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Nuclear Fusion Reaction
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The Tokamak
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JET Diagnostics
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Tomography at JET
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Tomography at JET

• Camera signals
• sampling rate: 5 kHz

• window average of 5 ms (25 samples)

• 5 kHz / 25 = 200 Hz

• Tomographic reconstructions
• pulse duration: ~30 sec

• 30 sec × 200 Hz = 6000 reconstructions/pulse

• in practice, only a few reconstructions per pulse

• Time per reconstruction
• ~1h on average

• 6000 × 1h = 250 days



Deep Learning

LeCun et al, Proc. of the IEEE 86, 2278 (1998)

Krizhevsky et al, Adv. Neural Inf. Proc. Sys. 25, 1097 (2012)

• Convolutional Neural Networks (CNNs)



Deep Learning
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• Inverse of a CNN ~ "deconvolutional" neural network



Training

• Dataset
• pulses 80128 to 92504 (2011-2016)

• 25584 sample reconstructions

• 90% for training (23025), 10% for validation (2559)

• Training
• accelerated gradient descent (Adam)

• learning rate: 10-4

• batch size: 307 (307 * 75 = 23025)

• 75 batches = 75 updates/epoch



Training

NVIDIA Tesla P100

total:
3530 epochs
20 hours

best:
epoch 1765
val_loss 0.008556 MW m-3



Video Demo



Plasma Disruptions

• Disruptions are a major problem in tokamaks



Raw Camera Signals
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Deep Learning

• Recurrent Neural Networks (RNNs)

© Chris Olah

Simple RNN

LSTM
(Long

short-term
memory)



Disruption Prediction
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Disruption Prediction

• Time-to-disruption (regression)
• last layer is Dense(1) with no activation

• loss function is mean absolute error (mae)

• use only disruptive pulses

• Probability of disruption (classification)
• last layer is Dense(1) with sigmoid activation

• loss function is binary cross-entropy

• use both disruptive and non-disruptive pulses

56

200

32

98

64

47

128

21

LSTM

128

time
(1s)

channels

Conv1D +
MaxPooling

Conv1D +
MaxPooling

Conv1D +
MaxPooling

features

steps

1

1



Training

• Time-to-disruption (ttd)
• 1683 disruptive pulses

• 90% for training, 10% for validation

• X: draw random samples from each pulse

• y: (disruption time) – (latest sample time)

• Probability of disruption (prd)
• 9798 pulses (17% disruptive)

• 90% for training, 10% for validation 

• X: draw random samples from each pulse

• y: 1 if pulse contains disruption, 0 otherwise

sample
time to

disruption



Training

ttd (mean absolute error)
NVIDIA Tesla P100
total: best:
1026 epochs epoch 513
13 hours val_loss 1.986 s

prd (binary cross-entropy)
NVIDIA Tesla P100
total: best:
1118 epochs epoch 559
14 hours val_loss 0.202



Results

low ttd
high prd

disruption
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Results
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Results

early signs
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Results

false alarms
(false positives)



Results

missed alarms
(false negatives)

very rare
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Conclusion

• Deep learning and the analysis of fusion data
• replacing compute-intensive tasks (e.g. tomography)

• support for tokamak operation (e.g. disruption prediction)

• both post-processing and real-time processing
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Pointers

• Source code
• Plasma tomography

• https://github.com/diogoff/plasma-tomography

• Disruption prediction
• https://github.com/diogoff/plasma-disruptions

• More info
• Full-pulse Tomographic Reconstruction with Deep Neural Networks

• https://arxiv.org/abs/1802.02242

• Artificial intelligence helps accelerate progress toward efficient fusion reactions
• https://www.pppl.gov/news/2017/12/artificial-intelligence-helps-accelerate-progress-toward-

efficient-fusion-reactions

• Princeton Team Using AI for Fusion Up for Global Impact Award
• https://blogs.nvidia.com/blog/2018/03/05/ai-deep-learning-global-impact-awards-princeton/

https://github.com/diogoff/plasma-tomography
https://github.com/diogoff/plasma-disruptions
https://arxiv.org/abs/1802.02242
https://www.pppl.gov/news/2017/12/artificial-intelligence-helps-accelerate-progress-toward-efficient-fusion-reactions
https://blogs.nvidia.com/blog/2018/03/05/ai-deep-learning-global-impact-awards-princeton/

