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{dvalerio,sadacosta}@dem.ist.utl.pt

Abstract — Low robot mass / carried mass ratios make flexible robots rather at-
tractive from the energy saving point of view, but difficulties arising from its control
are significant, especially when high accuracy is needed. In this paper fractional or-
der control for a two degree of mobility flexible robot is presented. Fractional order
PID controllers with parameters tuned using genetic algorithms ensure, in simula-
tions, a good following of trajectories, unlike integer order PID controllers, clearly
less fit for such a task. Performances deteriorate in laboratory but still show frac-
tional order control to be a promising option for this application.

1 Introduction
A robot is said to be flexible if designed in such a manner that its structure will undergo
deformation (and consequently vibration) under normal operation conditions to such a
degree that rigid body models become too poor for providing suitable approximations for
control. Low robot mass / carried mass ratios make flexible robots rather attractive from
the energy saving point of view, but difficulties arising from its control are significant,
especially for tasks demanding a high accuracy. In this paper fractional (or non-integer)
order control for a flexible robot is presented. Fractional order control has been applied
with success in rigid robots, both for position control and hybrid position-force control [1,
2, 3], and in a one-degree of mobility flexible robot [4]. Whenever models with significant
non-linearities were used, parameter tuning was achieved either by trial and error [1] or
by using a genetic algorithm [2, 3].

In what follows the application of fractional order control to a laboratory prototype of
a two-degrees of mobility flexible robot, achieving a stable control-loop for the position
of its tip, is described. Material is organised as follows. In section 2 a model of the robot
is presented. In section 3 the implementation of fractional order controllers is addressed
and genetic algorithms are shortly presented as an introduction to the genetic algorithm
used in this particular case for tuning control parameters. In section 4 simulation and
laboratory results are presented. Some conclusions are drawn in section 5.

2 Flexible robot addressed
The flexible robot addressed in this paper is a two-degree of mobility planar horizontal
robot extant at the Control, Automation and Robotics Laboratory of the authors’ Univer-
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Figure 1: Flexible robotic arm addressed in this paper

sity. It consists of a rigid link and a flexible link, connected by rigid hubs, as seen in
Figure 1. In each hub there are a motor, a tachometer and an encoder; the vibration of
the flexible link is measured by means of two extensometer bridges. Control is performed
using Matlab’s xPC target toolbox. The robot’s tip position can be reckoned from the two
angles θ1 and θ2 and the elastic displacement of the flexible link v. A model of the robot,
drawn from [5], is given in an Appendix.

3 Control of the robot

3.1 Fractional order controllers

Control of the position of the tip of the robot was attempted using both usual digital PID
controllers and digital fractional PID controllers. The former are the weighted sum of pro-
portional, integral and derivative control actions. The later generalise this control structure
by allowing differentiation and integration orders other than 1, all real numbers being ad-
missible. Thus five parameters are needed to define a fractional PID: the proportional,
integral and derivative gains, the differentiation order, and the integration order. There are
several ways for reckoning a fractional derivative or integral of a sampled signal. The one
chosen stems from Tustin’s formula for approximating a first order derivative, that will
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have to be raised to the fractional order, which we will call ν:
(

2

T

1− z−1

1 + z−1

)ν

(1)

Here T is the sampling time. Since this involves fractional powers of the delay operator
z−1, we expand (1) into a MacLaurin series and truncate it after some number of terms p.
The result is [2, 6]

Dνf(t) ≈ f(t)
p
∑

i=0

z−i
i
∑

j=0

(−1)j
(

2

T

)ν
Γ(ν + 1)Γ(−ν + 1)

Γ(ν − j + 1)Γ(j + 1)Γ(i− j + 1)Γ(−ν + j − i+ 1)
(2)

Instead of beginning with Tustin formula, a first-order backward finite difference might
have been used in (2). Or else the expected impulse response might have been used to
find the coefficients of the finite impulse response filter of equation (2). Or, instead of
a truncated MacLaurin series expansion, a truncated continued fraction expansion might
have been used (resulting in an infinite response filter). [2, 4, 7] All these hypotheses have
been tested, but the best results were obtained with (2), which was thus retained.

The control structure employed is that of Figure 2. Notice that v enters the control loop
with its signal changed. This is a way of dealing with the non-minimum phase behaviour
of the plant that results from the flexibility of the second link: when it turns to one side,
its tip bends to the other side in a first moment [8]. Vector T contains the torques and
vector q contains angles θ1 and θ2 and the information obtained from the extensometers
(see (16), (33), (34) and (35) in the Appendix).
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Figure 2: Control loop

3.2 Genetic algorithms

Since a genetic algorithm was successfully used in [3] for tuning the controller’s param-
eters, this option was also adopted in this case. Genetic algorithms are an optimisation
method useful in situations involving non-linearities and local minima, consisting essen-
tially in a refined trial-and-error that imitates the evolutionary principle of the survival of
the fittest [9].

The algorithm used for fitting fractional PIDs, implemented in Matlab, was as follows:

One: A population of 50 elements is created. Each corresponds to a set of two fractional
PIDs, the first (C1) for the first joint of the robot and the second (C2) for the second
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Figure 3: Control results for a linear trajectory (reference trajectory dashed)

joint, given by

C1 = k1D
ν1 + k2D

ν2 + k3 (3)
C2 = k4D

ν4 + k5D
ν5 + k6 (4)

Parameters, which will be stored as real numbers, are randomly chosen with normal
distributions with the means and standard deviations of Table 1, which are based on
previous trial-and-error tuning.

k1 ν1 k2 ν2 k3 k4 ν4 k5 ν5 k6

x 104 0 1 0 10−2 102 0 1 0 10−2

σx 2000 2 0.1 0.1 0.1 20 2 0.1 0.1 0.1

Table 1: Parameters’ distributions

Two: Following steps are performed until 100 iterations are reached, or until no improve-
ment arises over 10 iterations.

Three: Control is simulated for all individuals. Fractional derivatives are approximated
by (2); the number of terms retained p was set to 10.

Four: A performance index is reckoned [3]. It includes the sum of the integrals of the
squares of the errors in both coordinates, and a term for penalising large vibrations
of the tip of the robot, since they are hard to deal with, and a potential source of
inaccuracy. Vibration at the end of the simulation should be as small as possible, so
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Figure 4: Control results for a two-loop trajectory (reference trajectory dashed)

that the robot may come to rest at the desired location; thus, as vibration cannot be
completely avoided, it is penalised increasingly with time:

I =
∫ tend

0

[

(x− xref )
2 + (y − yref )

2 + t2v4
]

dt (5)

Five: Eliminate all individuals save those with the 6 best performance indexes. These are
allowed into the next generation (this is called elitism), and are the only ones that
may reproduce or mutate.

Six: One-half of the eliminated individuals are replaced by mutations of the surviving
ones. Mutants begin as copies of a randomly chosen survivor. The number of pa-
rameters that mutate is randomly chosen; the probability decreases exponentially
with the number of parameters, so that it will be more likely that few parameters
will change. The change consists in adding a Gaussianly distributed random num-
ber with zero-mean and variance equal to one-tenth of the mutating parameter.

Seven: One-fourth of the eliminated individuals are replaced by descendents of the sur-
viving ones. Each descendant is the offspring of two randomly chosen survivors;
each of the ten parameters listed in Table 1 is drawn, randomly, from one of the
parents. Each individual being thus split into ten pieces by nine cuts, this is called
nine point cross-over [9].

Eight: One-fourth of the eliminated individuals are replaced by randomly generated indi-
viduals, such as those of the original population—save that they are fewer in number.
This is called spontaneous generation [3].
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Figure 5: Control results for a circular trajectory (reference trajectory dashed)

A similar algorithm was used for fitting PIDs to the robot. The distributions given in
Table 1 for parameters k1, k2, k3, k4, k5 and k6 were used with this algorithm as well; ν1

and ν4 were forced to be 1; ν2 and ν5 were forced to be −1.

4 Results
Three different trajectories were considered and different fractional PIDs were tuned for
each. Trajectories correspond to movements usually required from robots. Figure 3,
Figure 4 and Figure 5 show, for each trajectory, how the position of the tip of the robot
evolves with time, the trajectory it describes in space, and the vibration it undergoes. Both
simulation and experimental results are shown. The sampling time was 1 ms; controllers’
parameters are given in Table 2; since only once the two available fractional derivatives
were needed, the structure of the fractional PID seems to have been a reasonable choice.

Whatever the trajectory, no integer PIDs were found that could stabilise the control-
loop. This does not prove, of course, that the plant cannot be controlled with integer
PIDs. But the fact that no such controllers were found, while acceptable fractional PIDs
were, shows that the latter are clearly superior for this application. Furthermore, con-
trollers developed for one trajectory also work for other references as well. An example
(among others possible) is shown in Figure 6, showing that controllers work for trajecto-
ries different from that they were devised for.

However, it is also clear from these results that the experimental performance is clearly
worse than what was expected from simulations. Table 3 gives the half-width of an en-
velope around the reference trajectory that fully covers each simulation or experimental
result. These envelopes are a set of circles centred on the successive points of the refer-
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Figure 6: Control results for the trajectory of Figure 3 when the controller devised for the
trajectory of Figure 2 is used

ence; their radius is the envelope half-width. Simulation values, though not good, may
still be bearable, but experimental ones are clearly excessive for most applications. This
is especially due to higher vibrations in experimental data and may happen because of
insufficiencies in the simulation model or because of inaccurate measurements of the vi-
bration, which is thus not properly dealt with and gets larger than it should. The model
may be insufficient either in describing the vibration of the flexible link or in describing
the friction in the joints. It is hard to improve the former, because taking into account
more vibration modes leads to numerical problems when the kinematic equations are in-
verted; the latter is also hard to improve, since friction depends on temperature and on the
current configuration of the robot.

It should also be noticed that fractional controllers stabilise the loop by coping with
vibrations, not by suppressing them.

5 Conclusions

It was possible to control the position of the tip of the robot using fractional PIDs, while
no usual (integer) PIDs able to do that could be found. Experimental results show this kind
of control works, though performance is clearly poorer. These are promising results for
fractional control in what concerns flexible robot control. Future work includes improving
the model of the robot to attempt an increased accuracy of simulations, applying the
method to more complicated robots, and refining the parameter tuning by beginning with
some analytical method to find acceptable ranges for parameters and leaving the genetic
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Figure 3 Figure 4 Figure 5
k1 4.81× 1014 3.89× 1014 59.4
ν1 −3.63 −3.54 0.715
k2 0 0 0
ν2 — — —
k3 0.0265 0.318 0.117
k4 11.8 3.91× 103 304
ν4 0.298 −0.498 −0.114
k5 0 1.6106 0
ν4 — 0.0101 —
k6 0.0929 0.400 0.0121

Table 2: Controllers’ parameters

Simulation Experimental
Figure 3 0.016 m 0.053 m
Figure 4 0.014 m 0.021 m
Figure 5 0.006 m 0.018 m
Figure 6 0.033 m 0.042 m

Table 3: Half-width of the envelope of the reference containing simulated and
experimental control results

algorithm for fine-tuning only.

Appendix

Nomenclature used in the model of the robot:

C centrifugal and Coriolis vector
E Young modulus of the robot’s flexible link
F viscous friction coefficients vector
H mass matrix
Ib moment of inertia of the robot’s flexible link
Im1 moment of inertia of the motor of the rigid link’s joint
Im2 moment of inertia of the motor of joint between the two links
IH moment of inertia of the hub connecting the links
IR0 moment of inertia of the robot’s rigid link
K stiffness matrix
L length of the robot’s flexible link
LR length of the robot’s rigid link
M, N auxiliary matrixes
M , S auxiliary functions
T vector with the torques applied
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mb mass of the robot’s flexible link, equal to ρL
mH mass of the hub connecting the links
q time-varying vector of the coordinates that define the robot’s state
r radius of the hub connecting the links
r1 transmission relation of the rigid link’s joint
r2 transmission relation of the joint between the two links
u beam shortening in the flexible link measured longitudinally
v elastic displacement (lateral deviation) of the flexible link
αij , γij , Φ auxiliary quantities
βi eigenvalues corresponding to the free vibration modes of the robot’s flexible link
ηi(t) weighing coefficients called elastic coordinates
θ1, θ2 angles of the links
ρ linear density of the robot’s flexible link
τ1, τ2 torques applied at the joints by motors
χi normalised clamped-free vibration modes

The following auxiliary quantities will be used:

Mi,j =
∫ r+L

r
M (x)

dχi (x)

dx

dχj (x)

dx
dx (6)

Ni,j =
∫ r+L

r
S (x)

dχi (x)

dx

dχj (x)

dx
dx (7)

M (x) =
∫ r+L

x
ρdξ (8)

S (x) =
∫ r+L

x
ρξdξ (9)

γij =
∫ r+L

r
S (x)χi (x)

d2χj (x)

dx2
dx (10)

γ′ij =
∫ r+L

r

dS (x)

dx
χi (x)

dχj (x)

dx
dx (11)

αij =
∫ r+L

r
M (x)χi (x)

d2χj (x)

dx2
dx (12)

α′ij =
∫ r+L

r

dM (x)

dx
χi (x)

dχj (x)

dx
dx (13)

Φ (i) =
∫ r+L

r
χi (x) dx (14)

χi (x) = cosh [βi (x− r)]− cos [βi (x− r)]

−
cosh (βiL) + cos (βiL)

sinh (βiL) + sin (βiL)
{sinh [βi (x− r)]− sin [βi (x− r)]} (15)

Beam shortening u was neglected; elastic displacement v was approximated by a finite
series

v (x, t) =
n
∑

i=1

χi (x) ηi (t) (16)
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Parameters used were as follows:

LR = 0.32 m (17)
IR0 = 0.25 kg m2 (18)
IH = 13.22× 10−4 kg m2 (19)
mH = 0.47 kg (20)
r = 0.075 m (21)
L = 0.5 m (22)
Ib = 99× 10−4 kg m2 (23)
ρ = 0.157 kg/m (24)

mb = 0.0785 kg (25)
EI = 0.349 N m2 (26)
n = 3 (27)
β1 = 1.8751/L (28)
β2 = 4.6941/L (29)
β3 = 7.8548/L (30)

F =
[

2.0× 10−4 2.3× 10−4 0 0 0
]

(31)

This allows for a discrete model of the robot which is

H (q) q̈ + F q̇ + K (q, q̇) q + C (q, q̇) = T (32)

where

T =
[

τ1 τ2 0 . . .
]T

(33)

η =
[

η1 · · · ηn
]T

(34)

q =
[

θ1 θ2 η
]T

(35)

Matrixes H and K are symmetric. The non-zero elements of H, K and C are

H (1, 1) =
1

r2
1

[

Im1 + IR0 + L2

R (mH +mb) + IH + Ib + ρLηTη

−2ρLR sin θ2Φ
Tη + 2ρLR cos θ2

∫ r+L

r
xdx− ηTNη

−LR cos θ2η
T
Mη

]

(36)

H (1, 2) =
1

r1r2

(

IH + Ib + ρLηTη − ρLR sin θ2Φ
Tη

+ρLR cos θ2

∫ r+L

r
xdx+

LR cos θ2

2
ηTMη − ηTNη

)

(37)

H (2, 2) =
1

r2
2

(

Im2 + IH + Ib + ρLηTη − ηTNη
)

(38)
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H (1, j) =
1

r1

(

ρ
∫ r+L

r
xχj−2 (x) dx

+LR cos θ2ρ
∫ r+L

r
χj−2 (x) dx

)

, 3 ≤ j ≤ n (39)

H (2, j) =
1

r2

(

ρ
∫ r+L

r
xχj−2 (x) dx

)

, 3 ≤ j ≤ n (40)

H (3, j) = ρL, 3 ≤ j ≤ n (41)
K (i+ 2, i+ 2) = EILβ4

i − θ̇2

1 [ρL+ γii + γ′ii + LR cos θ2 (αii + α′ii)]

−θ̇2

2 (ρL+ γii + γ′ii)

−2θ̇1θ̇2

[

ρL+ γii + γ′ii +
LR cos θ2

2
(αii + α′ii)

]

,

1 ≤ i ≤ n (42)
K (i+ 2, j + 2) = −θ̇2

1 [γii + γ′ii + LR cos θ2 (αii + α′ii)]

−θ̇2

2 (γii + γ′ii)− 2θ̇1θ̇2

[

γii + γ′ii +
LR cos θ2

2
(αii + α′ii)

]

,

1 ≤ i ≤ n ∧ 1 ≤ j ≤ n ∧ i 6= j (43)

C (1) =
1

r1

[(

ρLηT − ρLR sin θ2Φ
T − ηTN− LR cos θ2η

T
M

)

2θ̇1η̇

+

(

ρLηT − ρLR sin θ2Φ
T − ηTN +

LR cos θ2

2
ηTM

)

2θ̇2η̇

+

(

−ρLR sin θ2

∫ r+L

r
xdx−

LR sin θ2

2
ηTMη

−ρLR cos θ2Φ
Tη
)

θ̇2

2 +

(

−ρLR sin θ2

∫ r+L

r
xdx

+
LR sin θ2

2
ηTMη − ρLR cos θ2Φ

Tη

)

2θ̇1θ̇2

]

(44)

C (2) =
1

r2

[(

ρLηT +
LR cos θ2

2
ηTM− ηTN

)

2θ̇1η̇

+

(

ρLR sin θ2

∫ r+L

r
xdx+ ρLR cos θ2Φ

Tη −
LR sin θ2

2
ηTMη

)

θ̇2

1

+
(

ρLηT − ηTN
)

2η̇θ̇2 − θ̇1θ̇2LR sin θ2η
T
Mη

]

(45)

C (i) = θ̇1LR sin θ2ρ
∫ r+L

r
χi−2 (x) dx, 3 ≤ i ≤ n (46)

Beyond vector F , friction in the joints was modelled by means of a dead zone and of
Coulomb and viscous friction affecting the input of each:

τeffective = sign (τ) (µ |τ |+ τ0) (47)

Parameters are given in Table 4. These (as well as those of vector F given in (31))
were found by minimising, using a genetic algorithm, the quadratic error of the model
responses to steps and impulses.
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First joint Second joint
Dead zone

[

−3.2379 2.9129
]

Nm
[

−0.5543 0.6608
]

Nm

τ0 4.56 N m 0 N m
µ 0.2585 1.0231

Table 4: Friction parameters
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Duarte Valério was partially supported by programme POCTI, FCT, Ministério da Ciência e Tec-
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[3] D. Valério and J. Sá da Costa. Optimisation of non-integer order control parameters for a robotic arm.
In 11th International Conference on Advanced Robotics, Coimbra, 2003.

[4] B. M. Vinagre. Modelado y control de sistemas dinámicos caracterizados por ecuaciones ı́ntegro-
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