BPM in Enterprise Systems Integration

Diogo R. Ferreira

Instituto Superior Técnico (IST)
Universidade de Lisboa

Bayreuth International Summer School, 14 - 18 July 2014 Course 4: Business Process Management

Introduction

* Enterprise Systems Integration
— many kinds of systems which must be integrated

ERP system

N
0o
=
S . \: Mail server
File server R (M)
0
User portal

g

Desktop application

Web service

Introduction

* Enterprise Systems Integration
— integration depends on business processes

ERP system
S s
0 f
-
N
S . S
Database o 5
A
NS 2 X
o Mobile application
N
S . \: Mail server
File server R (M)
N @
User portal

g

Desktop application

Web service

Introduction

* Enterprise Systems Integration
— integration depends on business processes

ERPs stem
NS Y
0
-
NS
Database
o ... £ F
= «
S . \: Mail server
File server R (M)
N @
User portal

SO
Desktop application

Web service

Introduction

* Enterprise Systems Integration

— easier to integrate if the integration logic can be defined

separately from the systems

integration logic

@ “\~ §
&

File User Database Web Mobile Online
server portal service application payment

systems infrastructure

T

Mail
server

&

ERP
system

Desktop
application

Introduction

* Enterprise Systems Integration

— the integration logic is the business process
4 -

business process

e

o : E : E : : :)
O ‘| (N ' E 3
' ‘ _ \'S/’ g g g s@i
File User Database Web Mobile Online Mail ERP Desktop
server portal service application payment server system application

systems infrastructure

Introduction

* Such business process is an orchestration

— typically, an orchestration:
* receives a message from a system
 transforms the message into another format/structure
e sends the message to another system

— BPM-like flow constructs are possible

business process

Introduction

* In the past
— the business process is just a conceptual view
— implementation is done at the systems level

* |Inthe present
— the orchestration is the implementation of a process
— systems infrastructure can be adapted to fit the process

Introduction

* Key concepts

— orchestration
e an executable model of a business process

— service

* an abstraction of some system functionality

Service Service

Introduction

 Why services and orchestrations are so important

— services allow us to create a different landscape over
existing systems

— orchestrations allow us to implement a business process
over existing systems/services

Introduction

e Furthermore

— the concepts of service and orchestration are
interchangeable
* an orchestration can be exposed as a service
* aservice can be implemented as an orchestration of other services

‘ Service

I nt rOd U Ctio N Service exposed to

the outside world

* Therefore, everything is
a service, and there can
be several layers of
services

Service-Oriented Architecture

* A business process is a top-level service which is
implemented as an orchestration of mid-level
services which in turn are implemented as
orchestrations of low-level services exposed by
systems and applications.

Service-Oriented Architecture

7

. Activity Activity

Activity

. Activity

Activity o Activity

AL

\

Service

Service

Service Service

Service Service Service

Service

: :
Application Application

i : E
Application Application Application

¥
=
|]

Application

business
process
layer

service
interface
layer

application
layer

Service-Oriented Architecture

Activity

7

Activity

Activity

Activity

—
(]
>
©
(%]
(%]
()
O
o
fus
(o}
(%}
"
(O]
=
(%}
>
0
S
o
fust
(S
(%]
(O]
eT]
C
@
=
O

Service

Service

Service

Service

Service Service Service

Service Service

A

-

Application

u

-
]
[]
[]

Application Application Application Application

u

e
[]
[
[]

nmy l*

Application

Changes from application layer

Human workflows

* What happens when processes are performed by
people?

.
.
.
.
.
.
.
.
.
. .
. .
. .
. .
. .
. .
. .
. .
" . .
H . . &

Human workflows

* A process gets instantiated multiple times

Human workflows

* Tasks lists, to-do lists, or work queues

/

workflow
engine

resources

Comparison

Human Workflows
Process model
Process instance

Activity
* human task

Resource
* human

Work queue

Flow constructs
* branching

e parallelism
* loops

Service Orchestrations
Orchestration
Orchestration instance

Activity
* service/system invocation

Resource

* service (e.g. Web service)

» database (or other data sources)
* etc. (any other application)

Message queue

Flow constructs
* branching

e parallelism
* loops

Advanced mechanisms
* exception handling
* transactions and compensation

Examples

Web service

Receive

Database

Receive

Message queues

Receive

Examples

ol
-
q

Branching Parallelism Loop

Concepts of orchestration flow

Activities

* In business processes, activities are (mostly) tasks

* In orchestrations, activities are (mostly) message
exchanges

Receive
. Send

Receive

Messages

* What is a message?

— a message is some structured data
* it may be a request sent to an external system
* it may be a response received from an external system

— usually, it takes the form of an XML document

e and it may be depicted as a tree structure

PurchaseOrder

Header
ReqID
Date

Item
ProductRef
ProductDesc
Quantity
UnitPrice
TotalPrice

Messages

* Message schema vs. MmessSage instance

PurchaseOrder <PurchaseOrder>
Header <Header>
<ReqID>R1</ReqID>
ReqID <Date>2014-07-08</Date>
Date </Header>
Item <Item>
<ProductRef>537</ProductRef>
ProductRef <ProductDesc>Printer cartridge</ProductDesc>
ProductDesc <Quantity>2</Quantity>
e <UnitPrice>»24.99</UnitPrice>
Q : .y <TotalPrice>49.98</TotalPrice>
UnitPrice </Item>
TotalPrice </PurchaseOrder>

* the schema is usually defined in XSD (XML Schema Definition)

Messages

 Some platforms use XML namespaces

<?xml version="1.0" encoding="utf-8"?>
<ns@:PurchaseOrder xmlns:ns@="http://0fficeSupplies.PurchaseOrder">
<Header>
<ReqID>R1</ReqID>
<Date>2014-07-08</Date>
</Header>
<Item>
<ProductRef>537</ProductRef>
<ProductDesc>Printer cartridge</ProductDesc>
<Quantity>2</Quantity>
<UnitPrice>24.99</UnitPrice>
<TotalPrice>49.98</TotalPrice>
</Item>
</ns@:PurchaseOrder>

* the type of message is then

http://0fficeSupplies.PurchaseOrder#PurchaseOrder

Ports

* Messages are sent or received through ports

Receive Receive Send
port port port

Receive

. Receive

Receive

Message

Message
Message

Send Receive Send
port port port

Ports

* A portis aconnection to an external system
— i.e. a Web service, a database, a message queue, etc.

— communication is configured in the port itself, and not in
the orchestration

Receive Receive Send
port port port

Message
Message

Message

: Receive

Receive Send

Activating receive

* An orchestration begins with the arrival of a message

— the first receive creates new orchestration instances and is
called the activating receive

3 messages :
t 4
ed O
Receive R
port
v
O - 3 new instances
R running independently
O -
O
\ 4

Recelve

A normal receive executes in an existing instance

Receive Receive
This message port port This message is
triggers a new received by a running
orchestration 3 N, orchestration
instance o o instance
a 2
(%]
v V
= S

O

— but how do we know which instance should receive
Message 2 °7?

* more on this later...

Messages

 Once a message is received, it cannot be changed

— but the message lives through the entire orchestration

Message_1 exists from this point onwards

Message_2 exists from this point onwards

Message construction

* Itis possible to create new messages through
transformation of existing ones

Receive Send
port port

Message 1
Message 2

Construct

O
O

Message_1 exists from this point onwards
1

Message transformation

e How does transformation work?

— messages can be transformed using transformation maps

— for XML messages, the map can be specified using XSLT

Source schema Target schema
Request PurchaseOrder
ReQID »rerreeeainii Header

PPOUCEREF T et » ReqID

Quantity e =t Date
.................................. Item

.................. * ProductRef

................ ProductDesc

""" » Quantity

UnitPrice

TotalPrice

Message transformation

A map may have several source schemas

— grabbing data from several source messages

Source schemas Target schema
Request PurchaseOrder
ReQID =rerreeeniii Header
PPOQUCEREF h T » ReqID
Quantity e, e Date

.................................. Item
ProductInfo | tee. T * ProductRef

‘e
L]
L7
S
2
4y
L

TotalPrice

Message transformation

* Itis possible to use special functions too
— in some platforms, these are called functoids
— can be specified as XSLT functions and operators

Source schemas Target schema
Request PurchaseOrder
ReQID rrserrsernani Header
PPrOQUCERES f T » ReqID
POUUCRES "o I e

“"‘. Item
ProductInfo | . * ProductRef
ProductDescC -+ '.............................'.'-'-'--.g:::.':.PPOdUCtDeSC
UnitPrice ssseniton. > Quantity

a, LN
LY T
"TEEEEaaga,

Message assignment

* Alternatively, it may be possible to manipulate
messages directly through code

— in this case we use a message assignment

Message_1 exists from this point onwards

Message assignment

* A message assignment contains code (e.g. C#)

— the message elements are accessible as properties

Message_1
Request
ReqID
ProductRef Message Assignment
Quantity
Message 3.Header.ReqID = Message 1.ReqlD;
Message_2 Message 3.Header.Date = System.DateTime.Now.ToString("yyyy-MM-dd");
ProductInfo
ProductDesc Message 3.Item.ProductRef = Message 1.ProductRef;
UnitPrice
Message 3.Item.ProductDesc = Message 2.ProductDesc;
Message_3 . .
Message 3.Item.Quantity = Message_ 1.Quantity;
PurchaseOrder
Header q q . .
ReqID Message_3.Item.UnitPrice = Message_2.UnitPrice;
Date
Item Message 3.Item.TotalPrice = Message_1.Quantity * Message 2.UnitPrice;
ProductRef
ProductDesc
Quantity
UnitPrice

TotalPrice

Controlling the flow

* We have seen
— how to receive messages
— how to send messages
— how to construct new messages

* Now we will see how to control the flow
— with branching decisions
— with parallelism

Decisions

* Choosing between alternative paths

Receive Send
port port
: [}
5 !
: Message 1 : ‘. Message 2

A
Receive ""

Decide

.

Message 1

¥
Send
port

Decisions

* The condition is usually based on message properties

Message 1.Quantity <= 500

Receive Send
port port
:

Message_1 : Construct = Message 2

A
Receive - —*‘
Decide
=== [
0—1 Else | <>

Decisions

 What if there are multiple conditions?

Receive
port

§ Message 1

A
Receive

Decide

- -

- -

-

Message_1.Quantity <= 250

Message 1.Quantity <= 500

Parallelism

* Multiple paths running concurrently

Receive
port

Message_1

-5

Parallel

Message 1

Send
port

Construct

gl Transform [

lllllllllllllllllll

?

: Message 2

Send
port

Parallelism

* Multiple paths running concurrently

Block structure

e Orchestrations have a nested block structure

Correlations

The problem

* An approval process

Receive Request —
........... oort R EEY Receive

requests

Request Send
et - P _
port J | T\ M, >
Approval Receive |J oot
............ = Sort Manager

approvals

Approval
gq| Send I‘.
port

The problem

* The process is instantiated multiple times

Orchestration instances

A
’ Receive

Receive

Send
port

. Receive

port

requests

1

D wanager

approvals

The solution

e The solution is to have a correlation id

— a unigue request number in every request

Orchestration instances

Receive

A

> Y Receive
° port

requests

D wanager

approvals

Correlation properties

* The correlation is based on a common message

property
Requesi
" RquD)
T ProductRef
P Quantity

,"’ : Request Send
ReqlID is the — port
correlation :

property Receive .

S Approval \|__Port

¥
-~
-~
-~
-
-~
-
-~
-
-~
-~
-~
-~
-~

-
-

—————

requests

—/

S

approvals

e

Manager

Correlation type vs. correlation set

e Some definitions

— Correlation type is the set of message properties (one or
more) that are used as correlation id

— Correlation set is the set of message exchanges (send or
receive) included in the same correlation

Correlation set

e The correlation set

— is initialized in one exchange

— is followed by one or more exchanges

This send initializes

. ~
the correlation set “s

Correlation set +

P4
This receive follows _»

the correlation set

~
~
Sa
p = -
f v 1
I IRequest
| Syee 1
! - !
I I
| JUR— E——— 7’
gt Sl
I [
| aceive 1
-
I :Approval
N ——— /
- 4
P d
,/

Send
port

Receive
]

port

requests

—/

S

approvals

n

Manager

Correlation

* Adding the correlation to the orchestration

requests
Request Send
""""""" » port _) B

. &) Approval Receive | (o ..
U /\pproval el Re— O« Manager

approvals

A simple business process

A simple business process

* A purchase process for office supplies

Get price and Approve
‘—‘ H Approved?
@ description purchase order pprov
New
purchase
Order product
from supplier

AN .
(a8 Supplier

C ’ L «-i@" Web Service

approval_responses

request approval_requests

?" ﬂ Manager
Database w

server

U

A simple business process

* What our orchestration must do
— receive a request
— query a database
— interact with message queues
— invoke a Web service

Receiving the request

 The orchestration is instantiated every time a new
request is received

— define the request schema
— use an activating receive

Orchestration

Schema O
Request

RquD Receive Request

ProductRef port o

Quantity

Querying the database

* A database for office supplies

— to make things simpler, we will use a single table

Products
ProductRef ProductDesc UnitPrice
537 Printer cartridge 24.99
538 Paper A4 80g 3.99
539 Binder A4 25mm 5.49
540 Office Chair 149.99

Querying the database

e Our request contains a ProductRef

Products
ProductRef ProductDesc UnitPrice
Message schema
»| 537 Printer cartridge 24.99
Request
ReqID 538 Paper A4 80g 3.99
ProductRef 539 Binder A4 25mm 5.49
Quantity
540 Office Chair 149.99

Message instance (example)

<ns@:Request xmlns:ns@="http://OfficeSupplies.Request”>
<ReqID>R1</ReqID>
<ProductRef>537</ProductRef>
<Quantity>2</Quantity>
</ns@:Request>

Querying the database

 We have to query the database for the given

ProductRef

Query

SELECT ProductDesc, UnitPrice
FROM Products

Products WHERE ProductRef = 537;
ProductRef | ProductDesc UnitPrice
537 Printer cartridge 24.99 Result
538 Paper A4 80g 3.99 ProductDesc UnitPrice
539 Binder A4 25mm 5 49 Printer cartridge 24.99
540 Office Chair 149.99

Querying the database

 The query must work for any given ProductRef
— we turn it into a stored procedure

Stored procedure

CREATE PROCEDURE GetProductInfo(@ProductRef INT) AS
SELECT ProductDesc, UnitPrice
FROM Products

WHERE ProductRef = @ProductRef;

Sample run

EXEC GetProductInfo 537;

Result

ProductDesc UnitPrice

Printer cartridge 24.99

Querying the database

e Since we are working with XML messages, we would
like to have the output in XML

Stored procedure

CREATE PROCEDURE GetProductInfo(@ProductRef INT) AS
SELECT ProductDesc, UnitPrice
FROM Products

WHERE ProductRef = @ProductRef
FOR XML AUTO;

Sample run
EXEC GetProductInfo 537;

Result

<Products ProductDesc="Printer cartridge" UnitPrice="24.99" />

Querying the database

* We can even get the schema definition

CREATE PROCEDURE GetProductInfo(@ProductRef INT) AS
SELECT ProductDesc, UnitPrice
FROM Products

WHERE ProductRef = @ProductRef
FOR XML AUTO, XMLDATA;

EXEC GetProductInfo 537;

<Schema name="Schemal" xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">
<ElementType name="Products"” content="empty" model="closed">
<AttributeType name="ProductDesc" dt:type="string" />
<AttributeType name="UnitPrice" dt:type="number" />
<attribute type="ProductDesc" />
<attribute type="UnitPrice" />
</ElementType>
</Schema>

<Products xmlns="x-schema:#Schemal” ProductDesc="Printer cartridge" UnitPrice="24.99" />

Querying the database

* Orchestration sends input parameters to the stored
procedure, and receives the results

Receive Request

port InProduct
ProductRef

Inpy,
odyc
‘ invokes stored procedure
Adapter
y -
Port gets the results .

roduct
L OUtP Database

OutProduct
Products
ProductDesc
UnitPrice

Querying the database

 We need to construct the InProduct message

(:) Request

ReqID
Receive Request . Pr‘OdUCtRef
port — Quantity
Construct
————
InProduct
b ProductRef
| /nProduCt .
- invokes stored procedure
saQL |,
Adapter
Port gets the results .
gproduct
— ou Database
OutProduct
Products
ProductDesc

UnitPrice

Querying the database

* For this purpose, we use a transformation map

Source schema Target schema
Request InProduct
ReqID 1 » ProductRef

P r\od u Ct Re-F

Quantity

Querying the database

Construct

Transform

Request
——ReqID
——ProductRef
——Quantity

Our orchestration looks like this

Yy

Source schema

Request
——ReqID
——ProductRef-
——Quantity

Target schema

InProduct
» ProductRef —!

InProduct
L——ProductRef

Adapter

OutProduct

L Products
——ProductDesc
——UnitPrice

invokes stored procedure

.................... T——
gets the results g
Database

Approving the purchase

* With the original request and the response from the
database, we construct a purchase order for approval

Request PurchaseOrder
ReqID Header
ProductRef ReqID
Quantity Date

Item
ProductRef
ProductDesc
OutProduct .
Quantity
Products . .

ProductDd UnitPrice

roductiiesc TotalPrice

UnitPrice

Approving the purchase

* Again, we use a transformation map

Source schemas Target schema
Request PurchaseOrder
ReqID rwsretretnee Header
PROUCEREF Tt > RquD
Quantity R E » Date

.""‘ Item
OutProduct o e T » ProductRef
ProductDescC -+ '.............................'.'.'-'a-.,::.'.'r.Pr‘OdUCtDeSC
UnitPrice st > Quantity

..................

L *
«
2

Approving the purchase

e Qur orchestration now looks like this

/
1 nPrOdua
—
S outproduct
Construct
———

sQL

Adapter

Port

invokes stored procedure

)
gets the results .
Database
Source schemas Target schema
Request PurchaseOrder
ReQID rrerertemse Header

ProductRef
Quantity ..
............... Item

Approving the purchase

* Sending the purchase for approval

Source schemas Target schema
Request PurchaseOrder

[N] RquD Header
s s > RquD_

1 Quantity A B » Date —
JOTTTTN . S Ttem
: Construct OutProduct " h *» ProductRef——
ProductDesc - :.Pr'oductDesc—

UnitPrice s "M Quantity——

Transform

> UnitPrice—
> TotalPrice—

S I _

port)
Receive

ot e Manager

approval_responses

Approving the purchase

* Sending the purchase for approval

Construct

PurchaseOrder

Approval

Send

port

Receive
port

PurchaseOrder

Header
ReqID
Date

Item
ProductRef
ProductDesc
Quantity
UnitPrice
TotalPrice

0"
O Manager

approval_responses

approval_requests

>

Approval
ReqID
Approved (yes/no)

Approving the purchase

* The manager has an application to approve the
purchase order

— receives a message (PurchaseOrder) from the
approval_requests queue

— shows the purchase order and asks whether it should be
approved or not

— sends a message (Approval) to the approval _responses
queue

approval_requests

U)

/"‘\q
7
’ Ry

e
S22/
(O Manager

approval_responses

Approving the purchase

* Using C# and MSMQ,

using System;

using System.IO;

using System.Xml;

using System.Messaging;

namespace ConsoleApproval

{

class Program

{

static void Main(string[] args)

{

Console.WriteLine("Waiting for message...");

string queueName = @".\private$\approval requests";
MessageQueue mg = new MessageQueue(queueName);

Message msg = mqg.Receive();
Console.WriteLine("Message has been received!");

StreamReader reader = new StreamReader(msg.BodyStream);
string request = reader.ReadToEnd();
Console.WritelLine(request);

XmlDocument doc = new XmlDocument();
doc.LoadXml(request);
string ReqID = doc.GetElementsByTagName("ReqID")[0@].InnerText;

string Approved = "";
while ((Approved != "yes") && (Approved != "no"))
{

Console.Write("Approve? (yes/no) ");
Approved = Console.ReadLine().ToLower();

}

string response = "<ns@:Approval xmlns:ns@=\"http://0OfficeSupplies.Approval\">";
response += "<ReqID>" + ReqID + "</ReqID>";

response += "<Approved>" + Approved + "</Approved>";

response += "</ns@:Approval>";

Console.WritelLine(response);

queueName = @".\private$\approval responses";
mg = new MessageQueue(queueName);

msg = new Message();

StreamWriter writer = new StreamWriter(msg.BodyStream);
writer.Write(response);

writer.Flush();

mqg.Send(msg);

Console.WritelLine("Message has been sent!");

Approving the purchase

B C\Windows\system32hcmd.exe

Haiting for message. ..

Approving the purchase

B C\Windows\system32hcmd.exe

Waiting for message...

Message has been received!

{?uml version="1.0" encoding="utf-16"7>

<ns@:Purchaselrder xmlns:nsB@="http://0ff1ceSupplies.Purchaselrder™>

<Header>
<ReqlD>R1</ReqlD>
<Date>2014-07-11</Date>

</Header>

<Item>
<ProductRef>53</ProductRef>
<{ProductDesc>Printer cartridge</ProductDesc>
{Quantity>2</Quantity>
<UnitPrice>24.99</UnitPrice>
<TotalPrice>49.98</TotalPrice>

</Item>

</nsB:Purchaselrder>

Approve? (ves/no) .

Approving the purchase

B C\Windows\system32hcmd.exe

Waiting for message...
Message has been received!
{?uml version="1.0" encoding="utf-16"7>
<ns@:Purchaselrder xmlns:nsB@="http://0ff1ceSupplies.Purchaselrder™>
<Header>
<ReqlD>R1</ReqlD>
<Date>2014-07-11</Date>
</Header>
<Item>
<ProductRef>53</ProductRef>
<{ProductDesc>Printer cartridge</ProductDesc>
{Quantity>2</Quantity>
<UnitPrice>24.99</UnitPrice>
<TotalPrice>49.98</TotalPrice>
</Item>
</nsB:Purchaselrder>
Approve? (yes/no) ves
<?u«ml version="1.0" encoding="utf-16"7>
<ns@:Approval xmlns:nsB="http://0fficeSupplies.Approval ">
{ReqlD>R1</ReqlD>
<Approved>yves</Approved>
</nsB:Approval>
Message has been sent!
Press any key to continue .

Approving the purchase

* Checking if the purchase is approved

Send

approval_requests
@& PurchaseOrder Send
................... B oort_.._......)
Approval Receive | .| o\ ..ottt
.................... - Sy ()4 Manager

approval_responses

C

Receive

Approval
~—ReqlID
—— Approved

e ! b
l- ‘\1_\ Approval.Approved == "yes"

Invoking the Web Service

Supplier
Web Service

Service

-

r i
: Condition :

b

;' Construct

Message :
il Assignment H

Approval.Approved =

Invoking the Web Service

* The Supplier Web Service
— has a single method OrderProduct()

OrderProduct(ProductRef, Quantity)
Supplier
Web Service
DeliveryDate

string OrderProduct(int ProductRef, int Quantity)
{

return DeliveryDate;

Invoking the Web Service

* The Supplier Web Service
— a simple implementation in ASP.NET and C#

Service.asmx

<%@ WebService Language="C#" CodeBehind="~/App Code/Service.cs" Class="Service" %>

Service.cs

using System;
using System.Web.Services;

[WebService(Namespace = "http://0fficeSupplies")]
public class Service : WebService

{
[WebMethod]

public string OrderProduct(int ProductRef, int Quantity)
{
string DeliveryDate = DateTime.Now.AddDays(2).ToString("yyyy-MM-dd");

return DeliveryDate;

Invoking the Web Service

e é http://localhost/SupplierWebService/Service.asmx

p-¢

* OrderProduct

(= Service Web Service

The following operations are supported. For a formal definition, please review the Service Description.

Invoking the Web Service

:% http://localhost/SupplierWebService/Service.asmxfop=1 jo ik 3¢ :—=-.—_;= Service Web Service LI

Click here for a complete list of operations.

OrderProduct

Test

To test the operation using the HTTP POST protocol, click the 'Invoke' button.
Parameter Value

ProductRef: | |
Quantity: | |
Invoke
SOAP 1.1

The following 15 a sample SOAP 1.1 request and response. The placeholders shown need to be replaced with actual values.

PO3T .-"Supplie::“ch Sarvice/dmrrice_a=mx HTTES 1.1
Ho=t: localhost

Content—Type: text/aml; charset=utf-§
Content—Length: length

F0RPRction: "http://Officedupplie=/0OrderProduct”

<%xm] version="1.0" encoding="utf-8"7>
<=pap:Envelops xmlns:xsi="http: 5w w3 .n.tg_."'ZI:II:IfI..-"}Cl‘!I.ﬂ chema—instance” mmlns:x=d="http: F e S nr\g’fﬂﬂﬂig"ﬂﬂ.ﬂchm" Hz V

<=zoap:Bodyr

<

Invoking the Web Service

:% http://localhost/SupplierWebService/Service.asmxfop=1 jo ik 3¢ :—=-.—_;= Service Web Service LI

Click here for a complete list of operations.

OrderProduct

Test

To test the operation using the HTTP POST protocol, click the 'Invoke' button.
Parameter Value

ProductRef: |53? |

Quantity: |2 |

Invoke

SOAP 11

The following 15 a sample SOAP 1.1 request and response. The placeholders shown need to be replaced with actual values.

PO3T .-"Supplie::“ch Sarvice/dmrrice_a=mx HTTES 1.1
Ho=t: localhost

Content—Type: text/aml; charset=utf-§
Content—Length: length

F0RPRction: "http://Officedupplie=/0OrderProduct”

<%xm] version="1.0" encoding="utf-8"7>
<=pap:Envelops xmlns:xsi="http: 5w w3 .n.tg_."'ZI:II:IfI..-"}Cl‘!I.ﬂ chema—instance” mmlns:x=d="http: F e S nr\g’fﬂﬂﬂig"ﬂﬂ.ﬂchm" Hz V

<=zoap:Bodyr

<

Invoking the Web Service

=) é http://localhost/SupplierWebService/Service.asmx/Orde jo ik 3¢ @Sewicew.gm

=?xml version="1.0" encoding="UTF-8"?>
<string xmins="http:/ fOfficeSupplies">=2014-07-16</string>

Invoking the Web Service

Supplier
Web Service

Service
Port

1.

=" i
I Condition 1 I Else I
| | | |

PurchaseOrder

Header
ReqID
Date

Item
ProductRef
ProductDesc
Quantity
UnitPrice
TotalPrice

- - _—— - -
---------]--------.'

¢ . | —

: Construct /

Message :
Bl Assignment

.
.
.
.
. U
IR v

WSRequest.ProductRef =
msgPurchaseOrder.Item.ProductRef;

WSRequest.Quantity =
msgPurchaseOrder.Item.Quantity;

Invoking the Web Service

e How do we know if the orchestration called the WS?

— insert some "debugging" code

string entry = String.Format("ProductRef = {0}, Quantity = {1},
DeliveryDate = {2}", ProductRef, Quantity, DeliveryDate);

System.Diagnostics.EventLog.WriteEntry("SupplierWebService", entry);

Invoking the Web Service

Event Viewer
File Action

= #E HE

View Help

12 Bvent Viewer (Local)

[+ 3» Custom Views

4 :E. Windows Logs
Application
Security

& Setup

System

5| Forwarded Events

_21 Subscriptions

p B Applications and Servig

Mumber of events: 38 692 (1) New events available

Application

Date and Time Source

2014-07-14 19:58:48

Level

i1 Information

@Informatiun 2014-07-14 19:58:02 MSSQLSERVER
@Information 2014-07-14 19:58:00 MSSQLSERVER
@Information 2014-07-14 19:57:06 BizTalk Server
@Information 2014-07-14 19:57:05 Search
ICBIInfu:rrmatiu:rn 2014-07-14 19:57:04 MSSQLSERVER

SupplierWebService

Event ID

2581
17166
5410
1003
30090

Task C...

[»

Server
Server
BizTalk...
Search ...

Server -

Actions

Event 0, SupplierWebService

General | Details

T — - — -

I‘|ProductF‘.ef = 537, Quantity = 2, DeliveryDate = 2014-07-16 ’|

Log Mame: Application

Source: SupplierWebService Logged:

2014-07-14 19:58:48

a4 | m

m

1

Application

2

DBODA

[©
[

Event 0, SupplierWebServi...

Open Saved Log...

Create Custom View...

Import Custom View..,

Clear Leqg...

Filter Current Log...
Properties

Find...

Save All Events As..,

Attach a Task To this...

View
Refresh

Help

m

Overview

Request A

Receive .
BEsssssssssmEEnnn smsmsEnEEEs Receive

port

esmsssmnsFEmnnnmEnny,

* .
: Construct :
Bl Transform [
I’ :

assssssssguunnnnnnsn®

Adapter
Port

sumsnnunn¥unnnnnnnw,

Construct

Transform

asssmmnmnguunnnnnns®

PurchaseOrder Send
N Dort

oSEEEEEEEEEEENE W,
AsmmssEssEEEEnR’

Overview

Service

o
L}
u
u
u
u
u
u
u
u
u
u
u
[
.
*

Recelve ----------------------------- Y

Approval

1.

r~=- 1 - 1
I Condition 1 1 Else |
1 1 1 1

ﬁ——]-——— - —————
(LR LR LR LELELLELLLLMN

Construct

Message
Assignment

assssmsmnguannnnnns®

AssmssEmsEEmEnE’

EEIYE

Receive
port

Tool support

* There are several tools available
— Apache ODE
— Microsoft BizTalk Server
— JBoss Enterprise SOA Platform
— OpenESB / Glassfish
— Oracle Fusion Middleware
— |IBM WebSphere
— TIBCO BusinessWorks
— Software AG webMethods
— etc.

Conclusion

e Current tools for Enterprise Systems Integration draw
heavily from BPM and BPM systems
— similar concepts, similar constructs, similar execution
— orchestrations can be seen as "low-level" processes

* The concepts of services and SOA are a powerful
mechanism to raise the level of abstraction

— low-level services and low-level orchestrations vs. high-
level services and high-level orchestrations

Conclusion

* BPM concepts together with services and
orchestrations provide a systematic approach to
implement business processes on top of enterprise

systems

