Mining Sequences for Patterns with Non-Repeating Symbols

Michal Walicki and Diogo R. Ferreira

Abstract—Finding the case id in unlabeled event logs is
arguably one of the hardest challenges in process mining
research. While this problem can be addressed with greedy
approaches, these usually converge to sub-optimal solutions. In
this paper, we describe an approach to perform complete search
over the search space. We formulate the problem as a matter
of finding the minimal set of patterns contained in a sequence,
where patterns can be interleaved but do not have repeating
symbols. We show that for practical purposes it is possible
to reduce the search space to maximal disjoint occurrences of
these patterns. Experimental results suggest that, whenever this
approach finds a solution, it usually finds a minimal one.

I. INTRODUCTION

The goal of process mining [1], [2] is to rediscover the
process model from the runtime behavior of process instances
recorded in an event log. An event log contains a sequence of
entries in the form (case id, task id) where case id identifies
the process instance and task id specifies the task that has
been performed. The event log can therefore be regarded as
a labeled sequence of events, where the events from different
process instances become interleaved but can be immediately
separated by resorting to their case ids.

While such event logs can be easily obtained from work-
flow and case-handling systems, in other applications and
systems that are not fully process-aware it may not be
possible to retrieve event logs in that form. If the case
id attribute is absent, the event log becomes an unlabeled
sequence of events where it is unknown whether any two
events come from the same process instance or not. However,
process instances essentially repeat the sequential patterns of
the business process, so in principle it should be possible to
identify these patterns in the unlabeled sequence.

In previous work [3] we have shown that event logs (with
case id) contain patterns that can be clustered into different
groups according to their sequential behavior. Then in [4]
the authors have introduced an Expectation-Maximization
technique to find the case id in unlabeled event logs. The
approach is based on a greedy algorithm that converges to
a local maximum of the likelihood function. To improve
the chances of the algorithm finding the global maximum,
a special initialization procedure is used.

In this paper, we are concerned with traversing the com-
plete search space in order to find the global optimum
solution as a set of patterns that describe an unlabeled se-
quence. We are also concerned with the concept of minimum

Michal Walicki*, Institute of Informatics, University of Bergen, HiB,
5020 Bergen, Norway (phone: +47 55 58-41-78; email: michal @ii.uib.no)

Diogo R. Ferreira, IST — Technical University of Lisbon, Avenida Prof.
Dr. Cavaco Silva, 2744-016 Porto Salvo, Portugal (phone: +351 21 423
3552; email: diogo.ferreira@ist.utl.pt)

*This work was performed while the first author was visiting the
Technical University of Lisbon.

description length (MDL) [5], so we define the optimal
solution as the minimal set of patterns that is able to cover
the entire sequence. The principle of MDL has already
been used in process mining to evaluate the quality of the
mined models [6]. Here we use it as a guiding principle
while looking for optimal solutions across the entire search
space. To make the approach more feasible in practice, we
consider the hypothesis of using only the maximum number
of disjoint occurrences (MDOs) of each pattern. By means
of experimental results, we show that this usually suffices to
find a minimal solution.

Section II defines the problem, and Section III presents
some facts to facilitate the treatment of MDOs. Section
IV introduces the trie, a compact representation of pattern
occurrences which is built during the initial processing of
the sequence. Section V explains how to generate the MDOs
for each pattern, and Section VI presents an adaptation of
Knuth’s algorithm X [7] to search for solutions. Section
VII reports on a set of experimental results that support
the hypothesis that using MDOs is usually sufficient to
find a minimal solution. Section VIII describes the limiting
cases where this assumption does not yield a satisfactory
solution, and Section IX presents a simple practical scenario
to illustrate the use of the proposed approach.

II. PROBLEM DEFINITION

A pattern p is a sequence of length at least 2, and it occurs
in another sequence S if S contains p as a subsequence.
Two occurrences of pattern p are disjoint if they are disjoint
subsequences of sequence S. We will refer to disjoint occur-
rences simply as DOs. For instance, the sequence abbbaabbcc
contains DOs such as: 1) 2 * abc + abbb, 2) 2 x babc + ab or
3) 3% ab+ 2 x bc. The problem we are considering is:

partition of a sequence into a minimal @1
number of patterns. '
The central and distinctive point is that we do not know what
patterns we are looking for. They have to be mined from the
sequence as we proceed.

Various variants can be considered. Single symbols never
count as patterns, but can be allowed or disallowed in the
final solution. Similarly, one can allow or disallow subse-
quences occurring only once. The exact variant assumes
the input sequence to be covered by repeating patterns, i.e.,
would exclude solutions 1) and 2) above.

Allowing, on the other hand, such “fringes” highly com-
plicates the problem. Considerations of this variant in the
present paper are motivated by the intended application
to process mining. When only an arbitrary, even if large,

segment/window of the whole sequence is analysed, one must
allow for fringes which do not match any pattern within the
window. Thus, neither single symbols (3 b’s and a in 1) nor
subsequences occurring only once (ab in 2) are patterns, but
they can enter the solution as fringes, left after removal of
patterns. The user can specify their admissible size.

Admitting arbitrary patterns confronts one with the prob-
lem of their sheer number, the exponential number 215
of subsequences for a sequence .S. This makes it compu-
tationally infeasible, even before we start checking their
occurrences. As we face intractability at several stages, we
leave this case aside and consider only patterns with no
repeated symbols.

Restricting thus the patterns seems to make the problem
fixed-parameter tractable in the size m = || of the alphabet
which, however, does not help much in practice. Already
the number of distinct patterns is of order S;~}" ", which
quickly becomes prohibitive as m grows. The possible num-
ber of DOs causes further problems. Given a sequence .S
with n = |S|, a pattern of length k& < m may have ()*
DOs in S (e.g., the sequence S = z121T2Ts...TT) contains
2% DOs of the pattern z,zs...x;, with k = 5.) In short, the
case of patterns with non-repeating symbols is sufficiently
difficult to warrant a closer attention in this paper.

ITII. DOS OF PATTERNS

One of the basic tools to address problem 2.1 is counting
the maximal number of DOs of a given pattern. As the
following fact shows, this number can be determined in linear
time, without listing the actual occurrences of the pattern. In
this formulation, S[1 : k] denotes the substring of S from
position 1 to k, and occ(p;, S) the number of occurrences
of symbol p; in sequence S. Q C S denotes that () is a
subsequence of S, and oce(p, Q) is the maximal number of
occurrences of pattern p in Q.

Fact 3.1: For a pattern p with non-repeating symbols, let
P be the following sequence predicate:

P(S,p) <=Vi<i<|s| Vi<i<p|
oce(pi, S[1 : k]) > oce(piy1, S[1 : k])

Then the number of occurrences of p in S is oce(p, S) =
max{oce(p,@) | @ T S AP(Q,p)}. In other words, the
maximal number of DOs of a pattern p in S is the maximal
number of its occurrences in subsequences @) of S satisfying
the predicate P(Q, p).

Example 3.2: For S = cabbacbc and p = abc, a subse-
quence satisfying the predicate is, for instance, the under-
lined R = cabbacbc € P(S,p). But it has only 1 occurence
of p while Q = cabbacbc has two, giving occ(p,S) = 2.
The initial c violates the predicate by having no preceding
b, while one of the two b’s at S35, violates it since there is
only a single preceding a.

PROOE: Let n = oce(p,S) and m = max{occ(p, Q) |
Q C S AP(Q,p)}. Obviously, n > m, since each @ is a
subsequence of S, so all patterns occurring in () occur also
in S. To show that n = m, we consider a subsequence @’

consisting of n DOs of p. Surely this subsequence Q' C S
must exist since S has n occurrences of p. Now, if P(Q’, p)
holds for this sequence, then Q' € {Q | Q £ SAP(Q,p)}
and therefore m = max{occ(p,Q) | @ T S AP(Q,p)} =
oce(p, Q") = n. So what is left to prove is that P(Q’, p)
indeed holds for Q'.

Suppose that, contrary to our belief, P(Q’, p) does not hold.
Then let k be the first index in Q" where P(Q’, p) is violated,
i.e. where occ(p;, Q'[1 : k]) + 1 = oce(piy1, Q'[1 : k]) =
x + 1, for some 1 < i < |p|. Then Q}, = p;+1 and there are
x occurrences of p; and p;41 to the left of Q). But this means
that one of these x 4 1 occurrences of p; 1 does not belong
to any DO of p in @Q’, since x preceding occurrences of p;
allow to form at most z such DOs using the occurrences of
pit1 in Q'[1: k]. As there are only n — (x + 1) occurrences
of p;y1 to the right of @}, there are at most n — 1 disjoint
occurrences of p in @', contrary to the assumption that there
are n such. Thus P(Q’, p) holds for Q’. |

Fact 3.1 is telling us that, for the purpose of counting the
number of DOs of a given pattern p in a sequence S, one can
ignore the occurrences of symbol p;; that go beyond the
number of occurrences of symbol p; up to the same position
k in the sequence. The following example illustrates this.

Example 3.3: For each position in the following sequence
S, the table contains the number of occurrences of each
symbol up to that position:

S=a b b b a
a 11 1 1 2
b 01 2 3 3
c 00 0 0O

The first occurrence of b, having a preceding occurrence
of a, can enter a DO of ab. So can the second b. But it cannot
form a new DO of ab, since there are not enough preceding
a’s. Each time, only one of the initial 3 b’s can be used in
the formation of 3 DOs of ab in the sequence.

The overall approach to address problem 2.1 involves two
tasks. The first one, given in Algorithm 4.3, is to build a
trie with all the patterns and their occurrences in the given
input sequence. This is based on Fact 3.1, and amounts
to traversing the sequence once, counting the preceding
occurrences of distinct symbols as in Example 3.3. The
second task, given in Algorithm 6.1, is to determine the
possible partitions of the input sequence into the repeating
patterns stored in the trie. Section IV describes the first part
while Sections V and VI describe the second part.

O Ot W
= Ot WO
— Ot WO

a b
3 3
3 4
0 0

IV. BUILDING THE TRIE

In this part, the main data structure is a trie storing the
relevant symbol occurrences for each pattern. Each node is
labeled with a symbol, and a path from the root identifies
a unique pattern. In addition, each node contains a list of
(relevant) occurrences of its symbol. An edge (a: A) — (b:
B) means that for every occurrence of b in the list B there
is a preceding occurrence of a in the list A.

Example 4.1: S = aabbaabbce gives the following trie:

aabbaabbce
0123456789

a: 0145 b: 2367 c:89
RN N
b:(23)(67) c¢:(89) a:{(45) c:(89)
| b
c: (89) c: (89)

The length of the list (at the non-root nodes) tells the number
of DOs of the pattern terminating there. E.g., there are two
DOs of abe, signaled by 8,9 at node abc, and 4 DOs of ab,
represented by 2,3,6,7 at ab. The angle brackets at node ab
are used to denote that the two DOs of abc can be built either
by choosing the b’s at positions 2,3 or the b’s at positions
6,7. In any case we are left with two remaining DOs of ab.
The first branch of the trie is enough to conclude that the
sequence admits the solution 2 x abc + 2 x ab, as these DOs
cover all sequence positions.

A sequence may contain some symbols not belonging to
any pattern and choices may be possible when dividing the
sequence into disjoint pattern occurrences. This information
is also stored in the trie. Each node T'[p], containing the last
symbol py,,| of the pattern p, stores its relevant occurrences
— namely, the ones with fewer occurrences than of the
preceding py,,; 1. Itis a list of pairs (N; : L;), each N; < |L;]
telling the number of elements to be chosen from the list L;,
e.g., (1:234)(2: 67) means there are 3 possible occurrences
of the current p;, with N = 1 occurrence chosen from So,
S3, S4 and Ny = 2 occurrences from Sg, S7. In this last
case there is a single choice so, in the notation, we drop the
number, writing only the list (67).

Example 4.2: Only one of the three initial b’s can be

~rhoacon far the nattorn ah or ahe in the conioncs holow, Thie
cnosen jor e [IMLLCI 1 Q0 OF GOC N ine sequence oeiow. iiis

is marked as (1 : 123) in the first component list at node ab.

abbbaabbcc
0123456789

0
N

45 b: 12367 c:
T~ N
b:(1:123)(67) ¢ i 5)

+(89) c:(89)

-~ i—'(—C,

c:(89) c:(89)

In the actual implementation of this data structure one
must have access, for each node T'[p] and 1 < j < |p|,
to the j-th symbol of pattern p, T'[p][j], with the list of
pairs (N : L), as explained above. Also, nrOcclp, j| is
the sum of the N-components, i.e., for m = |T[p][j]| :
nrOcclp, j) = Yoie | (T[pl[F])[i]-N (= m when all N = 1),
and nrOcclp] = nrOcc|p, —1] (where negative indexes refer
to sequence positions counted from the end, e.g., S[—1]
denotes the last element of S.) We treat here single symbols
as length-1 patterns.

Algorithm 4.3 builds the trie 7" from an input sequence S.
The trie T is constructed while traversing the sequence once

Algorithm 4.3 BuildTrie(S:Seq)

Output: A trie with pattern occurrences in .S
Vp € T : nrOcc[p] = no. MDOs of p
T = new Trie
for each 1 < i < len(S) do
Patts := patterns(T)
if S[i] & Patts then
T :=T+ S[&]; T[S[][0] := (1:17)
endif
for each p € Patts do
if S[i] ¢ p and (p; S[i]) ¢ Patts then
T:=T+ (p;S[i])
10: Tlp; S[i][lpl] = (1 :)
11: elseif S[i] = p then
12: T'[p][0].append((1 : i))
[

A T

hd

13: elseif S[i] = p[—1] and (nrOcclp, —2] > nrOcc[p, —1])
then

14: if T'[p][—1][—1].L[0] > T'[p][—2][—1].L[—1] then

15: T[p)[-1)[-1].N := T[p][-1][-1].N +1

16: T'[p][-1][—1].L.append(i)

17: else

18: T[p][—1].append({1 : i)

19: endif

20: elseif S[i] = p[—1] then

21: T'[p][-1][-1].L.append(z)

22: endif

23: endfor

24: endfor

25: return T

(line 2). Line 3 retrieves the patterns from the trie (paths
from the root). For each symbol S[i] several cases must be
considered:

o if the symbol is not in the trie (line 4) then it is added
as a new pattern, initializing also its main list (line 5);

« if it is possible to create a new pattern by extending an
existing pattern p with the current symbol S[i] (line 8),
then the new pattern (p; S[i]) is added to the trie (line
9) and the corresponding list is initialized (line 10);

« if there is a length-1 pattern in the trie that is equal to
S[i] (line 11) then we add ¢ as a new occurrence of this
pattern (line 12);

o if S[i] is the last symbol of (at least length-2) pattern p
and there are enough occurrences of the previous sym-
bol (line 13), then we add ¢ either as a new occurrence
in an existing component list (lines 15-16) or as the
start of a new component list (line 18); this depends on
whether ¢ can be placed in an existing component list
or not (line 14);

o finally, if S[i] is the last symbol of (at least length-
2) pattern but there are not enough occurrences of the
previous symbol (line 20) then ¢ is recorded as an
alternative choice in an existing component list.

V. GENERATING THE DOs

The trie constructed by Algorithm 4.3 allows to identify
quickly the number of DOs and maximum number of DOs
(MDOs) for each pattern. The mere inspection of the trie
allows to conclude, for instance, in Example 4.1, that the
sequence contains 2 DOs of abc and two more DOs of ab,

since in the trie we have nrOcclab] = 4 and nrOcclabc] = 2.
Summing up the number of DOs of all symbols allows in
this case to conclude a complete partition of the sequence. In
general, there may be several partitions and various criteria
of comparison may be chosen. We therefore present the
algorithm listing all possibilities for covering the original
sequence with a minimal number of patterns. Since it requires
inspection of all DOs of all patterns, it is hardly feasible. We
describe some preliminary ways of limiting the number of
alternatives to be considered by the algorithm. We also allow
the user to restrict the alternatives to only the maximum
number of DOs (MDOs). We conjecture that this greedy
variant will usually yield a satisfactory solution.

Example 5.2: The sequence S = abcbacbacabe is a colla-
tion of abc;bac;bac;abe. The solutions with 2 patterns, having
at least 2 symbols and 2 repetitions, are: 1) 2*abc+ 2 xbac,
2) 2xabc+ 2x*cba, 3) 2xabc+ 2*bca, 4) 2 achb+ 2 * bac.
However, the pattern abc used in solutions 1), 2) and 3)
has 3 occurrences in S, so it is not possible to find these
solutions using the MDOs of abc. In fact, it is not possible
to find any solution using the MDOs of abc since, if we
choose the 3 occurrences of abc, we are left with a fringe (a
single occurrence of bca). In the same way, the pattern acb
in solution 4) has 3 occurrences in S, so it is not possible to
find solution 4) via MDOs. Disallowing fringes (i.e. patterns
of length 1 or with a single occurrence), this sequence has

From the trie, we construct the list of all DOs of all
patterns and form the matrix PS (patterns x sequence). E.g.,
looking for DOs of ab in the sequence from Example 4.2, we
start at the node ab which requires to make one choice among
1,2,3 and take 6,7. For every such choice, we proceed to the
parent node, from which we make choices of occurrences
preceding those in the child node (here, one earlier than the
chosen 1, 2 or 3, i.e., 0, and two earlier than 6,7, i.e. 4,5).
The selected symbol occurrences form 1°s in one row of P.S,
for the pattern ab.

Example 5.1: The trie from Example 4.2 will give the
matrix PS with the MDOs of the relevant patterns. An excerpt
is presented in Table I. There are 15 ways of choosing 2 DOs
of abc, 3 ways of choosing 2 DOs of bac, 3 ways of choosing
3 DOs of ab, etc. In total, there are 37 ways of choosing
maximal DOs of various patterns.

TABLE I
SOME DOS OF PATTERNS IN EXAMPLE 5.1

0 1 2 3| 4 5 6 718 9 no.
S=lla|b|b|b|la|la|b]|b]|c]|ecl| rows
abe 0O[O0[O0]O 1 1 1 1 1 1 15
1 0 0 0 1 0 1 1 1 1
1 0O|l0[0]O 1 1 1 1 1
1 1 oO[0fO 1 0 1 1 1
1 1 0 0 0 1 1 0 1 1
1 0 1 0|0 1 0 1 1 1
bac 0 1 1 0 1 1 0 0 1 1 3
0 i 0 i i i 0 0 i i
0 0 1 1 1 1 0 0 1 1
ab 1 1 0 0 1 1 1 1 0 0 3
1 0 1 0 1 1 1 1 0 0
1 0 0 1 1 1 1 1 0 0
ac O|0[O0]|O 1 1 0 0 1 1 3
1 O|l0[0]O 1 0 0 1 1
1 0 0 0 1 0 0 0 1 1
ba 0 1 1 0 1 1 0 0]0|O 3

In the above example, each row marks one maximal
number of DOs of its pattern. This greediness does not
guarantee a solution: a covering of a sequence by a minimal
set of patterns may contain less than the maximal number of
DOs of some pattern, as illustrated in the following example.

no solution by MDOs.

In the above example, a solution can only be found if
one considers a number of occurrences that is less than the
MDOs. One must therefore consider subsets of DOs to be
able to find some solutions or, in some cases, to be able to
find any solution at all. The other extreme to taking only rows
for MDOs is to construct the PS matrix with all subsets of
DOs of each pattern, as illustrated in the following example.

Example 5.3: In the PS matrix of Table I there are 3 ways
of choosing 3 MDOs of ab. In order to consider subsets of
DOs one would have to include the rows for 12 ways of
choosing just 2 DOs of ab, as shown in Table II. For other

TABLE 11
DOS OF PATTERN ab IN EXAMPLE 5.3.

ol1|2|3[4]|5[6]|T7]8]9] no
S=falb|b|bla|la|b|b|c]|cl]| rows
ab 1{1]0|0f1|O0]1]O0|O0]|O0O] 12
1({1{0j0|1f{0|JO|1|O0]fO
1{1]010fO0O|1]1|00]O
1({1{0j0|jO0Of1]O0|1|O0fO
1({of1jo0|1f{0o|]1|0O|OfO
1({of1j0|1f{0|J0O|1|O0fO
1({of1jo0jO0f1]1|0|OfO
1({ofj1j0|O0f1]O0|1|0fO
1({ojoj1|j1f{0|]1|0|OfO
1({ojoj1j1f{0]JO|1|O0fO
1({ojoj1j]0f1]1|0|OfO
1({ojoj1|j0f1]O0|1|O0fO

patterns there are no subsets of DOs to include since their
number of occurrences, 2, is already minimal. However, if
fringes were allowed we would have to include the rows for
all possible ways of choosing a single occurrence of each
pattern, and also the rows for all possible occurrences of
single-symbol patterns; this would amount to a total of 154
rows.

In general, the number of rows may grow exponentially
in the length of the sequence, and in some cases it may
be necessary to include all rows to be able to find some
particular solutions. However, as we will discuss ahead, using
MDOs is usually sufficient to find a minimal solution. Our
implementation allows the user to choose whether to take
only MDOs or any specified number of DOs for each pattern.

VI. SOLUTION AS A SET COVERAGE PROBLEM

The matrix PS can be seen as an instance of the exact
set cover problem [8]. The set to be covered is S and the
DOs of patterns, the rows, represent the subsets available for
partitioning S.

There are a few obvious deviations from the standard
formulation of the problem. We are looking for a minimal
number of patterns, and use a global integer min to keep
track of this minimal value. Most importantly, we should
be looking not for an exact cover, but for the best possible
cover with some fringes allowed. This deviation could be
handled by admitting additional patterns (e.g., single-symbol
occurrences or non-repeating subsequences). However, these
increase significantly the running time, since they must
allow for covering any remaining part of the sequence. We
therefore allow the user to specify the admissible size lim of
the fringes and terminate the search as soon as the size of the
remaining subsequence gets below this value. lim = 0 gives
the exact cover, which is what we used in our experiments.

These deviations and other extras are incorporated into
the following adaptation of Knuth’s algorithm X [7] which
has been implemented with “dancing links”. Algorithm 6.1
takes a matrix PS = rows X cols as input and returns
the solutions to the problem (2.1). The parameter csol is
the current solution under construction, while sol is the
list of solutions generated so far and stored as the best
ones. (Both are initially empty.) The main deviations from
Knuth’s formulation of the algorithm concern the termination
condition at line 1 and associated evaluation of the solutions.
If the current solution is about to surpass the min number
of patterns, we terminate the recursion and backtrack, line 6.

Algorithm 6.1 Adapted algorithm X
Part(PS, sol : Seq[Seq|,csol : Seq,lim : int)

1: if |cols| < lim then

2:if |esol| = min then sol := sol + [csol]
3: elseif |csol| < min then

4 sol := [esol]; min := |csol| endif

5: endif

6: if |csol| > min then return endif

7: choose ¢ € cols with minimal number of entries
8: for each r € rows with PS[r,c|] =1 do

9: if pt(r) € csol then

10: skip r endif

11: for each j € cols with PS[r,j] =1 do
12: for each i € rows with PS[i,j] =1 do

13: remove row ¢ from PS

14: endfor

15: remove column j from PS

16: endfor

17: Part(PS, sol,csol + r,min, lim)
18: endfor

Each row r has an associated pattern pt(r) and at most
one row for a given pattern is considered at a time. Thus,
when the row r being considered (line 8) has a pattern that
is already present in the current solution (line 9), the row
is skipped, i.e. it is not selected for inclusion in the current
solution. The reason for this is the following:

« if PS contains only the rows for the MDOs of each
pattern, there is no need to consider the same pattern
again because two rows having the same pattern will
not be disjoint;

« if PS contains all subsets of DOs for each pattern, there
is no need to consider two rows with the same pattern
since, even if they are disjoint, there will be a third row
in the matrix which combines those two rows.

Lines 11-16 are just a standard implementation of Knuth’s
algorithm X: each column (i.e. sequence position) j that
is covered by the currently selected row 7 is removed
(line 15); also, each row ¢ that covers the same positions
as r is removed (line 13). These two steps remove the
covered symbols and the incompatible DOs of other patterns.
In line 17 the algorithm proceeds by trying to cover the
remaining sequence positions with the available rows after
these removals have taken place.

VII. TEST RUNS

The hypothesis that using only the MDOs will provide a
satisfactory result in most cases was tested on a series of
randomly generated sequences. Table III presents the results,
which were obtained in the two scenarios described above,
namely, when PS contains all subsets of DOs, or only the
MDOs for each pattern. In both cases, DOs were computed
from the trie and each test was run using the following
procedure:

1) generate an input sequence from a given set of patterns;

2) generate the trie for the sequence;

3) generate the PS matrix with all subsets of DOs;

4) generate the PS matrix with only the MDOs;

5) run Algorithm 6.1 on the results of steps 3 and 4,
collect the solutions with minimal number of patterns,
and record the execution time.

6) check the solutions against the patterns and the num-
ber of patterns that were used to generate the input
sequence.

Table III shows the results of running the algorithm, im-
plemented in Python 2.6, on a standard desktop PC with a
dual-core 2.13GHz processor. It shows the execution times
for the search over each matrix, over all DOs and over
MDOs. Not surprisingly, while for short sequences (of length
8) the difference in search time is negligible, as soon as
the sequence length reaches 22, the search over all DOs is
already taking an hour to complete, while the search over
MDOs is taking about one minute.

Table III shows the number of minimal solutions that were
found from each matrix. From the matrix with all subsets of
DOs it was possible to discover not only the original set of
patterns but also additional solutions with the same number
of patterns. For example, one of the sequences generated with
length 10 — aabbadbbad (with ab:2 bad:2) — also admitted
another solution (2 * abd + 2 * ba). In the same example,
from the matrix with MDOs, the algorithm discovered only
the latter.

TABLE III

TEST RUNS

Generating All Time Time

|S| | Patterns DOs (s) MDOs (s)
8 | ab:2 bc:2 1 0.003 1 0.003
abed:2 1 0.002 1 0.002
10 | ab:2 bad:2 2 0.047 1 0.021
abcde:2 1 0.010 1 0.010
12 | ab:2 bc:2 ac:2 2 0.362 1 0.025
abc:2 cbd:2 1 0.047 1 0.024
abcdef:2 1 0.049 1 0.047
14 | ab:2 bc:3 cd:2 2 1.177 1 0.221
abc:2 bdef:2 3 0.094 3 0.097
abcdefg:2 1 0.210 1 0.231
16 | ab:2 bc:3 cd:3 3 13.76 0 0.962
abcd:3 cb:2 1 29.23 0 1.184
ab:4 cd:4 1 6.84 1 0.392
18 | ab:3 bcid cd:2 2 146.4 1 3.095
abc:3 cbd:3 2 102.5 1 4.274
abed:3 de:3 4 19.6 4 3.150
20 | ab:2 bc:3 cd:3 de:2 10 580.8 1 35.80
abc:4 cdef:2 1 176.5 1 39.94
abcde:4 1 713.8 1 12.03
22 | ab:2 bc:3 cd:3 de:3 6 3601 2 49.39
abc:3 cde:3 bd:2 7 3786 2 72.03
abcd:4 de:3 1 5689 1 53.16

In most cases, using MDOs is sufficient to discover at
least one minimal solution. However, there were two cases
of length 16 where this did not happen; these are marked by
the two zeros in Table III. As we saw in Example 5.2 the
search over MDOs may fail to provide any solution, even
though solutions do exist. Such failure is due to the fact
that two patterns, entering a solution, combine to generate
new occurrences of the same or other patterns, in addition
to the occurrences that were used to generate the original
sequence. In Example 5.2 the two occurrences of bac form a
third occurrence of abc; thus, when searching for a solution
by MDOs, this additional occurrence of abc collides with the
occurrences of bac. In the two cases of length 16 reported in
Table III, the search over MDOs did not find any solution at
all. In general, this may happen if the patterns of a sequence
share common symbols and are interleaved in such a way
that their MDOs collide (i.e. there is no disjoint set of MDOs
covering the entire sequence).

When the search over MDOs yields a non-emtpy set of
solutions, there still remains the issue of whether any of
those solutions is a minimal solution. Obviously, any non-
empty set of solutions contains at least one solution which is
minimal in that set. But the issue is whether, in fact, there is a
globally minimal solution in that set, i.c., minimal among all
possible solutions, including those found by using all subsets
of DOs. In our test runs we have observed that whenever
the search over MDOs is able to retrieve a non-empty set
of solutions, this set contains at least one globally minimal
solution. However, this cannot be expected to occur in every
situation, as explained in the next section.

VIII. LIMITATIONS OF USING MDOS

The test runs reported in the previous section support the
idea that sometimes there is no solution by MDOs but when

there is, it is often a minimal one. The absence of solutions
by MDOs has to do with the restrictions to patterns of at least
length 2 and with at least 2 occurrences. When such fringes
are allowed, there is always a solution by MDOs. In the
worst case, it contains single symbols or single-occurrence
patterns, as illustrated in the following example.

Example 8.1: The sequence abcdcdbeabbebeed has been
generated from ab:2 be:3 cd:3. Searching by MDOs finds

no solution
no sewulion. dowever, by ailow

p
possible to find the solution 2xa+5+b+6*xc+ 3 xd.

The set of generating patterns in Example 8.1 has an
interesting feature: the occurrences of ab and cd can combine
to generate additional occurrences of be. This means that
the MDOs for bc will have more than 3 occurrences. The
additional occurrences of bc will collide with the MDOs
for ab and cd, since they are constructed from occurrences
of these patterns. Therefore, the solution by MDOs cannot
contain the pattern bc, and the algorithm must select other
patterns. For some of the input sequences generated from
ab:2 be:3 cd:3, the result is that the solutions found by MDOs
have more than 3 patterns. This is illustrated in the following
example.

Example 8.2: For the sequence abcdcdbcabbebeed gener-
ated from ab:2 be:3 cd:3, Table 1V shows the MDOs for
the generating patterns. (There are other patterns, but only
the generating ones are shown.) As can be seen, there are

However by allowine natterns of lenoth] it is
() atlerns of lengtin 1 1S

TABLE IV
THE GENERATING PATTERNS, EXAMPLE 8.2.

lafbfcld]c[d[b]cafb[blc[b]c[c[d]
al|b al|b
a|b a b
alb a b
a b al|b
a b a b
a b a b
a albl|b
a al|b b
a a b b
b|ec b|c blb|lc|b|lc]|ec
b c b|c blb|lc|b|lc]|ec
cld|c|d d
cld|c|d c d
cld|c|d c d
cld|c|d c|d

5 occurrences of be, while to generate the sequence only 3
occurrences have been used. If the algorithm selects pattern
be, it will be unable to select ab or cd since the MDOs for
these patterns collide with those of bc. Searching MDOs, the
only solution that can be found is 2+a+5%b+6%xc+3+d with
4 patterns, by allowing fringes. Searching over all subsets
of DOs (with fringes) it is possible to find the following
solutions with 3 patterns:

2xab+ 3xbc+ 3xcd

2xabed + 3 xbc+1xcd

2% abed 4+ 3 xbc+ 1 xdc

2xabed +3*xcb+1x*dc

2xacd+4xbc+1xdb

2xad+5*xbc+1x*cd

2xad+5*bc+1x*de
While searching over MDQOs retrieved a 4-pattern solution,
there are several possible 3-pattern solutions.

These examples show that using MDOs is not guaranteed
to produce a globally minimal solution. To illustrate this,
we have used examples where we have allowed fringes
to occur, but the same phenomenon can be observed in
longer sequences without using fringes. However, in practical
applications where the generating patterns do not combine
to yield additional occurrences of other patterns, the MDOs
for the true patterns will not collide, and therefore it will be
possible to find a minimal solution by MDOs.

IX. A SIMPLE BUSINESS PROCESS

The process in Figure 1 illustrates a simple purchasing
scenario for a chain of retail stores. Whenever a store is out of
stock of some item, it will submit a request to the back office
for processing. Upon receiving the request, the back office
checks products, quantity and other details such as previous
requests from the same store. If the request meets certain
criteria, it is sent to the warehouse. The warehouse checks
the inventory for the requested products and, if some product
or quantity is unavailable, places an order to a supplier. In
principle the order will be delivered with all items but if
this does not happen, the warchouse will have to check with
the supplier when the remaining items will be received. The
products are then shipped to the store.

If the process is performed as described, it is capable
of generating patterns such as ab, acd, acefh and also
acefgfh, acefgfgfh, acefgfgfgfh, etc. First we restrict
our analysis until step e. For sequences comprising instances
of ab, acd and ace, the true solution can be found with rela-
tive ease by MDOs. Also, additional solutions may be found.
For example, for the sequence aabceaaaaacdcabedeacchbde
(ab:3, acd:3, ace:3) the solution 3 * ab+ 3 * acd + 3 * ace is
found, as well as 6xac+3*ad+3*be and 6xac+3*xae+3*bd.
These additional solutions show the tendency of MDOs to
capture subsequences (such as ac) that are common to several
patterns (e.g. acd and ace) and which have more occurrences
than any of those patterns alone.

Now, if we consider steps f, g and h, it may be that the
loop does not occur (and the pattern acefh is produced) or,
if incomplete orders arrive, the process generates patterns in
the form acefgfg... fgh with any number of fg’s between
ace and h (although the likelihood of having more than 3
or 4 repetitions of fg can be assumed to be rather low in
this scenario). In this case the process generates patterns
with repeating symbols. However, for sequences comprised
of occurrences of acefgfh, acefgfgfh, etc., searching by
MDOs will return solutions containing patterns ace fh and
gf,oracefh and fg, depending on whether ace fh picks up
the f closest to e or the f closest to h. This means that even
though our approach does not handle repeating symbols, it
will effectively capture the execution of loops as independent
occurrences of the steps within those loops.

?

a. Receive
request

No b. Decline
request

Yes

¢. Check with
warchouse

A

d. Ship to

store :

Products
in stock?

e. Place
order

!

f. Receive
goods

g. Check with
supplier

Order is
complete?

h. Ship to

store C

Fig. 1.

A purchasing scenario

On the other hand, there are situations in which it is
not possible to recover the original patterns by MDO:s.
The process in Figure 1 contains two steps — d and h
— that are performed in different contexts, but are very
similar in nature. These two steps could be represented as a
single step without affecting the process logic, by removing
step h and connecting its incoming arc directly to step d.
The process would then generate patterns such as ab, acd,
acefd, acefgfd, etc. In this case, however, these patterns
cannot be recovered using MDOs, since the pattern acd is
a subsequence of patterns acefd and acefgfd (and acefd
is a subsequence of acefgfd, and so on). The effect is that,
in a sequence comprising occurrences of acd and acefd
for example, the pattern acd will have more occurrences
than originally expected. The search by MDOs will consider
all disjoint occurrences of acd and hence, if this pattern
is included in the solution, the algorithm will be unable
to capture acefd and other patterns that contain acd as a
subsequence. The algorithm may, however, be able to find
solutions containing other patterns.

One last issue to consider is the assumption of exact
coverage. In practical applications it may not be possible to

extract a sequence that comprises complete occurrences of
the patterns to be discovered. For example, if the sequence
aabceaaaaacdcabedeaccbde (ab:3, acd:3, ace:3) is missing
the first and last symbol (S’ = abceaaaaacdcabedeacchd),
then the algorithm will find the solution 6xac+3+bd+2x*ea,
but not the original patterns. Trying to cover the sequence
S" with 2 % ab + 3 * acd + 2 * ace results in one stray b
and one ac, which by definition are not patterns. If one
goes further and removes 2 symbols at both ends (S” =
bceaaaaacdcabedeaccb) then there is no solution by MDOs.
It could be that such truncation of the sequence leaves only
complete occurrences of patterns of the original patterns, in
which case searching by MDOs will find the desired solution;
but this can only occur due to a fortunate coincidence. In
general, such truncations will result in fringes.

Although our implementation allows a fringe to be speci-
fied (in terms of number of symbols), the use of a fringe with
MDOs may not produce the expected result, as the following
example demonstrates:

Example 9.1: Sequence S’ = abceaaaaacdcabedeacchd
has been obtained from S = aabceaaaaacdcabedeacchde
(ab:3, acd:3, ace:3) by truncating the first and the last
symbol of S. In principle, one would like to find the desired
solution 2 x ab+ 3 x acd + 2 * ace + b+ ac where b and ac
are the fringes created by the removal of the first a and the
last e from S. Searching over MDOs and allowing a fringe
of 3 symbols, one finds several solutions such as:

3xab+3*acd+2%ce+2xa+c

2xab+3xacd+2xacet+a+b+c
2xabc+3*xacd+2*xea+a+b+c

However, no solution can contain ac as a fringe, since this
pattern has 6 disjoint occurrences in S’. Hence, the desired
solution cannot be found by MDOs.

To cope with possible truncations of the input sequence,
one may have to search using all subsets of DOs, in addition
to specifying a certain fringe. This, however, becomes com-
putationally expensive. A quick look at the solutions found in
Example 9.1 shows that the search by MDOs is able to find
two out of three original patterns. Moreover, the solutions
have the same number of patterns as the desired one (3,
since the fringes do not count; actually, searching by MDOs
produces the pure 3-pattern solution 6*ac+3*bd+2*ea, but
this is not being counted as well since it does not contain any
of the original patterns). These and other experiments support
the claim that searching by MDOs is usually sufficient to find
a satisfactory solution, at a fraction of the cost of searching
all subsets of DOs.

X. CONCLUSION

In this paper we have addressed the problem of finding a
minimal set of patterns to describe the sequence of events
recorded in an unlabeled event log. While traversing the
complete search space is necessary to find all solutions, our
experiments suggest that, in most cases, it suffices to search
only the maximal number of disjoint occurrences (MDOs)
for each pattern. This usually yields a minimal solution.

We have described a data structure (the trie) that can be
built in linear time to store the occurrences of each pattern.
We have shown how to retrieve the MDOs from the trie.
Also, we have adapted Knuth’s algorithm X to traverse the
search space. Finally, we have identified typical cases when
searching by MDOs is not guaranteed to yield a solution.

These contributions provide confidence that, in the future,
it will be possible to recover the case ids from unlabeled
event logs without being restricted to sub-optimal solutions
and without having to traverse the complete search space in
order to find a globally optimal one.

REFERENCES

[1] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster,
G. Schimm, and A. J. M. M. Weijters, “Workflow mining: A survey
of issues and approaches,” Data and Knowledge Engineering, vol. 47,
no. 2, pp. 237-267, 2003.

[2] A. Tiwari, C. Turner, and B. Majeed, “A review of business process
mining: state-of-the-art and future trends,” Business Process Manage-
ment Journal, vol. 14, no. 1, pp. 5-22, 2008.

[3] D.R. Ferreira, M. Zacarias, M. Malheiros, and P. Ferreira, “Approaching
process mining with sequence clustering: Experiments and findings,” in
Proceedings of the 5th International Conference on Business Process
Management (BPM 2007), ser. Lecture Notes in Computer Science, vol.
4714. Berlin: Springer, 2007, pp. 360-374.

[4] D.R. Ferreira and D. Gillblad, “Discovering process models from unla-
belled event logs,” in Business Process Management, 7th International
Conference, BPM 2009, Ulm, Germany, September 2009. Proceedings,
ser. Lecture Notes in Computer Science, U. Dayal, J. Eder, J. Koehler,
and H. A. Reijers, Eds., vol. 5701. Springer, 2009, pp. 143-158.

[5] J. Rissanen, “Modeling by shortest data description,” Automatica,
vol. 14, pp. 465-471, 1978.

[6] T. Calders, C. W. Giinther, M. Pechenizkiy, and A. Rozinat, “Using
minimum description length for process mining,” in SAC ’09: Proceed-
ings of the 2009 ACM symposium on Applied Computing. ACM, 2009,
pp. 1451-1455.

[7]1 D. E. Knuth, “Dancing links,” in Millennial Perspectives in Computer
Science: Proceedings of the 1999 Oxford-Microsoft Symposium in
Honour of Sir Tony Hoare, J. Davies, B. Roscoe, and J. Woodcock,
Eds. Palgrave Macmillan, 2000, pp. 187-214.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

