same:

()

1

1

1
M

j zpj

C s k
s

ω=

=
+∏

 (3.4)

M is the number of pole or zero frequencies of the controller. Equality (3.2) becomes

5 Users interested in the methodologies implemented with these functions might want to consider

the use of the Crone toolbox, (commercially) available from the University of Bordeaux. See for instance
(Cois et al., 2002), (Oustaloup et al., 2002), (Melchior et al., 2004).

25

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

1

arctg , 1
M

i
i

j zpj

iω φ
ω=

− = =∑ …N (3.5)

This is the system of equations that this function solves.

This reasoning makes clear that the function may also be used as an identification
method. In that case φ will be the experimental phase data to fit. Once frequencies ωzpj
are found, it must be checked which correspond to zeros and which correspond to poles.
All combinations must actually be tried, and the one with a gain closer to the
experimental gain data will be chosen.

When the function is used for providing a controller, open-loop gain behaviour is
not as important as controller stability. So all frequencies are made to correspond to
stable poles and zeros (stable poles remain as they are, unstable poles are turned into
stable poles).

Syntax (identification method)

C = crone2(w, gain, phase, n)

Arguments (identification method)

 w — vector with frequencies ω1, ω2,… ωN in rad/s.
 gain — column vector with experimental gains (at frequencies found in w) in

dB.
 phase — vector with experimental phases (at frequencies found in w) in

degrees.
 n (optional) — desired number of poles and zeros of the model (corresponds to

M in (3.4) and (3.5)). The actual number of poles and zeros may be less than n since
spurious frequencies may appear during the resolution and be eliminated later. If this
parameter is omitted, n is assumed to be N (the number of frequencies in vector w), for
system (3.5) to become square (and easier to solve).

Syntax (finding a controller)

C = crone2(w, [], phase, n, w1)

Arguments (finding a controller)

 w — vector with frequencies ω1, ω2,… ωN in rad/s.
 phase — vector with the phases, in degrees, the controller must have at

frequencies found in w (φ as given by the right-hand side of equation (3.2)).
 n (optional) — desired number of poles and zeros of the controller

(corresponds to M in (3.4) and (3.5)). The actual number of poles and zeros may be less
than n since spurious frequencies may appear during the resolution and be eliminated
later. If this parameter is omitted, n is assumed to be N (the number of frequencies in
vector w), for system (3.5) to become square (and easier to solve).

 w1 — frequency, in rad/s, at which the controller will have a unit gain (that is
to say, a 0 dB gain).

Return values

 C — tf object given according to the applicable formulas referred to above.

26

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

Algorithm

The function begins by completing the parameters received. Since the code
necessary for solving system (3.5) is very complicated, it was relegated to a function
later in the file, called resolution and described below. The rest of the function filters
(thrice) and interprets the results returned.

The first filter eliminates all real poles with a frequency clearly above the interest
frequency range, since they will not affect the controller’s phase; and all complex poles
outside the interest frequency range, since pairs of complex conjugate poles, when
found outside the interest frequency range, are certainly needless. Complex conjugate
poles cause phase jumps of 180º, and it is possible that they shift the phase up or down
180º in order to reach the correct value; but the phase’s average value will be corrected
later, so eliminating all complex poles outside the interest frequency range does no
harm. The code sweeps vector wzp, containing frequencies returned by resolution, with
a for cycle, and stores values to keep in a temporary variable called temp. It is not
possible to eliminate undesired values immediately, as that would interfere with the for
cycle, that would try to reach positions at the end of the vector that would no longer
exist. A limit two decades above the highest sampling frequency was chosen for
keeping real poles.

After this all pairs of poles that eliminate each other’s effect on phase are to be
done away with in the second filter. Poles have effects on phase that compensate each
other if their module is equal (so that they affect the phase at the same frequency) and
they are symmetric in relation to the imaginary axis (which means that the sum of their
arguments is π rad). As it is highly unlikely that exact equalities are found a tolerance
was allowed for. It has the value of 1º, which appeared to be reasonable. Immediately
eliminating elements from the vector would interfere with the two nested for cycles, just
like before; so a temporary vector of flags called flags was used to store the number of
those that are to be eliminated. When cycles are over only those solutions having no flag
are kept; their number is found with function setdiff.

The function then proceeds to eliminate in the third filter complex poles, within
the interest frequency range (those outside have already been eliminated), that are
unnecessary. Function arc of tangent, a 180º-period function, is present in the system of
equations solved by resolution, and this means that spurious sudden jumps of 180º may
appear. This is a delicate operation because it is hard to see if a particular pair of
complex conjugate poles is necessary or not. For that purpose the plant’s phase variation
between adjacent sampling frequencies is compared with the model’s phase variation, to
see if there are significant changes. The limit of what is significant was empirically
found. Whenever significant changes occur poles are searched to find complex poles
placed between the two sampling frequencies under examination. The order number of
such poles is saved in variable flags, so that these may be done away with using setdiff
as above.

Vector wzp holds a set of pole frequencies that actually may correspond to either
poles or zeros. If no specification for gain is present, the choice is to assume that they
are whatever keeps them stable. So wzp is swept, and frequencies of unstable poles are
stored in vector wz with their sign changed, so as to become stable zeros (that have the
very same effect on phase). Stable poles are stores in vector wp.

But if a specification for gain was given all possible 2N combinations of poles and
zeros have to be checked, looking for the one corresponding to a gain closer to the
desired one. In order to obtain all such combinations, the first 2N non-negative integers
are written with binary digits—these are the numbers that may be written with N or less

27

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

binary digits—using function dec2bin (which is given N as second parameter so that left
zeros are added in order to obtain always N binary digits). When a certain frequency
corresponds to a 0, it is assumed to be a zero; when it corresponds to a 1, it is assumed
to be a pole. Combinations where complex conjugates are not both poles or both zeros
are not taken into account. This is done by reckoning the sum of poles’ imaginary parts,
to see if it is zero (the sum of zeros’ imaginary parts could also have been used). The
controller’s gain at frequencies where experimental data are available is obtained with
function bode; the combination of zeros and poles minimising the sum of the square of
the differences between desired and controller gains is chosen. The difference is
reckoned after correcting both gain sets to ensure zero means, because the controller’s
static gain is not yet determined.

The periodic nature of function arc of tangent brings another problem that has yet
to be dealt with: the controller’s phase may differ from experimental data by 180º or by
a multiple of 180º. Function bode is used to find the controller’s phase at sampling
frequencies so that it may be compared to the experimental phase. The difference,
stored in variable error, must be roughly multiple of 90º. The quotient is stored in
variable difference. If phase is below the data provided in phase, zeros must be added to
raise it; if it is above, poles must be added to lower it. Such poles and zeros are placed at
the origin.

Finally the controller’s gain is determined. If no gain data was given, the
frequency at which gain should be 1 had to be provided. The gain is found at that
frequency (using function bode) and gain is set to the inverse. If gain data was given,
the controller’s gain is determined so that gains’ average values are the same. The gain
of the controller is once again found with bode.

Function resolution

The system of trigonometric equations (3.5) is rather complex, but it is possible to
linearise it without any approximations. Its solutions may be found solving three
problems sequentially. The first one is the linear set of equations

() ()2
, 1, ,0

1

1
M

k k
i k k i i

k

, 1A i
=

− Φ = −Φ =∑ C
S …N (3.6)

where

()

0

,

tg , 2

1, 2 1
i p

i k
p

k p

k p

φ ∈

∈

∃ =⎧⎪Φ = ⎨
∃ = −⎪⎩

`

`

 (3.7)

1

i
iA ω

ω
= (3.8)

These equations are solved in order to the . 1,kS

The second one is the equation

()1 1
1

1
M

kM M k
k

k

y y −

=

+ − =∑ S1, 0 (3.9)

This equation is solved in order to y1 and has M solutions.

The third one is the set of (independent) equations

28

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

1

1,

, 1zpi
i

i
y

Nωω = = … (3.10)

solved in order to ωzpi, the pole frequencies wanted.

This linearisation has a drawback: the matrix in system (3.6) is usually a very
good example of a very badly conditioned matrix.

Resolution is usually performed by means of the operator \, conceived for solving
linear systems of equations. The accuracy of the solution is checked. Whenever errors
superior to 1º are found in any of the equations, or whenever an infinite or NaN value
was obtained, symbolic resolution with Maple is used. This is performed in a separate
function, found at the end of the file, called resmaple, because interpreting the solution
requires many lines of code. By means of a for cycle different precision digits are
experimented, from 10 to 100 with a step of 5, until Maple finds a solution with an error
of less than 1º for all equations. If not even with 100 digits a good result is obtained a
warning is shown, since it is likely that the controller will not achieve the desired
performance.

The zeros of the polynomial of the second problem are found with command
roots. It is to be noticed that the coefficients are stored in vector system from the
independent (in position 1, not 0) up to the highest power. Since function roots uses the
inverse convention the order must be reversed.

In the third problem those roots that are zero are despised, as they correspond to
poles in infinity.

Function resmaple

This function calls programme Maple through function maple in order to solve
system (3.6). This function returns a character string with the solution written in
Maple’s syntax. The first Maple command used is linsolve. If no solution is found (if
the system is overdetermined this is to be expected) a solution is searched for by means
of a singular value decomposition6.

If once again no solution is found, the returned variable remains empty. If a
solution was found there may be more than one solution; in that case the character string
contains a general expression depending on the entries of a vector _t, represented by
_t[1][1], _t[1][2], etc.. Unfortunately Matlab’s command sym is unable to understand
that notation; so it must be changed to Matlab’s usual notation: t(1,1), t(1,2), etc.. For
that purpose the string is checked for the presence of the underscore. If this character is
found, it is removed; brackets are replaced by parenthesis; and followed parentheses are
replaced by a comma. The sole problem is that this may destroy the syntax of an
eventual matrix([…]) command (the ellipsis stands here for the contents of the matrix).
So if this word is found the brackets are restored in their positions. As this is over the
solution depends on a variable t; its entries are set to 1 (any other value could be used;
the purpose is simply to obtain a particular solution); the size is set to the maximum
possible value.

Now it is possible to proceed as though there were only one solution: function sym
is used to build a symbolic object from Maple’s solution, and that symbolic object is
numerically evaluated with function eval.

6 For formulas see (Pina, p. 403-404, 1995).

29

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

References

See (Oustaloup, p. 180-183, 1991), (Valério, p. 101-104 and 115-116, 2005c).

3.2. Function crone2z

This function is the discrete counterpart of function crone2 above. Its task is more
difficult since a controller given by

()
()

()

1

1 1

1

1

1

1

m

k
k
n

k
k

b z
C z k

a z

−

− =

−

=

−
=

−

∏

∏
 (3.11)

(instead of (3.3)) will have a frequency response given by

()
()

()

()

()
1 1

1 1

1 1 cos

1 1 cos

m m
j

k k
j k k

n n
j

k k
k k

b e b jb
C e k k

a e a ja

ω

ω

ω

sin

sin

k

k

ω ω

ω ω

−

= =

−

= =

− − +
= =

− − +

∏ ∏

∏ ∏
 (3.12)

where Ts is the sampling time; and there is no way to have another discrete controller
with poles but no zeros (or zeros but no poles) to have the same frequency response in
what concerns phase, as was the case above. This means that if the number of zeros and
poles is n then all n+1 combinations of numbers of poles D and numbers of zeros N that
add up to n must be examined to check which will provide a better result. The one
resulting in a more accurate reproduction of phase behaviour will be chosen.
Incidentally this means that no guarantee of stability is given when the method is used
for designing a controller. If this method is used for identifying a model both the gain
and phase behaviours must be had into account when distributing zeros and poles.

From the discussion above we see that (3.5) is replaced by the system resulting of
equalling (3.12) to φi.

Syntax (identification method)

C = crone2z(w, gain, phase, n, Ts)

Arguments (identification method)

 w — vector with frequencies ω1, ω2,… ωN in rad/s.
 gain — vector with experimental gains (at frequencies found in w) in dB.
 phase — vector with experimental phases (at frequencies found in w) in

degrees.
 n (optional) — desired number of delays of the model (corresponds to N+D in

(3.11)). If this parameter is omitted, n is assumed to be N (the number of frequencies in
vector w), for the system of equations to become square (and easier to solve). It may
also be set to [n1 n2]. In that case n1 will be the number of delays in the numerator and
n2 will be the number of delays in the denominator.

30

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

 Ts — sampling time in seconds.
It should be noticed that vectors w, gain and phase may be column vectors or row

vectors, but they must all be of the same type.

Syntax (devising a controller)

C = crone2z(w, [], phase, n, Ts, w1)

Arguments (devising a controller)

 w — vector with frequencies ω1, ω2,… ωN in rad/s.
 phase — vector with the phases, in degrees, the controller must have at

frequencies found in w (φ as given by the right-hand side of equation (3.2)).
 n — desired number of delays of the controller (corresponds to N+D in (3.11)).

This parameter may be set to []. In that case n is assumed to be N (the number of
frequencies in vector w), for the system of equations to become square (and easier to
solve). It may also be set to [n1 n2]. In that case n1 will be the number of delays in the
numerator and n2 will be the number of delays in the denominator.

 Ts — sampling time in seconds.
 w1 — frequency, in rad/s, at which the controller will have a unit gain (that is

to say, a 0 dB gain). The presence of this parameter is what actually decides if
parameter gain is taken into account. So if you provide both gain and w1 it is w1 that
matters.

It should be noticed that vectors w and phase may be column vectors or row
vectors, but they must all be of the same type.

Return values

 C — tf object given according to the applicable formulas referred to above.

Algorithm

The system of equations resulting from equalling (3.12) to φi is, in the general
case, numerically solved since linearisation is only possible if there are no poles or no
zeros. In the first case, the phase of (3.12) is given by

()
1

sinarg arctg
1 cos

m
j k

k k

bC e
b

ω ω
ω=

⎡ ⎤ =⎣ ⎦ −∑ (3.13)

This means that the discrete counterpart of (3.5) is

1

sinarctg , 1
1 cos

m
k

i
k k

b i
b

ω φ
ω=

= =
−∑ …N (3.14)

Solving (3.14) may be in three steps, just like (3.5). The first is solving

31

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

() ()

() ()

2
, 1, 1 1,

1 1

2
,0 , 1, 1

1

1

1 ,

M k
k r k r

i k k r M k r i i
k r

M
k k

i i k k M k i
k

A B

1B i N

−
− − − +

= =

− − +
=

⎡ ⎤− Φ =⎣ ⎦

⎡ ⎤= −Φ − − Φ =⎣ ⎦

∑∑

∑

C

C

T S

T …
 (3.15)

where

1,

0,

1,
1

2,
1 1

, 1,
1

1

,

a

a

a

a
i

ja

a
j i

a

b a b i
i

a

i

i

b

−

=

= =

−
=

=

=

=

=

= ∈

∑

∑∑

∑

T

T

T

T

T T

…

`0

 (3.16)

1sin
sini

i

A ω
ω

= (3.17)

1cos cotg
sini

i

B i
ω ω
ω

= − (3.18)

0
,

tg , 2
2

1, 2 1

i p
i k

p

M k p

k p

πφ ∈

∈

⎧ ⎛ ⎞− ∃ =⎪ ⎜ ⎟Φ = ⎝ ⎠⎨
⎪ ∃ = −⎩

`

`

 (3.19)

These equations are solved in order to the . 1,kS

The second is (3.9) again.
The third is

1

1, 1

cosec
cotgk

k

b
y

ω
ω

=
+

 (3.20)

If instead of no poles C has no zeros, the resolution is exactly the same, save that

instead of (3.19) we will have

0
,

tg , 2
2

1, 2 1

i p
i k

p

M k p

k p

πφ ∈

∈

⎧ ⎛ ⎞− − ∃ =⎪ ⎜ ⎟Φ = ⎝ ⎠⎨
⎪ ∃ = −⎩

`

`

 (3.21)

If both zeros and poles are to exist, a numerical method must be employed. But

this may also be used even if the problem may be exactly solved as explained above.
Since the matrix in (3.15) is always very poorly conditioned, this may even prove to be
better than the exact solution. So this toolbox always solves the problem in both ways,
keeping the better result.

32

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

The code of this file considers separately two cases: first, that in which only the
total number of delays in the transfer function is given; then, that in which a specific
distribution of delays between numerator and denominator is given.

In the first, all possible combinations of number of delays in the numerator and
denominator adding up to n have to be tried. This is done with a for cycle. All
parameters are kept in a single vector a, but as variable ordnum (this stands for order of
the numerator) changes, so does the way this vector is interpreted: the first ordnum+1
coefficients are considered to belong to the numerator (the 1 is added to take the a0
coefficient into account); the remaining ones are belong in the denominator.
Minimisation is done with function fminsearch. This derivative-free method proved to
have good results for this particular task (better than those obtained using derivative-
based Newton method, for instance). The starting point is an a vector with all
coefficients set to 1. This proved to be an acceptable option. The function minimised is
found below within the file.

The values of the coefficients and the values of the performance index returned by
fminsearch are also kept in a structure called temp, in fields coef and J, respectively.
The most favourable value is chosen in the end; so no effort is taken to have stable poles
and zeros.

After this, the two cases in which exact solutions are possible are considered
anew. The function that handles the situation, crone2zExact, is also found below within
the file. It returns the transfer function (not its coefficients, like the minimisation
process) and the performance index. So in the end there are three performance indexes,
J, J1 and J2.

In the second case, when the structures of the numerator and the denominator are
fixed beforehand, no for cycle is needed, and crone2zExact is only called if possible.
Indexes J1 and J2 are set to infinity when no corresponding controller exists.

The smallest of all performance indexes is chosen, and, if necessary, the controller
is built from parameters stored in coef; then an appropriate gain is found. If variable w1
exists this means setting the gain to 1 at that frequency. In other cases the gain at
frequencies w is found and the average is compared with the average value in gain.

Function crone2zAux

This function is minimised by fminsearch in crone2z. It reckons the frequency
behaviour of a particular candidate solution. The vector of coefficients coef is split into
two, so that the first ordnum+1 values are considered to belong to the numerator while
the remaining ones are considered to belong in the denominator. If no data on gain was
provided the performance index is the norm of the difference between the reckoned
phase and the phase to mimic. If vector gain was provided the norm of the difference
between the reckoned gain and the gain to mimic (both alleviated of the respective
averages, since the gain has not been computed yet) is added. This means that this
performance index equals an error of 1º in the phase to an error of 1 dB in the gain.

Function crone2zExact

This function uses the following convention to know if the transfer function it has
to build has poles and no zeros or zeros and no poles: a negative value of its M
parameter corresponds to the first case, and a positive value of M corresponds to the
second. Thus in the first case M is the number of poles and in the second M is the
number of zeros.

After ensuring that phase and w are column (and not row) vectors, function
resolution is called. Then the controller is found from the parameters returned. This
cannot be done as in the main body of function crone2z since parameters are returned in

33

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

a way different from that resulting from minimising the performance index with
fminsearch. Finally the performance index is found; since the transfer function already
exists this is rather easy, since function bode can be used to find the frequency
behaviour.

Function resolution

This function is rather similar to that described above in section 3.1, save that, of
course, equations implemented are those given above in this section.

Function resmaple

This function is essentially the same as the function described above in section
3.1.

References

See the references for function crone2 and (Valério et al., 2004a), (Valério, p.
104-110, 2005c).

34

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

4. Functions ensuring a complex fractional order
behaviour for the open-loop

The function described in this section reckons the parameters needed for building
a controller that ensures an open-loop dynamic described by (1.2).

4.1. Function crone3

This function returns the parameters needed for building a controller C that will
ensure, in a frequency range [];l hω ω , an open-loop dynamic behaviour given by

() ()

() () ()

log log

0 0 0

0 0

Re Re Re

cos log sin log cos log
Re

jba jb a s a jb s

a a

s s e s eC s G s

s b s j b s s b s

ω ω ω

ω ω

+ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤+⎡ ⎤⎣ ⎦= =⎢ ⎥
⎢ ⎥⎣ ⎦

=

 (4.1)

It is possible to show that the gain and phase Bode diagrams of this transfer function are
nearly linear. The slope of the gain may be positive or negative; the slope of the phase is
always negative. To obtain a positive slope we may consider the open-loop transfer
function

() () ()0 cos log

asC s G s
b sω

−

= (4.2)

For simplicity, this function automatically considers (4.1) if b is negative and (4.2) if b
is positive. Thus the sign of b will be the sign of the slope of the phase Bode diagram.

The idea is to choose the differentiation order a+jb so that the closed-loop will
have a resonance gain below a desired value or a damping coefficient above a desired
value—and this even in the presence of uncertainty in the parameters of plant G.

Let us denote the phase and the gain of the open-loop by x and y, respectively; so

() () jxG s C s ye= (4.3)

The closed-loop transfer function is

() ()
() ()1

G s C s
G s C s+

 (4.4)

This means that the closed-loop gain g will be

35

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

2 2 2 2 2

1 1 cos sin

sin 1 2 cos cos 1 2 cos

jx

jx

ye yg
ye y x jy x

y y
y x y x y x y y

= = =
+ + +

= =
+ + + + + x

 (4.5)

In what concerns the closed-loop damping coefficient, it will be (approximately) given
by

()
2

2cos
2 cos 1 1

2arccos
2

y y x
y

πζ = −
+ − +

 (4.6)

Level curves of these two functions may be seen in Figure 1. Controllers developed
with this function have a Nichols plot touching the level curve corresponding to the
worst admissible closed-loop resonance gain or damping coefficient, without going
beyond. The slope is chosen so that, when plant parameters vary (within given expected
ranges), the Nichols plot goes as little as possible beyond that limit curve.

-3 -2.5 -2 -1.5 -1 -0.5 0
-15

-10

-5

0

5

10

15

20

θ / rad

Θ
 /

dB

Closed-loop gain / dB

-13-12-11
-10-9-8
-7-6
-5

-4
-3

-2

-1-0.8
-0.6-0

.4-0
.20

0.20.4

0.60.81

2
3

45678 9

-3 -2.5 -2 -1.5 -1 -0.5 0
-20

-10

0

10

20

θ / rad

Θ
 /

dB

Closed-loop damping coefficient

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

2.
0

3.
0

4.
0

5.
0 6.0

15.0

Figure 1. Nichols charts with curves of constant values of closed-loop gain and damping coefficient

Syntax

[a, b, w0, w, gainC, phaseC] = crone3(G,...
 vargain, varzeros, varpoles, wl, wh, spec, st)

See below for the possible use of an additional parameter, n.

Arguments

 G — LTI object with the plant to control (created with tf, zpk, or ss).
 vargain — two-position vector with the additive variations that the gain (in

absolute value, as given by function zpkdata; not in dB) may undergo. One of the
positions will contain the positive variation and the other the negative one; the order is
irrelevant.

 varzeros — two-column matrix with the additive variations that the zeros (in
rad/s, as given by function zpkdata) may undergo. The number of lines must be the
number of zeros; each line will correspond to a zero. Zeros are ordered according to
their frequency, from low to high frequencies. If zeros with the same frequency (such as
complex conjugate zeros) are present, the order will be that of the argument, from

36

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

negative to positive arguments. These are the criteria of function sort; for more
information see the help of that built-in function. If there are complex conjugate zeros,
the complex conjugates of the variations given for the zero that appears first will be
assumed for its complex conjugate appearing later (so that line of the matrix is skipped).
One of the columns of the matrix will contain the positive variations and the other the
negative ones; the order is irrelevant: different lines may even have them in a different
order.

 varpoles — two-column matrix with the additive variations that the poles (in
rad/s, as given by function zpkdata) may undergo. The number of lines must be the
number of poles; each line will correspond to a pole. Poles are ordered according to
their frequency, from low to high frequencies. If poles with the same frequency (such as
complex conjugate poles) are present, the order will be that of the argument, from
negative to positive arguments. These are the criteria of function sort; for more
information see the help of that built-in function. If there are complex conjugate poles,
the complex conjugates of the variations given for the pole that appears first will be
assumed for its complex conjugate appearing later (so that line of the matrix is skipped).
One of the columns of the matrix will contain the positive variations and the other the
negative ones; the order is irrelevant: different lines may even have them in a different
order.

 wl — lower limit of [];l hω ω , given in rad/s.

 wh — upper limit of [];l hω ω , given in rad/s.
 spec — the performance specification the closed-loop must verify. It may be a

closed-loop resonance gain in dB or a closed-loop damping coefficient.
 st (optional) — variable for choosing the type of performance specification. It

should be one of the following strings:
♦ ‘g’ (default) — closed-loop resonance gain;
♦ ‘d’ — closed-loop damping coefficient.

Return values

 a — real part of the differentiation order, as seen in (4.1).
 b — imaginary part of the differentiation order, as seen in (4.1).
 w0 — gain adjustment factor, as seen in (4.1).
 w — a column vector with fifty frequencies, in rad/s, logarithmically

distributed in [];l hω ω .
 gainC — column vector with the gains, in dB, the controller must have at

frequencies found in w.
 phaseC — column vector with the phases, in degrees, the controller must have

at frequencies found in w.
These three variables allow synthesising the controller, namely using function

crone2 or function crone2z. The fifty frequencies of w are necessary for internal
calculations in crone3, but are clearly too many for using with functions crone2 or
crone2z. Thus it is advisable to make a selection. Actually it is possible to call the
function with syntax

[a, b, w0, w, gainC, phaseC, C] = crone3(G,...
 vargain, varzeros, varpoles, wl, wh, spec, st, n)

The additional parameter and the additional return value are:

37

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

 n — desired number of poles and zeros of the controller, if G is continuous; or

desired number of delays of the controller, if G is discrete. Corresponds to parameter n
in both functions crone2 and crone2z.

 C — controller reckoned with crone2 or crone2z from variables w, gainC and
phaseC. However, given the excessive number of sampling frequencies it is very likely
that the result will be poor.

Algorithm

First of all this function supplies a value for st if it was not given and obtains the
relevant data (gain, poles, zeros, sampling time and variable) from plant G. Poles and
zeros must be sorted so that it is possible to know which line of variables varzeros and
varpoles corresponds to which zero or pole. This is done with built-in function sort;
rules about the order in which information is to be found in varzeros and varpoles are
set by what that function does. The variable of the transfer function may be s, z or z-1,
and so it is necessary to store that information as well.

Then the slope of the Nichols plot is found. For that purpose a vector w with
frequencies is found using function logspace. The value of the slope is optimised with
function fminsearch; that proved to be the best option. The optimisation is performed
twice for two different initial values, one positive and one negative.

Then it is necessary to find the phase at which the curve corresponding to the
provided value of spec has the slope yslope. This is done using function fminsearch
again. Since the phase is the x-axis of the Nichols plot, this particular phase is stored
into variable x—just as the slope, which is a derivative of the gain, is stored into
variable yslope. Then the gain corresponding to x is found, and stored into variable y
because gains are the y-axis of the Nichols plot. This is done using several ifs, to deal
with different specifications and different branches of the curves.

The next step is finding the complex order that leads to a Nichols plot that has a
slope yslope and passes through point defined by coordinates x and y. First estimates are
obtained linearising the equations (see function crone3Aux3 for an explanation of the
linearised formulas); then final values of a and b are found once more using fminsearch.

The final step is obtaining the frequency behaviour of the controller, that is equal
to the frequency behaviour of the open-loop minus the frequency behaviour of the plant.
For that purpose the frequency behaviour of the open-loop is found from a and b (the
Bode diagram is assumed linear); a phase correction is necessary to ensure that it will
lie somewhere in []360º ;0º− ; and a gain correction is necessary because the tangency
to the desired curve may be found in other phase interval. To accurately verify this, the
Nichols plot over an entire range of 360º is needed. The logarithms of the frequencies in
which that is to be found are stored in wf_0log and wf_360log. Then the frequency
behaviour between these frequencies is obtained (just like gain and phase were
obtained) and stored in tempGain and tempPhase. Then, if the performance
specification is not met (this is verified with the same formulas that will be described
below in function reckoning), the gain is shifted down by the value corresponding to
one period of 360º.

Only now is the frequency behaviour of G reckoned with bode and subtracted
from the frequency behaviour of the open-loop. Lastly the value of w0 is obtained by
interpolation: we know the values of gain for several values of w, so this is just

interpolating data to find the frequency for which gain will be 1020 log cosh
2

bπ⎛ ⎞
⎜ ⎟
⎝ ⎠

.

38

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

A controller is obtained with one of functions crone2 or crone2z only if there are
enough input and output arguments. The choice is done according to the sampling time
of the plant, that is zero for frequency domain models. Thus the transfer function
returned will be in the frequency domain if the plant is given in the frequency domain,
and will be in the discrete-time domain if the plant is given in the discrete-time domain.
As stated above, the fifty frequencies of w are certainly excessive for the algorithms of
both functions crone2 or crone2z and that is why results are unlikely to be acceptable.

Function crone3Aux1

This function is one of the three functions minimised by fminsearch in crone3. It
reckons the adequacy of a particular open-loop’s Nichols diagram slope under plant
variations.

The first thing to do is to find the phase at which the curve corresponding to the
provided value of spec has the slope yslope, and the corresponding gain. This is done
exactly as in function crone3.

The next step is finding the complex order that leads to a Nichols plot that has a
slope under consideration yslope and passes through point defined by coordinates x and
y. This is again done exactly as in function crone3. If the real or imaginary parts are
themselves complex, this means that no solution for the equations was found; the
situation is deemed impossible, and the function returns error accordingly set to
infinity.

It is now possible to reckon the frequency behaviour of the open-loop. This is
done for frequencies found in vector w and the results are stored in variables bodeGain
and bodePhase. These names reflect that it is possible with these vectors to draw the
Bode diagram. (Actually it is possible to know the geometric location of a plant’s
Nichols diagram without knowing which frequency corresponds to each point, being
thus impossible to draw the corresponding Bode diagram.) Phase and gain corrections
that follow are exactly like those found in crone3.

All this is a preparation for what follows: now that the frequency behaviour of the
open-loop in known, we will see how it will be damaged by plant uncertainties. This is
done in three steps.

In the first step gain variations are considered. These affect not only the gain, but
also the phase, if the gain changes sign. The new closed-loop resonance gain or
damping coefficient is reckoned with function reckoning, and the variation towards the
value given in spec is stored in vector delta.

In the second step zeros are considered. Two for cycles are used: one for sweeping
all zeros, another for dealing with the columns of the matrix. Complex conjugate poles
must be dealt with simultaneously, because if one is changed without changing the other
they would not be conjugate anymore. So whenever a complex zero is found, the
complex conjugate is dealt with; the complex conjugate of the variation of the other
zero must be assumed so that the final result is still a pair of complex conjugates.
Complex conjugates being ordered according to their phase, those with negative
imaginary parts appear first; so if a complex zero with a positive imaginary part is found
we may be sure that it was already dealt with before. That is why, right after the first for
cycle, the one sweeping zeros, such zeros are skipped using a continue command. The
transfer function built for assessing the effect of each variation has the nominal zero (or
pair of zeros) as pole (or poles), to cancel their effect; the modified zero (or pair of
zeros) is in the numerator. The frequency behaviour of this transfer function is obtained
and put together with that of the open-loop; the new closed-loop resonance gain or
damping coefficient is reckoned with function reckoning, and the variation towards the
value given in spec is stored in vector delta.

39

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

In the third step poles are considered in the same manner as zeros were.
The last thing to do is to obtain, from vector delta, the deterioration of the closed-

loop resonance gain or of the damping coefficient. For that purpose variations that are
actually improvements are set to zero; a sum of squares is used.

Function reckoning

This function exists at the end of file crone3Aux1 to save repetition of code. It
receives the frequency behaviour of a function and reckons the corresponding closed-
loop gain or closed-loop damping coefficient. What is important is the most
unfavourable value, so the maximum closed-loop gain or minimum closed-loop
damping coefficient is returned.

Function crone3Aux2

This function is minimised by fminsearch in both crone3 and crone3Aux1. It
exists for determining in what phase does a certain closed-loop gain curve or closed-
loop damping coefficient curve have a given derivative. It receives a point x and
reckons the derivative using the appropriate expression (which will be (4.10), (4.11),
(4.12), (4.16) or (4.17), all below); the square of the difference to the desired derivative
is returned.

The deduction of expressions referred to follows. Level curves of (4.5) are given
by

2

2
22

2
2

1 2 cos
1 2 cos

11 2cos 1 0

y yg y
gy y x

y y x
g

= ⇔ = + +
+ +

⎛ ⎞
⇔ − + + =⎜ ⎟

⎝ ⎠

y x ⇔

 (4.7)

Two cases must be considered. If g is 1 (or 0 dB), we have

12cos 1 0

2cos
y x y

x
+ = ⇔ = − (4.8)

If it is not,

2 2
2 2

22

1 12cos 4cos 4 1 cos cos 1

11 12 1

x x x x
g g

y

gg

⎛ ⎞ ⎛ ⎞
− ± − − − ± − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝= =
⎛ ⎞ −−⎜ ⎟
⎝ ⎠

⎠ (4.9)

Figure 1 shows that for g>1 (that is to say, if g>0 dB) the two signs correspond to the
two branches of each curve: actually the minus sign corresponds to the lower part of the
curve, while the plus sign corresponds to the upper part. For g<1 (or g<0 dB) there is
only one branch; plotting both expressions shows that it is the minus sign that is correct.

Since these curves are plotted with a logarithmic scale in the y-axis, we now need
the derivatives of these expressions given in dB. The results are as follows. For g<1,

40

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

()

2
2

10

2

2
22

2 2
2

2
2

2
2

1cos cos 1
20log 11

2cos sin
sin

11 2 cos 11
20

1log10 1 1cos cos 1

sin 2sin
12 cos 1

20
log10 1cos cos 1

x x
gd

dx
g

x x
x

x
gg

x x gg
xx

x
g

x x
g

⎛ ⎞
− − − −⎜ ⎟

⎝ ⎠ =
−

−
−

⎛ ⎞
− −− ⎜ ⎟
⎝ ⎠= =

⎛ ⎞ −− − − −⎜ ⎟
⎝ ⎠

+
⎛ ⎞

− −⎜ ⎟
⎝ ⎠=
⎛ ⎞

− − − −⎜ ⎟
⎝ ⎠ (4.10)

For g=1,

()10 2

1 20 2cos 120log 2sin
2cos log10 1 4cos

20 sin 20 tg
log10 cos log10

d x x
dx x x

x x
x

− = −
−

= =

=
 (4.11)

For g>1 and the lower part of the curve, formula (4.10) holds. For g>1 and the upper
part of the curve,

2
2

10

2

2
2

2
2

1cos cos 1
20log 11

sin 2sin
12 cos 1

20
log10 1cos cos 1

x x
gd

dx
g

xx
x

g

x x
g

⎛ ⎞
− + − −⎜ ⎟

⎝ ⎠ =
−

−
⎛ ⎞

− −⎜ ⎟
⎝ ⎠=
⎛ ⎞

− + − −⎜ ⎟
⎝ ⎠

 (4.12)

Level curves of (4.6) are given by

41

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

()

()

()

()

2

2

22

2 2

2
2

2
2

cos
2 cos 1 1

2arccos
2

arccos 1
2 cos 1 1

2arccos
2

2 cos 1 1
arccos

2 2arccos

2 cos 1 1 2 cos
2arccos

2 cos 1 cos 1 0
2arccos

y y x
y

y y x
y

y y x
y

y y x y

y y x

πζ

ζ
π

π
ζ

π
ζ

π
ζ

= − ⇔
+ − +

−
⇔ =

+ − +

+ − +
⇔ =

−

⇔ + − + = ⇔
−

⎛ ⎞
⇔ + − − + =⎜ ⎟−⎝ ⎠

⇔

⇔ (4.13)

Let us make

2

cos 1 cos
2arccos

sin

x

d x
dx

π
ζ

= − −
−

⇒ = −

B

B
 (4.14)

Then

2

22 4 4 1
2

y y− ± −
= ⇔ = − ±

B B
B B − (4.15)

Figure 1 shows that the two signs correspond to the two branches of each curve:
actually the minus sign corresponds to the lower part of the curve, while the plus sign
corresponds to the upper part.

Since these curves are plotted with a logarithmic scale in the y-axis, we now need
the derivatives of these expressions given in dB. The results are as follows. For the
lower part of the curves,

2

10

2 2

2 2

20log 1

21 sin
220 201 1

log10 log101 1

d
dx

d
d dx x
dx

⎡ ⎤− − − =⎣ ⎦

− − +
− −= =

− − − − − −

B B

B
BB

B B

B B B B

sin xB (4.16)

For the upper part of the curves,

42

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

2
2

10 2

sinsin
20 120log 1

log10 1

xx
d
dx

−
−⎡ ⎤− + − =⎣ ⎦ − + −

B

BB B
B B

 (4.17)

Function crone3Aux3

This function is minimised by fminsearch in both crone3 and crone3Aux1. It is
intended to determine the differentiation order a+jb corresponding to a Nichols diagram
that simultaneously verifies two conditions: its slope is equal to the desired slope,
yslope; it passes through point (x;y). These conditions, if (4.1) is considered, may be
expressed by

() () () (){ }

10

10

20 log cotgh
2

20log cosh ; ; : ; ; 1, ,
2 2

ay e b
b

b a x y y

π

π π ξ υ ξ υ λ λ

⎧ ⎛ ⎞′ = − ⎜ ⎟⎪ ⎝ ⎠⎪
⎨
⎛ ⎞⎛ ⎞⎪ ′∈ = +⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎝ ⎠⎩

\∈
 (4.18)

The straight line in the second equation may be rewritten as follows:

,
x x
y y y y xy

ξ λ λ ξ
λ

υ λ υ ξ
= + = −⎧ ⎧

⇔ ∈⎨ ⎨′ ′ ′= + = + −⎩ ⎩
\ (4.19)

This second equation allows rewriting the second equation of (4.18):

10

10

20 log cotgh
2

20 log cosh
2 2

ay e b
b

a y xy y b

π

π π

⎧ ⎛ ⎞′ = − ⎜ ⎟⎪⎪ ⎝
⎨

⎛ ⎞⎪ ′ ′= − + ⎜ ⎟⎪ ⎝ ⎠⎩

⎠ (4.20)

If (4.2) is considered instead of (4.1), the slope of the phase will change sign, and

thus (4.20) becomes

10

10

20 log cotgh
2

20 log cosh
2 2

ay e b
b

a y xy y b

π

π π

⎧ ⎛ ⎞′ = ⎜ ⎟⎪⎪ ⎝
⎨

⎛ ⎞⎪ ′ ′= − + ⎜ ⎟⎪ ⎝ ⎠⎩

⎠ (4.21)

This function crone3Aux3 receives a pair of values for a and b and returns the sum

of the square of the differences of the two members of the two equations in (4.20) or
(4.21).

It is possible to find a polynomial approximation of (4.20) to obtain approximate
solutions. This is done before the function is called, so that it begins already near the
solution. We know that

43

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

() () (
2 1

2

0

sinh
2 1 !

n

n

x)x x x
n

++∞

=

= = +
+∑ D (4.22)

() () (
2 2

2

0

cosh 1
2 ! 2

n

n

x x)x x
n

+∞

=

= = + +∑ D (4.23)

Thus

2
sinhtgh
cosh 1

2

x xx
xx

= ≈
+

 (4.24)

And since

() ()

() ()

() ()

10

2 2

2 2

log cosh 0 0
1 sinh 0 0

log10 cosh
1 cosh sinh 1 1 10

log10 cosh log10 cosh log10

h x x h
xh x h
x

x xh x h
x x

= ⇒ =

′ ′= ⇒ =

−′′ ′′= = ⇒ =

 (4.25)

we will have

() ()
2

21
log10 2

xh x x= + D (4.26)

Using (4.24) and (4.26), system (4.20) may be approximated by

2

2

2
2

2
2

220 20log10 2log102 202log10
2212 21

2

2202 2log1020
2 2log10

2

bay y xy yy b
b

b b
b

b
b y xy y

a y xy y a

π
π

π
ππ

π

π
π

π

π

⎧ ⎛ ⎞
⎪ ⎜ ⎟⎧ ⎝ ⎠⎪′ = ′ ′− +′−⎪ ⎪⎪ =⎪⎪ − ⎛ ⎞⎪ ⎜ ⎟⎪ ⎛ ⎞ ⎪ ⎝ ⎠⎜ ⎟⎪ ⎪ +⎝ ⎠ ⇒⎨ ⎨+

⎪ ⎪
⎛ ⎞⎪ ⎪
⎜ ⎟⎛ ⎞⎪ ⎪ ⎝ ⎠⎜ ⎟ ′ ′− +⎪ ⎪⎝ ⎠′ ′= − +⎪ ⎪ =⎩ ⎪

⎪⎩

 (4.27)

Let us make
2

2
b π⎛ ⎞= ⎜ ⎟
⎝ ⎠

Q ; then the first equation becomes

44

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

()

2

2

log10 20020 20
log101

2
200 100log10 20 10 20 10
log10 log10

100 20010 10 log10 20 20 0
log10 log10

y yy xy

y yy y y xy xy

y yy xy y y xy

′ ′− ′= − + ⇔
+

′ ′
′ ′ ′⇔ − = + − − + + ⇔

′ ′⎛ ⎞′ ′ ′⇔ + − + + + − =⎜ ⎟
⎝ ⎠

Q Q
Q

Q Q
Q Q Q

Q Q

 (4.28)

This quadratic is solved, and then it is possible to obtain the estimates

2

10
log10

2

b

yy xy
a

π

π

⎧
= −⎪

⎪
⎪ ′

′⎨ − +
⎪ =⎪
⎪⎩

Q

Q (4.29)

The sign of b is negative because (4.20) corresponds to a negative slope of the phase
diagram. The real solution for b is, of course, to be chosen.

Approximating (4.21) is pretty much the same; (4.28) and (4.29) will become

(2 100 20010 10 log10 20 20 0
log10 log10

y yy xy y y xy
′ ′⎛ ⎞′ ′+ − + − + −⎜ ⎟

⎝ ⎠
Q Q)′ = (4.30)

2

10
log10

2

b

yy xy
a

π

π

⎧
=⎪

⎪
⎪ ′

′⎨ − +
⎪ =⎪
⎪⎩

Q

Q (4.31)

References

See (Oustaloup et al., 2000), (Oustaloup, p. 283-284 and 290-292, 1991),
(Valério, p. 116-120, 2005c).

45

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

5. Identification of fractional models

Functions described in this section allow finding a fractional model for a plant
from its frequency behaviour. Usual least-squares methods may be employed with time
response data.

Functions crone2 and crone2z, described above in subsections 3.1 and 3.2, are
also fit for identifying models, but integer ones.

5.1. Function hartley

This function finds a model for a plant given its frequency behaviour, using the
algorithm developed by Hartley and Lorenzo (2003). The model may be either

() ()1 2

1 2 1
n QnQ Q Q

n nG s c s c s c s c s c−
−= + + + + +… 0 (5.1)

or

() ()1 2
1 2 1

1
n QnQ Q Q

n n

G s
c s c s c s c s c−

−

=
0+ + + + +…

 (5.2)

Syntax

G = hartley (w, gain, phase, Q, n, type)

Algorithm

 w — vector with frequencies in rad/s where the response of the plant is known.
 gain — vector with gains in dB at frequencies found in w.
 phase — vector with the phases in degrees at frequencies found in w.
 Q — the maximum common multiple of powers of s, as seen in (5.1) and (5.2).
 n — desired number of poles or zeros of the model. This parameter may be

omitted, in which case the number of frequencies in w minus 1 will be assumed.
 type (optional) — the type of model. It may have one of two values:
♦ ‘num’ — the form of (5.1) will be used;
♦ ‘den’ (default) — the form of (5.2) will be used.

Return values

 G — vector with coefficients c (beginning with cn) is returned.

Limitations

Elements of G should be real, although there are always residual complex parts. If
these are not residual, that means that the model is very poor.

Algorithm

This function implements an identification method stemming from the fact that,

46

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

for a plant given by (5.1),

()
()

()

() () ()
() () ()

() () ()

2 0
1 1 11

2 1
2 2 2 2

2

2

1

1

1

Q Q nQ

Q Q nQ

Q Q nQ
M M M M

n

cj j jG j
c

G j j j j c

G j j j j c

ω ω ωω
ω ω ω ω

ω ω ω ω

⎡ ⎤⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢⎢ ⎥ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦

"

"
% #

"

 (5.3)

where 1 2, , , mω ω ω… are the sampling frequencies that will be given in vector w. So
finding the coefficients means only solving (5.3). Should the model be that of (5.2), the
only change is that the left-hand side of (5.3) will have the inverse of the frequency
behaviour.

After finding missing parameters, the function ensures that w, gain and phase are
column vectors, so that the matrix quantities of (5.3) will be properly built. Vector g,
with the left-hand side of (5.3), is built from gain and phase. The matrix of (5.3) is
stored in W by means of a for cycle. If the system is square, operator \ is used to solve it;
otherwise a pseudo-inverse of W is obtained with pinv (as suggested in the reference
below).

References

See (Hartley et al., 2003).

5.2. Function levy

This function finds a model for a plant given its frequency behaviour ()G jω ,
using a variation of Levy’s identification method. The model is of the form

()
() ()

() ()

1 2
1 2 1

1 2
1 2 1

ˆ
1

m Q m QmQ Q
m m m

n Q n QnQ Q
n n n

b s b s b s b s bG s
a s a s a s a s

− −
− −

− −
− −

0+ + + +
=

+ + + +
…
…

+
+

0
⎤+ ⎦

 (5.4)

and is found minimising the square norm

() () () () ()1 11nQ Q mQ Q
n mE G j a j a j b j b j bω ω ω ω ω⎡ ⎤ ⎡= + + + − + +⎣ ⎦ ⎣… … (5.5)

at all frequencies.

Syntax

[G, J, handle] = levy (w, gain, phase, Q, n, m)

Arguments

 w — vector with frequencies in rad/s where the response of the plant is known.
 gain — vector with gains in dB at frequencies found in w.
 phase — vector with the phases in degrees at frequencies found in w.

47

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

 Q — the maximum common multiple of powers of s, as seen in (5.4).
 n — desired number of poles of the model.
 m — desired number of zeros of the model.

Return values

 G — structure with two fields, num and den, containing the coefficients of
(5.4) (beginning with the highest order ones).

 J — index showing how accurate the identified model is, given by

() ()
2

1

1 ˆ
n

i
J G j G j

n

ω

ω

ω ω
=

= −∑ (5.6)

where nω is the number of frequencies in parameter w and G is the plant that provided
the frequency behaviour.

 handle — handle to a figure with a Bode plot, at frequencies w, of the provided
data (shown with blue dots) and the performance of the identified model (shown as a
continuous green line). If this output parameter does not exist, the figure is not drawn.

Algorithm

This function implements Levy’s identification method generalised for the
fractional case. This method finds the parameters, for an experimental frequency
response given by () () ()G j R jIω ω= + ω

⎤
⎥
⎦

, by solving

0

1

m

n

bA B e
C D g

b
a

a

=⎡ ⎤⎡ ⎤ ⎡
⎢ ⎥⎢ ⎥ ⎢

⎣ ⎦ ⎣⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#

#

 (5.7)

where

() () () (){ },
1

Re Re Im Im ,

0 0

f lQ cQ lQ cQ

l c p p p p
p

A j j j j

l m c m

ω ω ω ω
=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

= ∧ =

∑
… …

⎤
⎥⎦ (5.8)

() () () (){
() () () () }

,
1

Re Re Im Re

Re Im Im Im ,

0 1

f lQ cQ lQ cQ

l c p p p p p p
p

lQ cQ lQ cQ

p p p p p p

B j j R j j

j j I j j R

l m c n

ω ω ω ω

ω ω ω ω

=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= ∧ =

∑

… …

I −

 (5.9)

48

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

() (){ } ()

() (){ } ()

,
1

Im Re Re

Re Im Im ,

1 0

f lQ lQ cQ

l c p p p p p
p

lQ lQ cQ

p p p p p

C j I j R j

j I j R j

l n c m

ω ω ω

ω ω ω

=

⎛ ⎡ ⎤ ⎡ ⎤ ⎡= −⎜ ⎤ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣⎝

⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − − ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎠
= ∧ =

∑

… …

⎦

n∧ =

 (5.10)

() () (){
() () }

2 2
,

1
Re Re

Im Im , 1 1

f lQ cQ

l c p p p p
p

lQ cQ

p p

D R I j j

j j l n c

ω ω

ω ω

=

⎡ ⎡ ⎤ ⎡ ⎤= + +⎢ ⎥ ⎢ ⎥⎢ ⎣ ⎦ ⎣ ⎦⎣

⎤⎡ ⎤ ⎡ ⎤+ =⎢ ⎥ ⎢ ⎥ ⎥⎣ ⎦ ⎣ ⎦ ⎦

∑

… …
 (5.11)

() (){ },1
1

Re Im , 0
f lQ lQ

l p p p p
p

e j R j I lω ω
=

⎡ ⎤ ⎡ ⎤= − − =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∑ …m (5.12)

() (){ }2 2
,1

1
Re , 1

f lQ

l p p p
p

g j R I lω
=

⎡ ⎤= − + =⎢ ⎥⎣ ⎦∑ …n (5.13)

The function always uses operator \ to solve system (5.7). A warning about a poor

number of condition means almost certainly a poor result.
Performance index J is reckoned only if required. The frequency behaviours

corresponding to the numerator and the denominator are found with for cycles and
stored in tempNum and tempDen respectively. The result is compared to the behaviour
found from variables gain and phase.

The Bode plot is also drawn only if required. Frequency behaviour values found
for J are not reused, for they may be too few. So a new vector wNew with at least 50
frequencies (or more, if w has more than 50 frequencies) is found. These are in the same
range of w, extended to reach the limits of the first and last decades considered (thus
improving the look of the plots). Frequency behaviour is found again, just as for
reckoning J, and the resulting gain and phase stored in gainNew and phaseNew. These
are the values plotted.

References

See (Levy, 1959), (Valério et al., 2005b), (Valério, p. 87-91, 2005c)

5.3. Function vinagre

This function finds a model for a plant given its frequency behaviour, using a
variation of the identification method of function levy. The model is given by

()
() ()

() ()

1 2
1 2 1

1 2
1 2 1

ˆ
1

m Q m QmQ Q
m m m

n Q n QnQ Q
n n n

b s b s b s b s bG s
a s a s a s a s

− −
− −

− −
− −

0+ + + +
=

+ + + +
…
…

+
+

0

 (5.14)

and is found minimising the norm

() () () () ()1 11nQ Q mQ Q
n mE wG j a j a j b j b j bω ω ω ω ω⎡ ⎤ ⎡ ⎤′ = + + + − + + +⎣ ⎦ ⎣ ⎦… … (5.15)

49

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

Weights w are frequency-dependent. If sampling frequencies are , 1i i fω = … , then

2 1
2
1

1 1
2

1
2

if 1
2

if 1
2

if
2

i i

i

f f

f

i

w

i f

ω ω
ω

ω ω
ω

ω ω
ω

+ −

−

⎧ −
=⎪

⎪
⎪ −⎪= ⎨
⎪
⎪ −
⎪ =
⎪⎩

i f< < (5.16)

Weights are intended to improve the quality of the approximation for low frequencies.

Syntax

[G, J, handle] = vinagre (w, gain, phase, Q, n, m)

Arguments

 w — vector with frequencies in rad/s where the response of the plant is known.
 gain — vector with gains in dB at frequencies found in w.
 phase — vector with the phases in degrees at frequencies found in w.
 Q — the maximum common multiple of powers of s, as seen in (5.4).
 n — desired number of poles of the model.
 m — desired number of zeros of the model.

Return values

 G — structure with two fields, num and den, containing the coefficients of
(5.4) (beginning with the highest order ones).

 J — index showing how accurate the identified model is, given by

() ()
2

1

1 ˆ
n

i

J G j G j
n

ω

ω

ω ω
=

= −∑ (5.17)

where nω is the number of frequencies in parameter w and G is the plant that provided
the frequency behaviour.

 handle — handle to a figure with a Bode plot, at frequencies w, of the provided
data (shown with blue dots) and the performance of the identified model (shown as a
continuous green line). If this output parameter does not exist, the figure is not drawn.

Algorithm

This function’s code is similar to that of function levy.

References

See (Vinagre, p. 140-141, 2001), (Valério, 2005, p. 91-93).

50

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

5.4. Function sanko

This function finds a model for a plant given its frequency behaviour, using
Sanathanan’s and Koerner’s recursive variation of the identification method of function
levy. The model is given by

()
() ()

() ()

1 2
1 2 1

1 2
1 2 1

ˆ
1

m Q m QmQ Q
m m m

n Q n QnQ Q
n n n

b s b s b s b s bG s
a s a s a s a s

− −
− −

− −
− −

0+ + + +
=

+ + + +
…
…

+
+

0

 (5.18)

and is found minimising the norm

() () () () ()1 11nQ Q mQ Q
n mE wG j a j a j b j b j bω ω ω ω ω⎡ ⎤ ⎡ ⎤′ = + + + − + + +⎣ ⎦ ⎣ ⎦… … (5.19)

Weights w are frequency-dependent and iteration-dependent. If sampling frequencies
are , 1i i fω = … , then

() 2
1

1 if 1

if 1L i

L
w

D Lω−

=⎧⎪= ⎨
>⎪⎩

 (5.20)

where L is the iteration number, and ()1L iD ω− is the denominator found in the previous
iteration evaluated at frequency iω . This means that the first iteration will provide the
same result obtained with function levy and that further iterations will try to improve
that model.

Syntax

[G, J, handle] = sanko (w, gain, phase, Q, n, m, toler, NMaxIters)

Arguments

 w — vector with frequencies in rad/s where the response of the plant is known.
 gain — vector with gains in dB at frequencies found in w.
 phase — vector with the phases in degrees at frequencies found in w.
 Q — the maximum common multiple of powers of s, as seen in (5.4).
 n — desired number of poles of the model.
 m — desired number of zeros of the model.
 toler (optional) — tolerance for comparison of consecutive iterations. The

function stops after two consecutive iterations resulting in vectors of parameters with
norms closer than toler. This parameter’s default value is ()3 log10 n m− − + .

 NMaxIters (optional) — maximum number of iterations; its default value is
100.

Return values

 G — structure with two fields, num and den, containing the coefficients of
(5.4) (beginning with the highest order ones).

51

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

 J — index showing how accurate the identified model is, given by

() ()
2

1

1 ˆ
n

i

J G j G j
n

ω

ω

ω ω
=

= −∑ (5.21)

where nω is the number of frequencies in parameter w and G is the plant that provided
the frequency behaviour.

 handle — handle to a figure with a Bode plot, at frequencies w, of the provided
data (shown with blue dots) and the performance of the identified model (shown as a
continuous green line). If this output parameter does not exist, the figure is not drawn.

Algorithm

This function’s code is similar to that of function vinagre, save for the while cycle
that implements the iterations, and that stops by means of a break command.

References

See (Sanathanan et al., 1963), (Valério, p. 93-94, 2005c).

5.5. Function lawro

This function finds a model for a plant given its frequency behaviour, using
Lawrence’s and Roger’s recursive variation of the identification method of function
levy. This variation allows varying the number of frequencies accounted for in each
iteration.

We define

[]0 0
T

mv b b a a= " " n

ω

)

 (5.22)

() () () () () ()1
Tq mQ Q nQu j j j G j j G jω ω ω ω ω⎡ ⎤= − −⎣ ⎦" " (5.23)

where (G jω is the frequency response at frequency ω . There will be several vectors
u, one for each frequency. It may be proved that we may find consecutive
approximations of v with

() ()2
1 1

T
L L L L L L L L L L L Lv v w u G u v u G u v− −

⎡= + − + −⎢⎣
H 1

T
−
⎤
⎥⎦

 (5.24)

[]

[]2

Im Im
1 Im Im

2

T
L L L

L L
T
L L L

L

u u

u u
w

⎛ ⎞
⎜ ⎟⎡ ⎤⎣ ⎦⎜= −
⎜ ⎟⎡ ⎤+⎜ ⎣ ⎦
⎝ ⎠

Z
H Z I

Z
⎟

⎟

 (5.25)

[]

[]
1

12

Re Re
1 Re Re

2

T
L L L

L L
T
L L L

L

u u

u u
w

−

−

⎛ ⎞
⎜ ⎟⎡ ⎤⎣ ⎦⎜= −
⎜ ⎟⎡ ⎤+⎜ ⎣ ⎦
⎝ ⎠

H
Z H I

H
⎟

⎟

 (5.26)

52

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

where L is the iteration number. Initial values of matrix H and vector v may be obtained
with values for a few frequencies:

(1 2

1

L
T)T

L k k k k k
k

w u u u u−

=

= +∑H (5.27)

()2

1

f

L L k k k k k
k

v w G u G
=

= +∑H u
 (5.28)

or by letting

0Lv = (5.29)

L x= ×H I (5.30)

where x is some suitable real value.
This function implements this algorithm, taking into account in each iteration one

frequency more than in the previous. Initial values of matrix H and vector v may be
provided. So the function is useful for improving previous estimations with new data
and for avoiding numerical problems associated with inversion of matrixes.

Syntax

[G, J, handle] = lawro (w, gain, phase, Q, n, m, toler, H,...
 coefficients)

Arguments

 w — vector with frequencies in rad/s where the response of the plant is known.
 gain — vector with gains in dB at frequencies found in w.
 phase — vector with the phases in degrees at frequencies found in w.
 Q — the maximum common multiple of powers of s, as seen in (5.4).
 n — desired number of poles of the model.
 m — desired number of zeros of the model.
 H (optional) — initial value for matrix H, provided by (5.27). The default

value is the identity matrix (that is, (5.30) with 1x =).
 coefficients (optional) — initial value for vector v, provided by (5.28). The

default value is (5.29).

Return values

 G — structure with two fields, num and den, containing the coefficients of
(5.4) (beginning with the highest order ones).

 J — index showing how accurate the identified model is, given by

() ()
2

1

1 ˆ
n

i
J G j G j

n

ω

ω

ω ω
=

= −∑ (5.31)

where nω is the number of frequencies in parameter w and G is the plant that provided
the frequency behaviour.

53

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

 handle — handle to a figure with a Bode plot, at frequencies w, of the provided
data (shown with blue dots) and the performance of the identified model (shown as a
continuous green line). If this output parameter does not exist, the figure is not drawn.

Limitations

This function has no provision for weights w, hence assumed to be unitary.

Algorithm

This function’s code is a straightforward implementation of the above algorithm.

References

See (Lawrence et al., 1979), (Valério, p. 94-99, 2005c).

54

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

6. Analysis and norms

Functions described in this section provide tools to analyse the behaviour of
fractional plants.

6.1. Function freqrespFr

This function finds the frequency response of a fractional transfer function that
may have one of the following forms:

()
() ()

() ()

1 2
1 2 1 0

1 2
1 2 1 1

m Q m QmQ Q
sm m m

n Q n QnQ Q
n n n

b s b s b s b s bF s e
a s a s a s a s

δ
− −

−− −
− −

− −

+ + + + +
=

+ + + + +
…
…

 (6.1)

() D

I

sI
P D

kF s k k s e
s

ν δ
ν

−⎛= + +⎜
⎝ ⎠

⎞
⎟ (6.2)

It is a generalisation of function freqresp.

Syntax

resp = freqrespFr(F, Q, w, delay)

Parameters

 F — parameters of (6.1), given by means of an LTI object equivalent to

()
1 2

1 2 1
1 2

1 2 1 1

m m m
m m m

n n n
n n n

b s b s b s b s bF s
a s a s a s a s

− −
− −

− −
− −

0+ + + +
=

+
+ + + +

…
… +

 (6.3)

or of (6.2), given in a vector

[]P I I D Dk k kν ν (6.4)

 Q (optional) — commensurate order of (6.1). The default value is 1. This
parameter is irrelevant if F is given by a vector such as (6.4).

 w — vector with the frequencies at which the response of the plant is desired.
 delay (optional) — delay δ, as seen in (6.1) or in (6.2). The default value is 0.

Return values

 resp — complex-valued vector, with the dimension of w, with the frequency
response of the plant at each frequency.

Algorithm

The frequency responses of (6.1) and (6.2) at frequency ω are found replacing s
with jω .

55

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

After providing default values for non-existing parameters, the function checks
the length of F: if it is 5, it is assumed to be of the form (6.4); if it is not 5, it is assumed
to be of the form (6.3). This does not ensure that there will be no errors due to
improperly provided parameters, but no further error-checking was deemed necessary.
In the second case, only the numerator and denominator of the first object in F are
considered (since MIMO plants are not covered); these are swept with for cycles.

The effects of the delay are added at the end.

6.2. Function bodeFr

This function plots the Bode diagram of a fractional transfer function that may
have one of the following forms:

()
() ()

() ()

1 2
1 2 1 0

1 2
1 2 1 1

m Q m QmQ Q
sm m m

n Q n QnQ Q
n n n

b s b s b s b s bF s e
a s a s a s a s

δ
− −

−− −
− −

− −

+ + + + +
=

+ + + + +
…
…

 (6.5)

() D

I

sI
P D

kF s k k s e
s

ν δ
ν

−⎛= + +⎜
⎝ ⎠

⎞
⎟ (6.6)

It may also provide the data thereof. It is a generalisation of function bode.

Syntax

[gain, phase, w] = bodeFr(F, Q, w, delay)

Parameters

 F — parameters of (6.5), given by means of an LTI object equivalent to

()
1 2

1 2 1
1 2

1 2 1 1

m m m
m m m

n n n
n n n

b s b s b s b s bF s
a s a s a s a s

− −
− −

− −
− −

0+ + + +
=

+
+ + + +

…
… +

 (6.7)

or of (6.6), given in a vector

[]P I I D Dk k kν ν (6.8)

 Q (optional) — commensurate order of (6.5). The default value is 1. This
parameter is irrelevant if F is given by a vector such as (6.8).

 w (optional) — vector with the frequencies at which the Bode diagram will be
plot, or cell with the limits of the frequency range where the Bode diagram will be plot.
In this last case, 10 frequencies per decade (with a minimum of 50) will be used. If
empty, a range expected to be suitable is provided.

 delay (optional) — delay δ, as seen in (6.5) or in (6.6). The default value is 0.

Return values

 gain — gain of the plant, in absolute value, at frequencies in w.
 phase — phase of the plant, in degrees, at frequencies in w.
 w — frequencies, in rad/s, at which the gain and phase of the plant are those

56

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

returned.
If there are no return arguments, a Bode diagram will be plot in the active figure.

Algorithm

If w is not provided, zeros and poles of the (integer) plant in F are stored in
variable temp. They are found with functions tzero and pole. If this fails (which is
checked with a try structure), the formula for the roots of an integer PID is used. The
limits of the frequency range are set two decades below and above the frequency range
where zeros and poles are found; only powers of 10 are employed. If there are zeros, the
frequency range consists of four decades around 1 rad/s.

A frequency range is converted into a list of frequencies using ten frequencies per
decade.

The frequency response is used by means of function freqrespFr.

6.3. Function nyquistFr

This function plots the Nyquist diagram of a fractional transfer function that may
have one of the following forms:

()
() ()

() ()

1 2
1 2 1 0

1 2
1 2 1 1

m Q m QmQ Q
sm m m

n Q n QnQ Q
n n n

b s b s b s b s bF s e
a s a s a s a s

δ
− −

−− −
− −

− −

+ + + + +
=

+ + + + +
…
…

 (6.9)

() D

I

sI
P D

kF s k k s e
s

ν δ
ν

−⎛= + +⎜
⎝ ⎠

⎞
⎟ (6.10)

It may also provide the data thereof. It is a generalisation of function nyquist.

Syntax

[gain, phase, w] = nyquistFr(F, Q, w, delay)

Parameters

 F — parameters of (6.9), given by means of an LTI object equivalent to

()
1 2

1 2 1
1 2

1 2 1 1

m m m
m m m

n n n
n n n

b s b s b s b s bF s
a s a s a s a s

− −
− −

− −
− −

0+ + + +
=

+
+ + + +

…
… +

 (6.11)

or of (6.6), given in a vector

[]P I I D Dk k kν ν (6.12)

 Q (optional) — commensurate order of (6.9). The default value is 1. This
parameter is irrelevant if F is given by a vector such as (6.12).

 w (optional) — vector with the frequencies at which the Nyquist diagram will
be plot, or cell with the limits of the frequency range where the Nyquist diagram will be
plot. In this last case, 10 frequencies per decade (with a minimum of 50) will be used. If
empty, a range expected to be suitable is provided.

57

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

 delay (optional) — delay δ, as seen in (6.9) or in (6.10). The default value is 0.

Return values

 gain — gain of the plant, in absolute value, at frequencies in w.
 phase — phase of the plant, in degrees, at frequencies in w.
 w — frequencies, in rad/s, at which the gain and phase of the plant are those

returned.
If there are no return arguments, a Nyquist diagram will be plot in the active

figure.

Algorithm

This function is similar to function bodeFr above.

6.4. Function nicholsFr

This function plots the Nichols diagram of a fractional transfer function that may
have one of the following forms:

()
() ()

() ()

1 2
1 2 1 0

1 2
1 2 1 1

m Q m QmQ Q
sm m m

n Q n QnQ Q
n n n

b s b s b s b s bF s e
a s a s a s a s

δ
− −

−− −
− −

− −

+ + + + +
=

+ + + + +
…
…

 (6.13)

() D

I

sI
P D

kF s k k s e
s

ν δ
ν

−⎛= + +⎜
⎝ ⎠

⎞
⎟ (6.14)

It may also provide the data thereof. It is a generalisation of function nichols.

Syntax

[gain, phase, w] = nicholsFr(F, Q, w, delay)

Parameters

 F — parameters of (6.13), given by means of an LTI object equivalent to

()
1 2

1 2 1
1 2

1 2 1 1

m m m
m m m

n n n
n n n

b s b s b s b s bF s
a s a s a s a s

− −
− −

− −
− −

0+ + + +
=

+
+ + + +

…
… +

 (6.15)

or of (6.14), given in a vector

[]P I I D Dk k kν ν (6.16)

 Q (optional) — commensurate order of (6.13). The default value is 1. This
parameter is irrelevant if F is given by a vector such as (6.16).

 w (optional) — vector with the frequencies at which the Nichols diagram will
be plot, or cell with the limits of the frequency range where the Nichols diagram will be
plot. In this last case, 10 frequencies per decade (with a minimum of 50) will be used. If
empty, a range expected to be suitable is provided.

58

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

 delay (optional) — delay δ, as seen in (6.13) or in (6.14). The default value is
0.

Return values

 gain — gain of the plant, in absolute value, at frequencies in w.
 phase — phase of the plant, in degrees, at frequencies in w.
 w — frequencies, in rad/s, at which the gain and phase of the plant are those

returned.
If there are no return arguments, a Nichols diagram will be plot in the active

figure.

Algorithm

This function is similar to function bodeFr above.

6.5. Function sigmaFr

This function plots the singular values diagram of a fractional transfer function
matrix, with entries given by

()
() ()

() ()

1 2
1 2 1

1 2
1 2 1 1

m Q m QmQ Q
m m m

ij n Q n QnQ Q
n n n

b s b s b s b s bF s
a s a s a s a s

− −
− −

− −
− −

+ + + +
=

+ + + +
…
…

0+
+

 (6.17)

It may also provide the data thereof. It is a generalisation of function sigma.

Syntax

[sv, w] = sigmaFr(F, Q, w)

Parameters

 F — parameters of the transfer function matrix, given by means of an LTI
object with entries given by

()
1 2

1 2 1
1 2

1 2 1 1

m m m
m m m

ij n n n
n n n

b s b s b s b s bF s
a s a s a s a s

− −
− −

− −
− −

0+ + + + +
=

+ + + + +
…
…

 (6.18)

 Q (optional) — commensurate order of (6.17). The default value is 1.
 w (optional) — vector with the frequencies at which the singular value diagram

will be plot, or cell with the limits of the frequency range where the singular value
diagram will be plot. In this last case, 10 frequencies per decade (with a minimum of
50) will be used.

Return values

 sv — singular values of the plant, in absolute value. Each frequency in w
corresponds to a column in sv.

 w — frequencies, in rad/s, at which the gain and phase of the plant are those

59

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

returned.
If there are no return arguments, a singular value diagram will be plot in the active

figure.

Algorithm

Frequencies are swept with a for cycle. For each, the frequency response is stored
in variable tempMatrix. For that purpose, columns and rows are swept with for cycles
(and since both i and j are used as dummy variables, the imaginary unit has to be used
as sqrt(–1)) and the response is found just as in freqrespFr above. Singular values are
found with function svd.

6.6. Function normh2Fr

This function returns the H2 norm of a transfer function matrix. The H2 norm of
one such matrix G is defined as

() () ()
2

1 tr
2

Ts j j dω ω
π

+∞

−∞

⎡= ⎢⎣ ⎦∫G G G ω⎤
⎥ (6.19)

In simple words, the H2 norm of a transfer function reflects how much it amplifies (or
attenuates) its input over all frequencies.

For a MIMO system with n lines and m columns,

2

2 2
1 1

n m

ij
j i= =

= ∑∑G G (6.20)

This reduces the problem to finding the H2 norm of SISO systems.

H2 norm of integer systems

This may be found using function normh2.
H2 norm of fractional systems

Let Q be the commensurate order of

()
() ()

() ()

1 2
1 2 1

1 2
1 2 1 1

m Q m QmQ Q
m m m

n Q n QnQ Q
n n n

b s b s b s b s bG s
a s a s a s a s

− −
− −

− −
− −

0+ + + +
=

+ + + +
…
…

+
+

 (6.21)

and let

()q Q

p q Q
p Q q
= ⎫⎪⇒ + =⎬
= − ⎪⎭

C
 (6.22)

1 Q Q Q 1x x d Qx dω ω ω −= ⇔ = ⇒ = x (6.23)

Since the complex conjugate may be obtained changing the sign of the imaginary part,
we will have

60

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

() ()2 1
2 0

1 QG Qx G jx G jx
π

+∞ −= ∫ dx− (6.24)

Let A and B be the polynomials in the numerator and denominator of product

() () ()
()

A x
G jx G jx

B x
− = (6.25)

Notice that the imaginary unit j has been considered as part of polynomials A and B. If
we now let

()
()

()
()

() ()deg deg

0

q q A B
k

k
k

x A x R x
a x

B x B x

+ −

=

= + ∑ (6.26)

(where deg(P) represents the degree of polynomial P), then (6.24) becomes

()
()

()
()

() ()deg deg
2 1 1
2 0 0

0

q A B
p q p k

k
k

A x R xQ QG x x dx x a x
B x B xπ π

+ −
+∞ +∞− −

=

⎛ ⎞
= = +⎜ ⎟⎜ ⎟

⎝ ⎠
∑∫ ∫ dx

>

 (6.27)

Three cases are to be distinguished when reckoning (6.27).

First case

If

() ()deg deg 0q A B+ − (6.28)

then

2
G = ∞ (6.29)

Second case

If

() ()deg deg 0 0q A B p+ − ≤ ∧ ≠ (6.30)

let have b different poles, , and let be the multiplicity of pole .
Then we may perform a partial fraction expansion of

()B x 1 2, , bs s s… km ks

()
() ()

,

1 1

kq mb
k n

n
k n k

ax A x
B x x s= =

=
+

∑∑ (6.31)

(Recall that a pole of multiplicity m will appear m times in the expansion.) Then (6.27)
becomes

61

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

()

()

1

2

2
1 1

1
1

1
sin

k

n p n
k kmb

k n

p
Qa s

n
G

pπ

− −

= =

−⎛ ⎞
− ⎜ ⎟−⎝=∑∑ ⎠

=

 (6.32)

Third case

If

() ()deg deg 0 0q A B p+ − ≤ ∧ (6.33)

let be one of the poles of (6.31), chosen arbitrarily1s
7. Then we may write

()

() ()() ()

1
,

2 1 21

kq mb b
k nk

n
k k nk k

dx A x c
B x x s x s x s

−

= = =

= +
+ + +

∑ ∑∑ (6.34)

Notice that poles with multiplicity 1 do not appear in the second summation. Expression
(6.27) becomes

() ()

1
2 ,
2

2 1 21 1

ln
1

k nmb b
k n kk k

k k nk

Qd sQc sG
s s s nπ π

−

= = =

⎡ ⎤
= +⎢ ⎥− −⎣ ⎦
∑ ∑∑ +

 (6.35)

It should be noticed that, even though several different formulas are to be applied

depending on the value of Q, the norm is a continuous function thereof.

Syntax

[H2, status] = normh2Fr (F, Q, problems)

Arguments

 F — parameters of the transfer function matrix, given by means of an LTI
object with entries given by

()
1 2

1 2 1
1 2

1 2 1 1

m m m
m m m

ij n n n
n n n

b s b s b s b s bF s
a s a s a s a s

− −
− −

− −
− −

0+ + + + +
=

+ + + + +
…
…

 (6.36)

 Q (optional) — commensurate order of (6.17). The default value is 1.
 problems (optional) — this affects how problems are reported by means of

errors and warnings:
♦ ‘none’ — no errors or warnings are given;
♦ ‘warnings’ (default) — warnings are given when problems are found;
♦ ‘errors’ — errors are given when problems are found.

Return values

 H2 — H2 norm of the plant.

7 Actually the better choice would be the one minimising numerical errors, but it is difficult to
know beforehand which one is.

62

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

 status — this is a vector with two positions that may be 0 or 1: it is [0 0] if
there are no stability and no causality problems; the first position becomes 1 if the
system is unstable; the second position becomes 1 if the system in not causal.

Error messages

If problems is set to ‘errors’, the following error messages may appear:
 A non-sensical imaginary number was obtained. — This happens because of

numerical problems during calculations.
 The system is not stable: the result is a nonsense.
 According to the references (see the manual) the result should be infinite. —

This happens when some finite numerical value is found instead of (6.29).

Warnings

If problems is set to ‘warnings’, warnings similar to the error messages above may
appear. The following warning may always appear:

 Partial fraction expansion originated significant numerical errors.

Algorithm

The main function implements (6.20), sweeping lines and columns with for
cycles, and relegates the problem of finding the norm of a SISO plant to function
H2FrSISO. In the end the result is checked to see if it is real; this is done with angle so
that neglectable imaginary parts may be done away with. If there is a significant
imaginary part, the result is left as is, and an error or warning (as appropriate) is given
since it is probably meaningless.

Function H2FrSISO

This function implements formulas given above. Expansions (6.31) and (6.34) are
found with function residue. To handle the second summation in (6.32), related to
multiplicities, poles are swept with a for cycle and checked with an if structure. Things
are more complicated when implementing (6.35). Matrix simple is used for holding, in
its second column, simple poles and the first appearance of repeated ones—in the first
column it contains the residues corresponding to those poles. Matrix repeated is used
for holding, in its second column, further appearances (from the second on) of repeated
poles—in the first column it contains the residues corresponding to those poles. A for
cycle then sweeps repeated and creates a third column that contains the number of the
repetition (2, 3, 4, etc.). Pole in (6.34) and (6.35) is the first in simple. A numerator
and a denominator are rebuilt from the poles and residues in simple, and residue must be
applied again to find the residues in the first summation of (6.35); since this may cause
significant numerical errors, a check is performed and a warning given if appropriate.
The second summation in (6.35) is performed only if residue is not empty (otherwise an
error would occur).

1s

Function squarefreq

This function exists to avoid repeating code. It receives a frequency ω a vector
with the parameters of a polynomial ()p s and returns the (imaginary) value

() ()p j p jω ω .

63

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

References

See (Malti et al., 2003), (Valério, p. 127-131, 2005c).

6.7. Function normhinfFr

This function returns the H∞ norm of a transfer function matrix. The H∞ norm of
one such matrix G, with entries given by

()
() ()

() ()

1 2
1 2 1

1 2
1 2 1 1

m Q m QmQ Q
m m m

ij n Q n QnQ Q
n n n

b s b s b s b s bG s
a s a s a s a s

− −
− −

− −
− −

+ + + +
=

+ + + +
…
…

0+
+

 (6.37)

is defined as

()sup max j

ω
σ ω

∞
= ⎡⎣G G ⎤⎦ (6.38)

where ()Aσ represents the set of singular values of matrix A. (This set has a finite
number of values, and thus has a maximum; on the other hand, the set resulting of
sweeping all frequencies may have no maximum, but only a supreme value.) If G is
SISO, (6.38) becomes simply

()sup maxG G

ω
jω

∞
= (6.39)

In simple words, the H∞ norm reflects how much it amplifies (or attenuates) its

input at the frequency at which the amplification is maximal.
In this function, (6.38) is estimated by direct evaluation at several frequencies.

Frequencies clearly above or below all the frequencies of poles and zeros need not be
searched. The result is, of course, equal to or below the exact result—it can never be
above.

Syntax

Hinf = normhinfFr (F, Q, w)

Parameters

 F — parameters of the transfer function matrix, given by means of an LTI
object with entries given by

()
1 2

1 2 1
1 2

1 2 1 1

m m m
m m m

ij n n n
n n n

b s b s b s b s bF s
a s a s a s a s

− −
− −

− −
− −

0+ + + + +
=

+ + + + +
…
…

 (6.40)

 Q (optional) — commensurate order of (6.17). The default value is 1.
 w (optional) — vector with the frequencies at which singular values will be

found, or cell with the limits of the frequency range where singular values will be
found. In this last case, 10 frequencies per decade (with a minimum of 50) will be used.

64

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

Return values

 Hinf — H∞ norm of the plant.

Algorithm

This function uses sigmaFr to find the singular values in (6.38), and max to sort
them. Since sigmaFr provides no default value for w, but allows for a cell with the
limits of a frequency range, one such range is provided in normhinfFr with code similar
to that of bodeFr and similar functions.

References

See (Petras et al., 2002), (Valério, p. 131-132, 2005c).

65

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

7. Graphical interface

7.1. User manual

The graphical is accessible by tiping ninteger at the command prompt. The
following dialogue will appear:

Figure 2. The main dialog of ninteger before being filled in.

Using the three buttons in the right other dialogues may be called for devising the

controllers described in the previous sections. In what follows the foreknowledge of
these is assumed.

After reckoning a controller this dialogue will be used for evaluating its
performance, as will be seen below. It may be closed as any other window in your
operating system.

Dialogue nipidGui

This dialogue allows developing fractional PIDs and is available pressing the
button Fractional order derivative controller in the main window of ninteger. The type
of approximation may be chosen with the two pop-up menus in the centre. The first
pop-up menu has the options corresponding to parameter formula of function nipid. If a
digital controller is chosen, the second pop-up menu will become active, allowing the
user to choose parameter expansion. Controllers are always built using function nipid,
save that function newton is used when option Carlson is chosen in the first pop-up
menu and the necessary conditions are satisfied (these are given in section 2.4).

The fields of the dialogue allow entering the other parameters needed. Not all of
them are necessary in all cases; only those that are allow a value to be entered. In

66

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

particular:
 The field with the specification on the number of poles and zeros must always

be filled in; it corresponds to parameter n in all cases.
 The check-button allows choosing parameter decomposition (‘all’ if checked;

‘frac’ if not checked).
 Values for the gains (kp, ki and kd) and orders (vi and vd) must always be

entered. If the option Carlson is chosen, a warning will appear stating that orders will be
rounded to the nearest inverse of an integer (for instance, the value 0.3 will be rounded
to 1/3).

 The fields in the sentence from… rad/s to… rad/s must be filled when a
continuous controller is chosen; they correspond to parameters wl and wh respectively.

 The sampling time (Ts) must be filled when a digital controller is chosen.

Pressing the OK button calls the appropriate function. If an invalid number was

entered in any field an error message will appear in this moment explaining as
accurately as possible where the problem is.

Figure 3. Example of an error message.

Button OK must be pressed before anything else can be done in MatLab. If the main
dialogue was closed, this will also result in an error. In this case the message is more
general; it runs «There was an error while building the controller.» This error may also
appear if anything else went wrong (like overflows for instance) but the most usual
reason is likely to be that the main dialogue was closed (which it should not have been).

Performance evaluation in the main dialogue

Let us suppose that a Carlson approximation of a fractional controller is devised in
the nipidGui dialogue with the following parameters:

Figure 4. Dialogue nipidGui filled in.

67

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

Notice the warning shown, and that unnecessary fields are not active. The order of
integration could, of course, have a different value.

When OK is pressed, and if nothing had been done before in the main dialogue,
the Bode diagram of the controller from 1 to 100 rad/s will appear:

Figure 5. The main dialogue displaying a Bode diagram.

The main dialogue allows visualising six different characteristics of the controller:

 its Bode diagram;
 its Nichols diagram;
 its Nyquist diagram;
 its impulse response
 its step response;
 the placement of its poles and zeros.

The frequency behaviour (as shown in the Bode, Nichols and Nyquist diagrams)
is sampled at fifty logarithmically spaced frequencies between the values entered in the
fields of the sentence from… rad/s to… rad/s. Time responses are evaluated until the
instant specified in the field of the sentence until… s; the number of sampling instants is
chosen by MatLab’s functions impulse and step. When poles and zeros are visualised,
the first appear as red crosses and the latter as blue circles; an appropriate grid is drawn,
and all the three above-mentioned fields are irrelevant.

Instead of viewing what happens with the controller it is also possible to view
what happens to open-loop formed by the controller and by the plant for which is was
designed. In that case the plant must be entered in the field next to the corresponding
radio button. It must be an LTI system built with one of functions tf, zpk or ss. The
expression may be entered in the field or the name of a variable in the workspace may
be entered. For instance, introducing
tf([1, 1])
in the field or entering
plant = tf([1, 1])
in the command prompt and then

68

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

plant
in the field will have the same result. After filling the field in, the radio button labelled
Controller + plant may be pressed.

If the field is not filled in or if what it is filled in with is not a suitable LTI plant,
an error dialogue like the one of Figure 3 above will appear and the dialogue will revert
to the situation in which only the controller (without plant) is considered. It is
imperative that the plant be continuous if the controller is continuous and discrete if the
controller is discrete; in the last case the sampling time must be same. If not, the error
dialogue will appear. It will also appear if an open-loop is being (properly) visualised
and then another controller with a different sampling time is devised. Only the new
controller will be considered, since the extant plant is not compatible.

For saving the controller, introduce the name of the variable where you want it in
the field at the bottom of the dialogue and press the button to its right. The variable will
be global, so it is advisable that the name be not yet in use. An error dialogue like the
one of Figure 3 above will appear if the name is not valid or if there is no controller to
save.

Two final remarks. First, all this holds if the controller was devised not with the
nipidGui dialogue but with some other. Second, it is possible to analyse the robustness
of the controller by checking what happens if plant parameters undergo changes; but
since such an analysis is usually performed in connection with third generation CRONE
controllers, the issue will be covered after dealing with the dialogues for devising such
controllers.

Dialogue crone2Gui

This dialogue allows developing controllers described above in chapter 3 and is
available pressing the button Second generation CRONE controller in the main window
of ninteger. It may be also used for identifying a plant from its frequency behaviour.
Whatever the case, four things must be specified:

 how the phase behaviour must be;
 how the gain behaviour must be;
 at what frequencies phase (and eventually gain) behaviour is specified;
 what structure (namely number of zeros and poles) the controller must have.

69

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

Figure 6. Dialogue crone2Gui.

The list of frequencies may be obtained from a workspace variable by typing its

name next to button Load >> and pressing it. The variable must be a column vector of
positive real numbers (no negative or complex frequencies exist). In alternative it is
possible to edit the list by adding frequencies (this is done typing them after button Add
>> and pressing it) or deleting them (this done selecting those to delete and pressing
Delete). Whatever the case, if there is an error, an error message similar to that of
Figure 3 is shown explaining what the problem is.

Using the dialogue to devise a controller

If the objective is to control a plant, the sentence Complement plant… to get an
open-loop of order… must be completed with a plant and a real number. The plant must
be an LTI system built with one of functions tf, zpk or ss. The expression may be
entered in the field or the name of a variable in the workspace may be entered. The
phase of the plant will be plotted in blue, together with a set of red points. These
correspond to the phase the controller must have at the specified frequencies to meet the
specification, that is to say, they correspond to parameter phase.

It is, however, possible to input directly the phase behaviour that the controller
must have. The name of the variable (which must be a column vector of real numbers)
must be entered in the field next to the corresponding radio button before pressing this,
or an error will occur. Instead of the name of a variable, the declaration thereof may be
given (this is of course not practical for long vectors).

Frequency w1, at which the controller is to have a unit gain (0 dB), must be given
in the field next to the corresponding radio button. Parameter n is given in the box
above the OK and Cancel buttons, together with the sampling time, if that is the case.
Pressing OK will call crone2 or crone2z to reckon the controller. Incorrect values will
cause an error dialogue to appear.

Using the dialogue to identify a plant

If the objective is to identify a plant, the lists of frequencies and phases are to be
filled as explained above. The list of gains is given similarly: the field next to the
corresponding radio button must be filled before pressing this.

70

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

It should be noticed that changing the list of frequencies after choosing to input
phase and gain data will reset the radio buttons to their original values (complement a
plant and specify a unit gain frequency), since provided data is likely to be useless with
the new set of frequencies.

Dialogues crone3Gui1 and crone3Gui2

Developing controllers described above in chapter 4 is a two-step task, carried out
by these two dialogues, that are available pressing the button Third generation CRONE
controller in the main window of ninteger. In the first dialogue the parameters of
function crone3 are given:

Figure 7. Dialogue crone3Gui1.

 performance specification (spec) the closed-loop must verify (either a

maximum closed-loop resonance gain or a minimum closed-loop damping coefficient);
 limits of the frequency range (wl and wh) in which the performance is

evaluated;
 LTI object (G) with the plant to control (created with tf, zpk, or ss);
 variations that the gain, the zeros and the poles of the plant may undergo

(vargain, varzeros and varpoles).
Names of workspace variables may be entered for these last four variables (if the

plant has several poles and zeros it would not be expedient to introduce the
corresponding matrixes in the fields). For details concerning the format of matrixes
describing plant parameter variations see subsection 4.1.

When OK is pressed this data will be collected; eventual errors will lead to error

dialogues like that of Figure 3 explaining what the problem is; and in the end a dialogue
will appear as seen below in Figure 9.

The leftmost list-box contains fifty frequencies logarithmically spaced between wl
and wh (as entered in the previous plot). The corresponding frequency behaviour is
shown plotted in a Bode diagram, but it is possible to see the Nichols or Nyquist
diagrams instead. Fifty frequencies are surely too many for identifying a system with
the desired behaviour, and so it is now necessary to choose among these fifty some few
that will be used when the controller is synthesised. This is done by means of the two
buttons Add >> and Delete; chosen frequencies are shown in the rightmost list-box, and
the corresponding points in the plot appear in red. The dialogue allows specifying the
value of n too. When OK is pressed, crone2 or crone2z (depending on whether the plant
given in the previous dialogue is continuous or discrete; in the latter case, the sampling
time will be inherited by the controller) are used for reckoning the controller.

71

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

Robustness evaluation in the main dialogue

Let us suppose that the command
ft = tf([1, 1])
was given at the command prompt and that the two dialogues were filled in as follows:

Figure 8. Dialogue crone3Gui1 filled in.

Figure 9. Dialogue crone3Gui2 filled in.

The main dialogue ninteger would appear with the plots seen in Figure 10, above.

The plant and its possible variations of gain, zeros and poles are those previously
introduced. The nominal behaviour appears in blue; all the other plots, corresponding to
the possible variations of the plant, appear in magenta. By changing the plot to a
Nichols plot it becomes clear that the specification was met8, as seen in Figure 10,
below. If placement of poles and zeros is chosen, nominal poles appear in red and their
variations are shown in green, while nominal zeros appear in blue and their variations
are shown in magenta. It is possible to change the ranges of variation of the plant
parameters. If errors are found, an error dialogue similar to that of Figure 3 is shown
explaining where the error is, and the plots are redrawn without taking parameter

8 The plots are actually farther from the 0 dB closed-loop gain curve than what would be

necessary. This is not out of unnecessary care from function crone3; it was consequence of errors
introduced by crone2 when approximating the behaviour prescribed by crone3.

72

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

variations into account (and the corresponding checkbox is accordingly unchecked).

Figure 10. Two views of resulting dialogue ninteger.

Robustness evaluation is always available whenever a controller and a plant are

given (if the behaviour visualised is that of the controller without a plant, no plant
parameter variations are obviously admitted).

73

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

7.2. Programmer manual

All the files pertaining to the graphical interface are inside the gui folder.
All dialogues are non-resizable, allow only one instance and have the command

line accessibility set to Callback.

Function isinteger

This function checks if a number is integer or not. The need of such of a function
was felt to increase the legibility of the code.

The syntax of this function is

output = isinteger(a)

Output will be 1 if a is integer or 0 if it is not. The result is obtained comparing a

with its closest integer as returned by round. This means that the function also deals
with matrixes: a matrix, of the same size of a, will be returned, having in each position
the result for the corresponding element of a. It also means the case of a complex a is
also dealt with: since round rounds both the real and imaginary parts, 1 will be returned
only if both are integer.

Dialogue ninteger

Tags of objects in this dialogue are as follows:

Pop-up menu popupmenu1
Radio button labelled Controller only radiobutton1
Radio button labelled Controller + plant radiobutton2
Field to the right of the above edit_plant
Field for introducing frequency wl edit_wl
Field for introducing frequency wh edit_wh
Field for introducing the final time edit_tf
Gain plot of the Bode diagram plot1
Phase plot of the Bode diagram plot2
Plot for all other diagrams and responses plot
Button labelled Save controller in global… pushbutton_Save
Field to the right of the above edit_name
Checkbox checkbox1
Field for introducing matrix vargain edit_vargain
Field for introducing matrix varzeros edit_varzeros
Field for introducing matrix varpoles edit_varpoles
Button labelled Fractional PID controller pushbuttonnipid
Button labelled Second generation CRONE controller pushbutton2
Button labelled Third generation controller pushbutton3

Opening function of ninteger

The opening function of this dialogue defines a default controller, a default plant
and a default open-loop. These are stored as fields of the handles structures, which is
the easiest and more elegant way of letting them be accessible to the whole dialogue;
their names are respectively C, plant and open_loop. Since nothing exists in the

74

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

beginning, they are both set to a null transfer function. A separate variable for the open-
loop transfer function exist so that what should be plotted is always known.

Callback of radio button radiobutton1

If this button is hit the first task is to get its state, which is stored into variable
button_state. If the button is now on, the other will be turned off. This is possible since
there are but two; should there be more, the situation in which none is on would have to
be dealt with differently. Variable plant is set to naught (since none is to be used),
open_loop is set to C (as though the plant were unitary, since it is always the open-loop
that is plotted), the checkbox and associated field become inactive (if there is no plant,
there may be no plant parameter variations), and the plot is redrawn. Since the plot has
to be redrawn in a variety of situations, the repetition of code is avoided using a
function called redraw.

If the button is now off, the other will be turned on. This now requires a try…
catch structure since it is easy that things go astray. The plant is obtained evaluating its
string. The evaluation is carried out in the workspace using evalin to allow for variables
in the workspace to be used. Variable open_loop is set to be equal to C multiplied by the
plant. These commands come first since, should an error occur, what follows (enabling
the checkbox and the associated fields) is not necessary. Then the plot is redrawn.

If this failed, the catch turns this button on again while turning the other off, turns
off the Enable property of the checkbox and associated fields (in principle they were
never enabled, but this is playing safe), and an appropriate error dialogue9 appears.

Callback of radio button radiobutton2

The code of this callback is rather similar to that of radio button radiobutton1,
save that the order is different.

Callback of field edit_plant

This callback also bears resemblances to that of radio button radiobutton1, but
nothing is done if radio button radiobutton2 is not on. If it is, then the open-loop is
changed and the plot redrawn using redraw. If an error occurs, this means that was
provided as plant is not a valid LTI plant. So buttons and fields are reset to the situation
of controller only; the plant is set to naught and the open-loop to C; the plot is redrawn;
and an error dialogue is shown.

Callback of fields edit_wl, edit_wh and edit_tf, of pop-up menu popupmenu1, and
of checkbox checkbox1

If any of these fields is changed, or if a new type of plot is asked for, or if plant
parameter variations are to be considered or not, then the plot is redrawn using function
redraw.

Callback of fields edit_vargain, edit_varzeros and edit_varpoles

These callbacks limit themselves to redraw the plots using redraw as well, but
only if their content is to be taken into account.

Function redraw

This function receives handles so as to have access to all the objects in the
dialogue. The first thing it does is to obtain the values in fields edit_wl, edit_wh and

9 It should be remarked that error dialogues are called with the modal option on, so that the user
has no option but to pay them attention before doing anything else in MatLab. Their titles are descriptive
themselves and tend to be different; different names allow more than one dialogue to appear
simultaneously.

75

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

edit_tf. The first two are tested to check if they are positive and in the proper order. The
latter is stored into a variable called tfinal (since tf is the name of a function). If
anything is wrong an error dialogue is displayed, the plot is not altered, and control is
returned using return. Then the value of the pop-up menu is stored into plot_type.

As soon as this is known the configuration of the dialogue is changed. This is
obtained with a switch structure that deals with each possibility. Plots plot1 and plot2
are set visible if a Bode diagram is wanted, and invisible otherwise; the visibility of plot
plot is of course set to the opposite value. Plots which will not be used are cleaned of
curves and grids by plotting a single point, so that these will not appear behind the
desired plots. Also fields edit_wl, edit_wh and edit_ts are enabled or not according to
what was requested.

Then the checkbox is tested; if it is enabled and on (this is kept in a flag called
flag_var for future use), we know that there is a plant (whose zeros, poles and gain are
obtained with zpkdata and sorted for future use; the latter is stored into k since the name
gain will be used for the modulus of the frequency response), and the fields are read.
This is done with try… catch structures to cope with the possibility of there being an
error when evalin is executed (in the base workspace so that names of variables may be
used). Inside the try part a test is performed to see if the contents and dimensions are
correct (in what concerns the number of columns, if there are no zeros varzeros does not
need to have two columns, and if there are no poles varpoles also does not). The catch
part displays an error dialogue but does not interrupt the plots: the checkbox is
unchecked to signify that parameter variations will not be plotted and flag_var is set to
false.

All this is done irrespective of the existence of anything to plot. That is only
checked at this moment; if the steady state gain of the open loop, returned by dcgain, is
zero, and there are neither poles nor zeros, as given by pole and tzero, this means that no
controller was yet defined, and the control is returned using return.

There are then two cases to consider: flag_var may be false (in which case there is
only one line in each plot) or true. If it is false, a new switch deals with the several
possible plots. Frequency responses are obtained with bode (and stored in gain and
phase) in the case of Bode and Nichols plots; the Nyquist plot, that does not require
gain and phase but the complex value of the response, is obtained with freqresp (and
stored in response); time responses are obtained with impulse or step (and stored in out);
zeros and poles with zpkdata (and stored in zeros_open_loop and poles_open_loop, so
as to distinguish these from zeros and poles that are those from the plant). In this last
case the sampling time is checked to see what the most appropriate grid is; if it is zero,
this means that the transfer function is continuous and a normal grid is set; if it larger
(or -1, in the case of an unspecified sampling time), a zgrid is asked for. Labels are
always provided to render all plots clear.

If flag_var is true, the code that follows is a mixture of the above switch with the
code found in crone3Aux1. The sampling time and variable of the plant are stored so
that corrections to the zeros and poles may be built. Frequency responses are reckoned
with a fixed set of frequencies and time responses with a fixed set of time instants so
that they may be stacked and plot against the same x-axis. The building of correction
transfer functions requires no comment since it is similar to what is found in
crone3Aux1. In the end, and beyond the nominal behaviour, another variable (or
variables) with a 2 at the end (thus gain2, phase2, response2, out2) contains the several
possible departures from it, inasmuch only one variations takes place at a time. These
are plot in magenta to be readily distinguishable; the nominal behaviour is plotted later
so that it will be in front. If zeros and poles are to be plot, the variations of those that

76

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

stem from the plant are likewise stored in zeros2 and poles2. These variables must be
obtained by means of for cycles, that sweep vectors zeros and poles, since complex
conjugate zeros and poles must be taken into account: those that come last (those with
positive imaginary parts) are to be added to the complex conjugate of the variations of
the previous one. Altered zeros appear in magenta; altered poles appear in green.

Callback of button pushbutton_Save

In this callback the first thing to check is if there is a controller to save; this is
seen, as above, by looking at the steady-state gain of the controller, using function
dcgain. If it is zero, an error dialogue appears.

If it is not, the string in field edit_name is obtained are stored in variable name.
What follows is inside a try… catch structure to detect errors. A variable with the name
name is declared as global using function eval. Then the controller is saved into that
variable. Finally the variable is declared as global also in the workspace, so that it will
be accessible there. This is done using function evalin.

Should there be an error, it is likewise that the cause is an invalid name provided
in the field. The error message is deliberately ambiguous so that other cases be not
excluded.

Callback of buttons pushbuttonnipid and pushbutton2

The callback of all these buttons is very similar. For the second button, the
attempt to build a controller is framed by a try… catch structure, above all to deal with
the case in which the main dialogue was closed. It might be reopened but handles will
not be the same and errors would occur when trying to access the objects. So, if there is
an error, dialogue ninteguer is brought to the front (or reopened, if it was closed) and an
error dialogue is shown.

This is what happens if there is an error doing the following. The proper dialogue
is called and the returned controller stored in temp. It is not immediately stored in
handles.C since the dialogue might have been cancelled; if that was the case, the
returned controller will be the null transfer function. An existing controller would be
lost if handles.C were used. In this manner the subsequent steps are only taken if temp is
not the null controller. Fields C and open_loop are set to temp. But a plant might exist
with the radio button Controller + plant turned on. The verification is done simply by
calling the callback of field edit_plant. This prevents unnecessarily repeating code.
Finally the plot is redrawn. (If the callback of edit_plant did find a plant, then the plot is
already redrawn, but there is no harm in doing it again. The processing time is not
relevant and the code is easier to understand.)

Callback of pushbutton3

This callback must call two dialogues and transfer data among them. Some of the
variables returned from crone3Gui1 are passed to crone3Gui2 (notice that crone3Gui1
returns the plant, but only its sampling time needs to be passed on) and this dialogue
returns the new controller, stored in temp just as above. If it is a valid controller, and
beyond changing fields C and open_loop of handles, fields edit_plant, edit_vargain,
edit_varzeros and edit_varpoles are filled with the strings returned by crone3Gui1,
while the radio-buttons, the checkbox and associated fields are set to allow for the plant
and its variations to be taken into account when the plots are redrawn.

Dialogue nipidGui

Tags of objects in this dialogue are as follows:

77

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

Field with the proportional gain edit_P
Field with the integral gain edit_I
Field with the integral order edit_I_order
Field with the derivative gain edit_D
Field with the derivative order edit_D_order
Text warning about rounding offs when using Carlson
method

text_warn

First pop-up menu popupmenu1
Second pop-up menu popupmenu2
Field with the value of n edit_n
Checkbox checkbox_decomp
Field for introducing frequency wl edit_wl
Field for introducing frequency wh edit_wh
Field for introducing the sampling time edit_Ts
Button labelled OK pushbutton_OK
Button labelled Cancel pushbutton_Cancel

Opening function of nipidGui

The opening function defines a null transfer function as the default return value,
stored as field output of handles, and instructs the dialogue to wait for an answer to be
provided using uiwait.

Callback of pop-up menu popupmenu1

This callback reconfigures the dialogue according to the approximation chosen.
This is done with a switch structure that verifies the value of formula, the number of the
option in the pop-up menu. Changes consist in changing the enabled fields and the
contents of the second pop-up menu and hiding or showing the warning on Carlson’s
method.

Callback of button pushbutton_Cancel

This callback resumes control with uiresume. Closing the window will be handled
by closing function.

Callback of button pushbutton_Ok

This is where the calculations are performed. Values of fields are obtained and
checked. If anything is wrong an error dialogue is brought up and control is returned
with return.

The approximation specified in popupmenu1 is obtained and stored in variable
formula. In this manner wl and wh are only read if a continuous controller is to be built,
and the sampling time and the second pop-up menu are only read if not (in this case
formula is converted into the corresponding string using an appropriate list). Finally a
switch structure calls the desired function. If Carlson method was chosen, the conditions
stated in section 2.4 are checked. If any of them is met, function newton is used, as
explained in the text accompanying formulas (2.41) and (2.42). Otherwise, function
nipid is called.

Control is resumed with uiresume.
Output function of nipidGui

This function returns handles.output and closes the figure by deleting the handle
stored in handles; but this is only done if handles is not empty. If the dialogue is called

78

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

more than once (by pressing the corresponding button in the main dialogue several
times), several instances of this function will run simultaneously, but only one window
will appear. This will be closed when the first instance of the function terminates and
the contents of handles will disappear, becoming an empty variable. If that is the case,
the null transfer function is returned as default to avoid errors.

Dialogue crone2Gui

Tags of objects in this dialogue are as follows:

Gain plot of the Bode diagram axes_gain
Phase plot of the Bode diagram axes_phase
List-box with the frequencies listbox1
Radio button labelled Controller only radiobutton1
Button labelled Add >> pushbutton_add
Field to the right of the above edit_add
Button labelled Load >> pushbutton_load
Field to the right of the above edit_load
Button labelled Delete pushbutton_delete
Radio button labelled Gain data radiobutton_Gain_data
Field to the right of the above edit_gain
Radio button labelled Unit gain frequency radiobutton_Unit_gain
Field to the right of the above edit_w1
Radio button labelled Phase data radiobutton_phase
Field to the right of the above edit_phase
Radio button labelled Complement plant radiobutton_complement
Field to the right of the above edit_plant
Field for introducing the order of the open-loop edit_order
Field with the value of n edit_n
Radio button labelled Continuous radiobutton_continuous
Radio button labelled Sampling time radiobutton_Ts
Field to the right of the above edit_Ts
Button labelled OK pushbutton_OK
Button labelled Cancel pushbutton_Cancel

Opening function of crone2Gui

The opening function is similar to that of nipidGui. In addition it sets labels for
the axis of the plots and initialises several fields of handles that will be necessary in
what follows, namely w (list of frequencies), phase (list of phases), gain (list of gains)
and plant (the plant whose phase will be complemented if no separate phase is given).

Callback of push button pushbutton_add

This function gets the value in of field edit_add and checks it. If it is no positive
real, an error dialog is displayed; if it is, it is added to the list of frequencies in the
listbox listbox1. Function unique ensures that no repeated frequencies will be added; the
contents of the field are furthermore deleted. Radio buttons radiobutton_Gain_data and
radiobutton_phase are turned off if they are on, because if they are this means that
vectors provided as phase or gain have a number of entries equal to the number of
frequencies in the listbox. Since the listbox is going to be increased, they will have the
wrong length, and are thus useless. The callback of field edit_plant is executed, just as it

79

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

is when the button is turned on manually: this redraws the plots, because if a plant is
provided the phase plot will be different, taking into account that a plant may have been
provided.

Callback of button pushbutton_load

In this function the name of the variable given in the corresponding field is
obtained. A try… catch structure deals with the case of an invalid name or an invalid
content; an error dialogue is displayed in the catch part. Even if the contents are valid,
they cannot be negative, complex, character strings, or a row vector. The rest is similar
to the above function.

Callback of button pushbutton_delete

This function gets the indexes of selected elements in the listbox and eliminates
them using function setdiff. It is necessary to deselect all elements before changing the
list of strings, because if an element is selected but the final list is so short that the
element no longer exists in the end an error would otherwise occur.

Function redraw

This is a good time to explain how this function works. First of all it checks for a
list of frequencies: if handles.w does not exist, nothing can be done.

Then the gain plot is handled. Only if radio button radiobutton_Gain_data is on is
there data to plot in handles.gain. The limits of the vertical axis are left as they are;
those of the frequency axis are set to the limits of the decades in which frequencies are
comprised. Otherwise the plot is erased by plotting a single value, and then setting the
limits of the axis to their defaults, thereby hiding the plotted point. Labels for the axes
are always added. If there is a plot, the frequency axis is logarithmic, and there is a grid;
this is not the case if there is nothing to plot.

The phase plot is handled next. There are three possibilities. If radio button
radiobutton_phase is on, there is data to plot in handles.phase. If it is not and
handles.plant has no plant (which is checked, as usual, by verifying if its steady state
gain is zero), there is nothing to plot, and the existing plot is deleted. But if
radiobutton_phase is not on and there is a plant, both the phase of the plant (obtained
with bode between the extremes of vector handles.w) and the contents of phase are
plotted. The case when there is only one point to plot is taken into account by means of
try… catch structures.

Callback of radio button radiobutton_Gain_data

If this button is hit the first task is to get its state, which is stored into variable
button_state. If the button is now on, radio button radiobutton_Unit_gain will be turned
off. This is possible since only these two work together; should they be more, the
situation in which none is on would have to be dealt with differently. What follows
requires a try… catch structure. The contents of field edit_gain are evaluated in the
usual manner described above; the catch part deals with errors in this operation.
Additional errors (like complex numbers, characters, matrixes, vectors with a length that
does not match w) are handled by ifs. Whatever the other, the other button is set to on:
its being on is the default value, and the validity of the unit gain frequency is not
checked until OK is pressed. So if radio button radiobutton_Gain_data is on, this means
that valid data for the gain is available.

If the button is now off, the other is turned on. Whatever the case, the plot may
need to be refreshed; this is done with function redraw.

80

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

Callback of field edit_gain

If this field is edited, action is taken only if radiobutton_Gain_data is on. The
corresponding code is rather similar to the one described above.

Callback of radio button radiobutton_Unit_gain

The code of this callback is rather similar to that of radio button
radiobutton_Gain_data, save that the order is different.

Callback of radio buttons radiobutton_phase and radiobutton_complement and of
field edit_phase

The code of these callbacks is rather similar to that of the callbacks of radio
buttons radiobutton_Gain_data and radiobutton_Unit_gain and field edit_gain,
respectively. In this instance the button which is on by default is
radiobutton_complement. If radiobutton_phase is on, this means that valid data for the
phase is available.

The major difference is that whenever radiobutton_complement is turned on, the
callback of field edit_plant is executed. This is because the presence of a valid plant
must be ascertained. But even if no valid plant is given, radiobutton_complement will
remain on, since one of the two must be on (this in spite of an error message as will be
seen below).

Callback of field edit_plant

This callback consists in a try… catch structure. The try part reads, in the usual
manner, the name of the plant given in the field, finds its phase behaviour (using bode),
gets the order for the open-loop provided in field edit_order, and sets handles.phase to
the difference between what the open-loop should be and what the plant is.

Errors in the open-loop order are handled by an if inside this try part (and not by
the catch part), so that the error message may be different. The plant and the phase
fields of handles are set to naught because without an open-loop order phase data still
does not exist. The plot is redrawn to erase anything that might exist and control is
returned with return.

Callback of field edit_order

The previous callback is called since it handles changes in this field as well.
Callback of radio buttons radiobutton_continuous and radiobutton_Ts

These merely ensure that one and only one of these buttons is on at a given
instant.

Callback of button pushbutton_Cancel

This callback resumes control with uiresume. Closing the window will be handled
by closing function.

Callback of button pushbutton_Ok

This is where the calculations are performed. The first thing done is checking the
existence of a frequency list and of a list of phases. Then the values of fields edit_n and
edit_Ts (this only if the corresponding radio button is on) are obtained and checked. If
anything is wrong an error dialogue is brought up and control is returned with return. A
continuous controller is marked with a 0 in variable Ts.

Then the value of radio button radiobutton_Gain_data is checked. If it is on,
function crone2 or function crone2z (depending on the value of Ts) are called with
handles.gain as second argument. If it is off, field w1 is read in the usual manner (and

81

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

with the usual verification) and function crone2 or function crone2z are called without
second argument.

Whatever the case, and unless an error occurs, the controller is stored in
handles.output. Control is resumed with uiresume.

Output function of crone2Gui

This function is similar to that of nipidGui.

Dialogue crone3Gui1

Tags of objects in this dialogue are as follows:

Radio button labelled Closed-loop gain below radiobutton1
Field to the right of the above edit_spec1
Radio button labelled Closed-loop damping factor above radiobutton2
Field to the right of the above edit_spec2
Field for introducing frequency wl edit_wl
Field for introducing frequency wh edit_wh
Field for introducing the plant edit_plant
Field for introducing vargain edit_vargain
Field for introducing varzeros edit_varzeros
Field for introducing varpoles edit_varpoles
Button labelled OK pushbutton_OK
Button labelled Cancel pushbutton_Cancel

Opening function of crone3Gui1

The opening function is similar to that of nipidGui, but in this case several output
variables are needed.

Callback of radio buttons radibutton1 and radiobutton2

These merely ensure that one button and only one is on at a given instant.

Callback of button pushbutton_Cancel

This callback resumes control with uiresume. Closing the window will be handled
by closing function.

Callback of button pushbutton_Ok

This is where the calculations are performed. The first thing done is obtaining the
values of fields spec1 or spec2 (depending on the radio button which is on), wl and wh
in the usual manner, and checking their content. Variables that will be part of the output
become fields of handles, while wl and wh are stored in local variables. Then field
edti_plant is read into handles.strings.plant, so that the string entered may be restored
later in dialogue ninteger. The plant is obtained in the usual manner and its zeros and
poles (obtained with zpkdata) are stored in local variables. This is necessary to check
that matrixes with pole and zero variations have the right size. A try… catch structure is
used, as is always the case when evalin is employed.

Fields vargain, varzeros and varpoles are read into the corresponding sub-fields
of handles.strings; the corresponding values are also obtained with evalin. Their size is
checked; the last two must match the number of zeros or poles of the plant. It should be
noticed that if there are no zeros variable varzeros does not need to have two columns;
the same happens with poles and varpoles.

82

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

Which radio button is on is checked again so that crone3 is called with the proper
value of parameter st. Finally control is resumed with uiresume.

Output function of crone3Gui1

This function is similar to that of nipidGui, save that there are nine outputs in this
case.

Dialogue crone3Gui2

Tags of objects in this dialogue are as follows:

Gain plot of the Bode diagram plot1
Phase plot of the Bode diagram plot2
Plot for Nichols and Nyquist diagrams plot
Pop-up menu popupmenu1
Field for introducing n edit_n
Leftmost list-box with all the frequencies listbox1
Rightmost list-box with the chosen frequencies listbox2
Button labelled Add >> pushbutton_add
Button labelled Delete pushbutton_delete
Button labelled OK pushbutton_OK
Button labelled Cancel pushbutton_Cancel

Opening function of crone3Gui1

The opening function bears similarities to that of nipidGui, but in this case it is
necessary to handle the inputs to the dialogue, obtained through varargin. A field of
handles called indexes is used for knowing which frequencies have been selected for
being used with crone2 (or crone2z): it will contain the indexes of such frequencies in
variable handles.w. This is practical since it is not necessary to deal with real numbers
with long decimal parts that would be hard to track. The leftmost list-box is filled with
such frequencies (converted to strings using num2str) and function redraw is called for
plotting the data from which a choice is to be made.

Function redraw

This is the simplest of all redraw functions since it only has to get the type of plot
and plot it. The type of plot is the value chosen in the pop-up menu. Plotting commands
are found inside a switch structure that deals with the three available cases. The Nyquist
diagram is not the best way of visualising this data that consists of separate points, but
was included for completeness. In all cases, the plots which are not shown are cleared
just as in redraw from ninteger.

Callback of popupmenu1

This callback merely calls redraw to redraw the plot.
Callback of pushbutton_add

This callback gets the list of selected frequencies in list-box listbox1 and adds
them to handles.indexes using union so that no repeated values will appear. The
contents of the other list-box are updated and so are the plots.

Callback of pushbutton_delete

This callback gets the list of selected frequencies in list-box listbox2 and takes
them off handles.indexes using setdiff. It is necessary to deselect all elements before

83

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

changing updating the contents of the other list-box, because if an element is selected
but the final list is so short that the element no longer exists in the end an error would
otherwise occur. Finally the plots are redrawn.

Callback of button pushbutton_Cancel

This callback resumes control with uiresume. Closing the window will be handled
by closing function.

Callback of button pushbutton_Ok

This is where the calculations are performed. The first thing done is checking
whether some frequencies were selected; if none were, no calculations may be
performed. Parameter n is found in the usual manner and, depending on the value of Ts,
crone2 or crone2z are called and the returned controller stored in handles.output.
Control is resumed with resume.

Output function of crone3Gui1

This function is similar to that of nipidGui.

84

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

8. Simulink

A Simulink library called Nintblocks is provided with two blocks that implement
functions nid and nipid.

Figure 11. Simulink library

8.1. Block Fractional derivative

This block implements function nid. The parameters are provided by means of the
following dialogue:

85

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

Figure 12. Dialogue of block Fractional derivative

Implementation

The block is implemented with a masked subsystem in which there is an LTI
block calling function nid. In the Initialization tab of the mask of the subsystem some
lines of code are needed to convert the result of the dialogue’s pop-up menus into the
strings required by nid.

8.2. Block Fractional PID

This block implements function nipid. The parameters are provided by means of
the following dialogue:

86

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

Figure 13. Dialogue of block Fractional PID

Implementation

The block is similar to the one above save that the function implemented is nipid.

87

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

9. Functions for continued fractions

In this section the information concerning four functions for working with
continued fractions is included. So as to tidy the toolbox up these functions are to be
found in a separate folder, called cfractions.

9.1. Function contfrac

This function returns a continued fraction, truncated after n terms, that
approximates the real number x. The function’s name is an acronym of continued
fraction. The corresponding formulas are

() ()0 0

1

1;
i i

x x x
x

+∞

=

⎡ ⎤
= = ⎢

⎣ ⎦
C

C
⎥ (6.41)

()1 1

1 ,k
k k

x
x x− −

=
−C

0k > (6.42)

Syntax

[a, b] = contfrac (x, n)

Arguments

 x — real number to expand.
 n — number of terms up to which the approximation is found.

Return values

 a — coefficients of the continued fraction as given by (6.42).
 b — coefficients of the continued fraction as given by (6.42).

These are arranged in the following general form:

1
0

2
1

3
2

3

b
x a

ba
b

a
a

= +
+

+
+…

 (6.43)

Obviously the coefficients of vector b will all be 1 (save b0 which is 0). Coefficients a0
and b0 are found in the first position of vectors a and b. Other coefficients follow in the
due order.

Limitations

Rational numbers correspond, in theory, to a continued fraction with a finite
number of coefficients. However, due to floating point internal representations,
sometimes integers are not recognised as such, and the difference between two numbers

88

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

very close to an integer is expanded. As the difference is small, denominators in the
continued fraction will be very large. This may help to recognise such cases.

Algorithm

This function implements formulas (6.41) and (6.42). The problem with test if
x==0 was already discussed in the user manual. If the test gives no problem, the
expansion may be performed with a number of coefficients less than n. If that is the
case, vectors a and b are padded with zeros in the end.

References

See (Radok, 1999), (Valério, p. 182-184, 2005c).

9.2. Function contfracf

This function reckons an approximation for the function

()
2 3

10 11 12 13
2 3

00 01 02 03

c c x c x c x
f x

c c x c x c x
+ + + +

=
+ + + +

…
…

 (6.44)

given by the continued fraction

() 1,010

00 ,0 1

0; , j

j j

c xc
f x

c c

+∞

+

=

⎡ ⎤
= ⎢
⎢ ⎥⎣ ⎦

⎥ (6.45)

2,0 2, 1
, 1,0 2, 1 2,0 1, 1

1,0 1, 1

j j
j i j j i j j i

j j i

c c
c c c c c

c c
i− − +

− − + − − +
− − +

= − = − (6.46)

truncated after n terms. The f in the function’s name stands for function.

Syntax

[a, b] = contfracf (c, n)

Arguments

 c — matrix with two lines, the first with the coefficients of the polynomial in
the numerator, and the second with the coefficients of the polynomial in the
denominator, as seen in (6.44). The first column should have the independent
coefficients, the second the coefficients in x, and so forth.

 n — number of terms up to which the approximation is found.

Return values

 a — coefficients of the continued fraction as given by (6.42).
 b — coefficients of the continued fraction as given by (6.42).

These are arranged in the following general form:

89

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

() 1
0

2
1

3
2

3

b
f x a

b xa
b x

a
a

= +
+

+
+…

 (6.47)

Coefficients a0 and b0 are both 0; these are found in the first position of vectors a and b.
Other coefficients follow in the due order.

Algorithm

This function implements formula (6.46) by means of two nested for loops. The
outermost sweeps the lines of matrix c; it begins with 2, since lines 0 and 1 correspond
to the coefficients of the polynomials that define the function to expand. The innermost
cycle deals with the several coefficients within a line. Since matrix indexes begin with 1
in MatLab, 1 must be added whenever indexes are used.

References

See (Radok, 1999), (Valério, p. 184-185, 2005c).

9.3. Function contfraceval

This function reckons the value of a continued fraction given by (6.43) according
to the following recursive formulas:

1

0 0

1 2

1

0

1 2

1

, 0
0

1
, 0

k k k k k

k k k k k

k
k

k

P
P a
P a P b P k
Q
Q
Q a Q b Q k

PR
Q

−

− −

−

− −

=
=
= + >
=
=
= +

=

>

 (6.48)

Syntax

out = contfraceval (a, b, n)

Arguments

 a — vector with the coefficients of (6.43). The first element should have
coefficient a0, the second coefficient a1, and so forth.

 b — vector with the coefficients of (6.43). The first element should have
coefficient b0, the second coefficient b1, and so forth. b0 is never used; it is a good idea
to set it to 0 to avoid confusion.

 n — number of terms up to which the continued fraction is to be evaluated. It
may be a vector, in which case all the corresponding approximations are returned.

90

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

Return value

 out — value of the continued fraction up to the number of terms specified. If n
is a vector, a line vector with the same dimension is returned.

Algorithm

This function implements formulas (6.48). All intermediate approximations are
stored in variable temp. Since denominator Q may become too large, it is possible to set
it from times to times to 1, while dividing P by Q. This preserves the result avoiding
round-off errors. However, this normalisation option was not implemented so that the
code might remain simple. In the end, only those values of temp asked for in variable n
are returned.

References

See (Radok, 1999), (Wall, p. 15, 1948), (Valério, p. 184-185, 2005c).

9.4. Function contfracfeval

This function returns the value of a continued fraction, as returned by function
contfracf for approximating f(x), in point x.

Syntax

out = contfracfeval (a, b, n, x)

Arguments

 a — vector with the coefficients of (6.47). The first element should have
coefficient a0, the second coefficient a1, and so forth.

 b — vector with the coefficients of (6.47). The first element should have
coefficient b0, the second coefficient b1, and so forth. b0 is never used; it is a good idea
to set it to 0 to avoid confusion.

 n — number of terms up to which the continued fraction is to be evaluated. It
may be a vector, in which case all the corresponding approximations are returned.

 x — point in which the approximation of f(x) is to be evaluated.

Return value

 out — value of the continued fraction in point x up to the number of terms
specified. If n is a vector, a line vector with the same dimension is returned.

Algorithm

This function simply multiplies vector b by x whenever appropriate and then calls
function contfraceval.

References

See (Radok, 1999), (Wall, p. 15, 1948), (Valério, p. 184-185, 2005c).

91

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

10. Final Remarks

Devising a controller is not always a straightforward task, and some iterations and
parameter tuning may often prove necessary. This toolbox was conceived as a helper,
not as a substitute to human intelligence. This is particularly apparent if flaws in
approximations are considered. Approximations of fractional derivatives do not always
have constant phases, linear gains and exponential time responses—and sometimes fine-
tuning to get some of these characteristics will only make the other worse. The
algorithms for second generation CRONE controllers often get stuck due to numerical
problems—and though a judicious choice of parameters usually makes the trick, what
that choice may be is not always crystal clear. And so on and so forth…

In what concerns the graphical user interface, it is surely more appealing to use
than typing commands at the prompt—but problems that may arise are often hidden
behind generic error warnings that tell nothing about where the source of the problem is.
Neither is there another alternative: realising from data and results where the hydra is
hiding requires wit, and an expert rule-based system for doing that would be probably as
large as the toolbox itself.

So this section is intended as a caveat against the perils of merely feeding
functions with random parameters without backing all efforts with a reasonable dose of
intellectual activity.

92

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

Bibliography

CARLSON, G. E.; HALIJAK, C. A. — Approximation of fractional capacitors (1/s)1/n
by a regular Newton process. IEEE transactions on circuit theory. 7 (1964) 210-213.

COIS, O, LANUSSE, P., MELCHIOR, P., DANCLA, F. and OUSTALOUP, A. —.
Fractional systems toolbox for Matlab: applications in system identification and Crone
CSD. In 41st IEEE conference on Decision and Control. Las Vegas: IEEE, 2002.

HARTLEY, Tom; LORENZO, Carl — Fractional-order system identification based on
continuous order-distributions. Signal processing. 83 (2003) 2287-2300.

LAWRENCE, P. J.; ROGERS, G. J. — Sequential transfer-function synthesis from
measured data. Proceedings of the IEE. 126:1 (1979) 104-106.

LEVY, E. — Complex curve fitting. IRE transactions on automatic control. 4 (1959)
37-43.

LUBICH, C. — Discretized fractional calculus. SIAM journal of mathematical analysis.
17 (1986) 704-719.

MACHADO, J. A. Tenreiro — On the implementation of fractional-order control
systems through discrete-time algorithms. In Bánki Donát Polytechnic műszaki
főiskola: jubilee international conference proceedings. Bánki Donát: Bánki Donát
Polytechnic, 1999. p. 39-44.

MACHADO, J. A. Tenreiro — Discrete-time fractional-order controllers. Fractional
calculus & applied analysis. 1 (2001) 47-66.

MALTI, Rachid; AOUN, Mohamed; COIS, Olivier; OUSTALOUP, Alain; LEVRON,
François — H2 norm of fractional differential systems. In Proceedings of ASME 2003
design engineering technical conferences and Computers and information in
engineering conference. Chicago: ASME, 2003.

MATSUDA, K.; FUJII, H. — H∞ optimized wave-absorbing control: analytical and
experimental results. Journal of guidance, control and dynamics. 16:6 (1993) 1146-
1153.

MELCHIOR, P.; PETIT, N.; LANUSSE, P.; AOUN, M.; LEVRON, F.; OUSTALOUP,
A. — Matlab based Crone toolbox for fractional systems. In Fractional differentiation
and its application. Bordeaux: IFAC, 2004.

OUSTALOUP, Alain — La commande CRONE: commande robuste d’ordre non entier.
Paris: Hermès, 1991.

OUSTALOUP, Alain; LEVRON, François; MATHIEU, Benoît; NANOT, Florence. —
Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE
transactions on circuits and systems I. 47 (2000) 25-39.

93

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

OUSTALOUP, A., MELCHIOR, P., LANUSSE, P., COIS, O. and DANCLA, F. —
The CRONE toolbox for Matlab. In 41st IEEE conference on Decision and Control. Las
Vegas: IEEE, 2002.

PETRAS, I.; HYPIUSOVA, M. — Design of fractional-order controllers via H∞ norm
minimisation. In MIKLES, J.; VESELY, V. — Selected topics in modelling and
control. Bratislava: Slovak University of Technology Press, 2002. vol. 3, p. 50-54.

PINA, Heitor — Métodos numéricos. Lisboa: McGraw-Hill, 1995.

PODLUBNY, Igor — Fractional differential equations: an introduction to fractional
derivatives, fractional differential equations, to methods of their solution and some of
their applications. San Diego: Academic Press, 1999.

RADOK, Rainer — Continued fractions. 199[9?]. http://mpec.sc.mahidol.ac.th/numer/
step1aa.htm

SANATHANAN, C. K.; KOERNER, J. — Transfer function synthesis as a ratio of two
complex polynomials. IEEE transactions on automatic control. 8 (1963) 56.58

VALÉRIO, Duarte — Fractional order robust control: an application. In Student Forum.
Porto: EUCA, 2001a. p. 25-28.

VALÉRIO, Duarte Pedro Mata de Oliveira — Controlo robusto de ordem não inteira:
síntese em frequência. Lisboa: Instituto Superior Técnico da Universidade Técnica de
Lisboa, 2001b. Master’s thesis.

VALÉRIO, Duarte; COSTA, José Sá da — Time domain implementations of non-
integer order controllers. In Controlo 2002. Aveiro: 5th Portuguese Conference on
Automatic Control, 2002. 353-358.

VALÉRIO, Duarte; SÁ DA COSTA, José — A method for identifying digital models
and its application to non-integer order control. In Controlo 2004. Faro: APCA, 2004a.

VALÉRIO, Duarte; SÁ DA COSTA, José — Ninteger: a fractional control toolbox for
Matlab. In First IFAC workshop on fractional differentiation and its applications.
Bordeaux: IFAC, 2004b.

VALÉRIO, Duarte; SÁ DA COSTA, José — Time-domain implementation of
fractional order controllers. IEE proceedings: control theory & applications. 2005a.
Accepted for publication.

VALÉRIO, Duarte; SÁ DA COSTA, José — Levy’s identification method extended to
fractional order transfer functions. In Fifth EUROMECH Nonlinear Dynamics
conference. Eindhoven: EUROMECH, 2005b.

VALÉRIO, Duarte Pedro Mata de Oliveira — Fractional robust system control. Lisboa:
Instituto Superior Técnico da Universidade Técnica de Lisboa, 2005c. Doctorate thesis.

94

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

VINAGRE, B. M.; PODLUBNY, I.; HERNÁNDEZ, A.; FELIU, V. — Some
approximations of fractional order operators used in control theory and applications.
Fractional calculus & applied analysis. 3 (2000) 231-248.

VINAGRE JARA, Blas Manuel — Modelado y control de sistemas dinámicos
caracterizados por ecuaciones íntegro-diferenciales de orden fraccional. Madrid:
Universidad Nacional de Educación a Distancia, 2001. Doctorate thesis.

WALL, H. S. — Analytic theory of continued fractions. Princeton: D. Van Nostrand
Company, 1948.

95

NINTEGER V. 2.3 — FRACTIONAL CONTROL TOOLBOX FOR MATLAB

Appendix

This Appendix contains alternative code for functions rad2deg and deg2rad that
may be used if toolbox Map is not available.

function deg = rad2deg(rad)
% function deg = rad2deg(rad)
% deg = 180 * real(rad) / pi;
deg = 180 * real(rad) / pi;

function rad = deg2rad(deg)
% function rad = deg2rad(deg)
% rad = pi * real(deg) / 180;
rad = pi * real(deg) / 180;

96

	Introduction
	Requirements
	Installation procedure
	How files are organised
	About this manual

	Approximations of fractional order derivatives and integrals
	Function nid

	Function matsuda
	Function cfehigh
	Function cfelow
	Function digital
	Function nipid
	Function crone1
	Function newton
	Function matsudaCFE
	Obsolescent functions

	Functions ensuring a real fractional order behaviour for the
	Function crone2

	Function resolution
	Function resmaple
	Function crone2z

	Function crone2zAux
	Function crone2zExact
	Function resolution
	Function resmaple
	Functions ensuring a complex fractional order behaviour for
	Function crone3

	Function crone3Aux1
	Function reckoning
	Function crone3Aux2
	Function crone3Aux3
	Identification of fractional models
	Function hartley
	Function levy
	Function vinagre
	Function sanko
	Function lawro

	Analysis and norms
	Function freqrespFr
	Function bodeFr
	Function nyquistFr
	Function nicholsFr
	Function sigmaFr
	Function normh2Fr

	H2 norm of integer systems
	H2 norm of fractional systems
	First case
	Second case
	Third case
	Function H2FrSISO
	Function squarefreq
	Function normhinfFr

	Graphical interface
	User manual

	Using the dialogue to devise a controller
	Using the dialogue to identify a plant
	Programmer manual

	Opening function of ninteger
	Callback of radio button radiobutton1
	Callback of radio button radiobutton2
	Callback of field edit_plant
	Callback of fields edit_wl, edit_wh and edit_tf, of pop-up m
	Callback of fields edit_vargain, edit_varzeros and edit_varp
	Function redraw
	Callback of button pushbutton_Save
	Callback of buttons pushbuttonnipid and pushbutton2
	Callback of pushbutton3
	Opening function of nipidGui
	Callback of pop-up menu popupmenu1
	Callback of button pushbutton_Cancel
	Callback of button pushbutton_Ok
	Output function of nipidGui
	Opening function of crone2Gui
	Callback of push button pushbutton_add
	Callback of button pushbutton_load
	Callback of button pushbutton_delete
	Function redraw
	Callback of radio button radiobutton_Gain_data
	Callback of field edit_gain
	Callback of radio button radiobutton_Unit_gain
	Callback of radio buttons radiobutton_phase and radiobutton_
	Callback of field edit_plant
	Callback of field edit_order
	Callback of radio buttons radiobutton_continuous and radiobu
	Callback of button pushbutton_Cancel
	Callback of button pushbutton_Ok
	Output function of crone2Gui
	Opening function of crone3Gui1
	Callback of radio buttons radibutton1 and radiobutton2
	Callback of button pushbutton_Cancel
	Callback of button pushbutton_Ok
	Output function of crone3Gui1
	Opening function of crone3Gui1
	Function redraw
	Callback of popupmenu1
	Callback of pushbutton_add
	Callback of pushbutton_delete
	Callback of button pushbutton_Cancel
	Callback of button pushbutton_Ok
	Output function of crone3Gui1
	Simulink
	Block Fractional derivative
	Block Fractional PID

	Functions for continued fractions
	Function contfrac
	Function contfracf
	Function contfraceval
	Function contfracfeval

	Final Remarks
	Bibliography
	Appendix

