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Abstract—Delays in business processes can have negative con-
sequences for organizations, such as extra costs, missed deadlines,
poor service, etc. Although they are easy to detect, it may be
hard to find the actual reason for such delays. In this work we
develop an approach to find the cause of delays based on the
information recorded in an event log. The approach is based on
a logic representation of the event log and on the application of
decision tree induction to separate process instances according
to their duration. In this decision tree, the delayed instances
immediately stand out, and by following the path in the tree it
is possible to extract a rule that characterizes those instances
and therefore provides a possible explanation for the delay. We
illustrate the approach in a set of experiments with event logs
that are generated by simulation of a purchase process. In each
experiment, there is a different cause of delay, and the approach
succeeds in finding that cause. Additional experiments show that
the approach is scalable and tolerant to noise.

I. INTRODUCTION

In process mining, an event log is usually seen as a
sequence of events which can be analyzed from different
perspectives. For example, there are several algorithms that
can be used to extract a control-flow model from the sequence
of tasks recorded in an event log (e.g., the α-algorithm [1],
the heuristics miner [2], the genetic miner [3]). There are
also techniques to analyze the interaction between process
participants by extracting a social network from the event log
[4], [5]. And there are ways to calculate performance indicators
and to detect bottlenecks based on the timestamp of events
[6], [7]. A practical case study that includes these different
perspectives (i.e. the control-flow, the organizational, and the
performance perspective) can be found in [8].

In this work we are looking at the performance perspective,
and in particular at the problem of finding the reason why some
process instances become delayed. With delayed, we mean that
a process instance takes longer than usual to complete. This
could be due to many reasons, such as, for example: when
an activity is assigned to a certain user in particular; when
two activities that should be performed by the same user are
performed by different users; when a customer orders an item
that is not currently in warehouse; etc.

In general, the reasons for process delay may be related to
the control-flow perspective, to the organizational perspective,
to the data flow or the specific case data associated with a
process instance. In the typical event logs that are used for
process mining, one can find information about the control-
flow perspective and about the organizational perspective,

while information about the data flow is not usually available.
Nevertheless, previous works [9]–[11] focused on data flow
as the primary cause for process delays, and therefore the
proposed methods require either the use of external data or
the availability of additional attributes in the event log. One
of the reasons for this was a certain inability of previous
approaches based on propositional logic to take full advantage
of the knowledge that is usually embedded in the event log.

In this work we address this problem with an approach
based on first-order logic for data representation. Typically,
each event in an event log records the process instance (i.e.
the case id), the task that has been executed, the user who
performed the task, and the completion timestamp of the event.
We capture this knowledge as a set of logic predicates, and
we use inductive logic programming [12] – specifically, a
decision tree learner known as TILDE [13] – to classify process
instances into different groups according to their duration. For
practical purposes, we define the duration of a process instance
as the difference between the timestamps of the last and the
first event recorded for that instance. The result of applying
such classification is a decision tree where each path from the
root to a leaf provides a rule that characterizes a certain group
of instances. This rule can be interpreted as a reason why that
group of instances has a certain duration.

The structure of the paper is as follows. Section II high-
lights the difference between the present approach and related
works. In Section III we introduce a process that will serve as
a running example throughout the paper. Section IV defines the
predicates that are used to represent the event log. Section V
discusses the induction of decision trees in general, and of
logic decision trees in particular. Section VI describes a set of
experiments to illustrate the approach and to cover the main
problems that may arise in practice. Section VII discusses
the results and reports on additional experiments concerning
scalability and noise-tolerance. Finally, section VIII concludes
the paper.

II. RELATED WORK

Inductive logic programming (ILP) has been used before
in the area of process mining, but not for the purpose we
describe here. For example, [14] uses ILP and in particular
TILDE to learn the preconditions of each activity from the
event log and from a set of negative events that are generated
artificially to discover the process model. Ref. [15] uses a
related technique called inductive constraint logic [16] to learn
declarative models from an event log containing traces labeled



as compliant or non-compliant. Also, [17] uses ILP combined
with a planning algorithm in a framework that supports the
continuous learning of business processes.

Some recent works [9]–[11] that are more closely related
to our approach use propositional classification techniques for
the analysis of the performance perspective. In particular, [11]
proposes an architecture for a business process intelligence
tool suite which makes use of classification techniques for
the analysis of process behavior. Ref. [10] analyzes how case
data affects the routing of process instances with the help of
decision trees. Ref. [9] describes an approach that uses decision
trees to find out whether there is a relationship between
the workload of resources and the fact that the process gets
overdue (i.e. the case duration exceeds a threshold); for that
purpose, the authors make use of an event log that is enriched
with workload information.

Our present approach differs from [9]–[11] in several ways:

• We use the most traditional type of event log, with the
set of attributes that are typically available for process
mining: namely, the case id, the task, the performer,
and the completion timestamp of the event. All the
information that is necessary for analysis is derived
directly from the event log and we do not use any
external data source.

• We use first-order logic and in particular a set of
predicates expressed in a PROLOG-like syntax, which
allows us to represent knowledge in an expressive and
convenient way for induction. For example, flow/3
or flow(I,A,B) is a predicate with three arguments
to assert the fact that in process instance I (where I is
the case id), activity A is followed by activity B. The
event log, described in terms of the first-order predi-
cates event/4, followed/7, and duration/2,
can be used as direct input to the classifier.

• In our approach we use decision trees to classify cases
(i.e. process instances) in terms of their actual duration
as recorded in the event log, rather than on predefined
and discrete categories such as “late” and “on time” as
in [9], [11]. This allows us to group cases according to
duration and to study the cause for delayed instances.
In practice, it is often hard to define the notion of delay
beforehand, i.e. to say whether a particular instance
is delayed without comparing it to other cases. By
separating cases into different groups, our approach is
able to identify the cases that take longer to complete,
without the need for a precise definition of delay (e.g.,
as a threshold).

III. AN EXAMPLE PROCESS

Figure 1 illustrates a purchasing process that will be used
in our experiments. This process can be described as follows.
First, an employee fills out a requisition form (a) and sends
it for approval by a supervisor (b). If it is not approved, the
requisition is archived (c). If it is approved, the product is
ordered from a supplier (d) and two branches will run in
parallel: at the warehouse an employee receives the product (e)
and updates the stock (f ); and at the accounting department
someone else will take care of payment (g). When these two
branches complete, the requisition is closed (h).

Each activity in this process is assigned to some user, and
the user is selected at run-time from a set of users who are
authorized to perform the task. Figure 1 provides a visual
indication, by means of horizontal bars, of the probability of
a user being selected to perform a certain task. For example,
both u4 and u5 may perform task c, with u4 having a higher
probability of being assigned than u5.

Another aspect that is depicted graphically in Figure 1 is
the duration of each task. For simulation purposes, the duration
of each task is assumed to follow a normal distribution with
some mean µ and standard deviation σ, with the additional
requirement that it must be non-negative (because duration
cannot be negative). This is illustrated by having a bell shape
associated with each activity. The distance from the origin
and the width of this bell shape provide an idea of the mean
and standard deviation of the corresponding probability density
function associated with duration.

These process parameters – i.e. the probability of a user
being selected for a certain task, and the mean and standard
deviation for the duration of each activity – are quantified in
Tables I and II.

TABLE I. TASK ASSIGNMENT PROBABILITIES

u1 u2 u3 u4 u5 u6 u7 u8 u9
a 1.0 − − − − − − − −
b − 0.7 0.3 − − − − − −
c − − − 0.6 0.4 − − − −
d − − − − − 0.4 0.6 − −
e − − − − − − − 0.5 0.5
f − − − − − − − 0.5 0.5
g − − − − − 0.4 0.6 − −
h − − − 0.6 0.4 − − − −

TABLE II. DURATION OF ACTIVITIES (IN HOURS)

µ σ
a 24.0 12.0
b 48.0 24.0
c 24.0 12.0
d 24.0 12.0
e 96.0 48.0
f 24.0 12.0
g 96.0 48.0
h 48.0 24.0

Using these parameters, we wrote a program to simulate
the process in Figure 1 and to generate event logs for our
experiments. Because the assignment policy and task duration
have a probabilistic nature, there is some level of randomness
in the generated event logs. An excerpt of a generated event
log is shown in Table III. This shows the first three cases
in the event log. In these three instances, it is possible to
recognize several features of the process. For example, case
1 has a trace in the form abdgefh, while case 2 has a trace
in the form abc (we defined a 75% probability of approval);
also, in case 1 activity g happens before e and f , while in
case 3 it happens afterwards. Furthermore, it is possible to see
the user assignment policy in action. For example, activity f
is performed by user u9 in case 1 and by user u8 in case 3.
The values in the last column of Table III are not part of the
original event log, but they are calculated from the timestamp
of events, as explained in the next section.

IV. EVENT LOG REPRESENTATION

As described in Section I, we address the analysis of
process delays as a classification problem. In particular, we
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Fig. 1. A purchase process

TABLE III. EVENT LOG

h(·)
case id task user timestamp (see Def. 4)

1 a u1 2012-11-25 14:19:09 0.000
1 b u2 2012-11-28 00:03:46 57.744
1 d u6 2012-11-28 01:45:22 59.437
1 g u7 2012-12-01 21:59:47 151.677
1 e u8 2012-12-02 03:30:24 157.187
1 f u9 2012-12-02 22:20:37 176.024
2 a u1 2012-12-03 10:27:27 0.000
1 h u4 2012-12-04 07:39:36 209.341
2 b u3 2012-12-04 08:36:42 22.154
2 c u5 2012-12-05 23:04:46 60.622
3 a u1 2012-12-12 01:13:46 0.000
3 b u2 2012-12-14 23:20:06 70.106
3 d u6 2012-12-15 21:14:01 92.004
3 e u8 2012-12-19 16:57:46 183.733
3 f u8 2012-12-19 19:17:04 186.055
3 g u6 2012-12-20 02:06:03 192.871
3 h u4 2012-12-21 00:15:38 215.031
... ... ... ... ...

use ILP, which is a machine learning technique that combines
first order logic for data representation together with inductive
reasoning for learning hypotheses from data. The induction
process is discussed in more detail in the next section, while in
this section we will concentrate mainly on data representation.

In ILP, hypotheses are derived (i.e. induced) from two
sources: the first is the knowledge base, which contains a set
of observed examples described in terms of logic facts, and
the second is the background knowledge, which is a set of
domain-specific concepts and rules that apply to all examples
and that are defined in terms of logic clauses. The knowledge
base and the background knowledge define the language bias
for induction. The derived hypotheses will be expressed in
terms of such language bias (i.e. facts and rules).

In our case, the information in Table III, which represents
a typical event log (the first four columns), is to be captured
as a set of logic facts (i.e predicates). These facts concern the
tasks that were performed in each process instance, the user
who performed each task, and also the duration of the process
instance. Such set of facts will represent the knowledge base.
On the other hand, there is set of rules to define some common

concepts, such as handover of work between users; these will
be added as background knowledge.

In order to define these facts and rules in a precise way,
we introduce the following definitions and predicates:

Definition 1 (Event). An event is a tuple ε = (i, a, u, t) where:
i is the case id that identifies the process instance; a is the
name of the activity (or “task”) whose completion generated
the event; u is the name of the user who performed the task;
and t is the timestamp (i.e. date and time) when the event was
recorded. We define i(ε) = i and t(ε) = t.

Definition 2 (Trace). A trace is a sequence of events τ =
〈ε1, ε2, ..., εn〉 such that i(ε1) = i(ε2) = ... = i(εn) and
t(ε1) ≤ t(ε2) ≤ ... ≤ t(εn). In other words, the events belong
to the same process instance and are ordered by timestamp.
We define i(τ) = i(ε1) = ... = i(εn).

Definition 3 (Event log). An event log is a set of traces L =
{τ1, τ2, ..., τN} where i(τj) 6= i(τk),∀τj ,τk∈L.

Definition 4 (Time and duration). For a given trace τ =
〈ε1, ε2, ..., εn〉 ∈ L we define the time of an event εk ∈ τ as
h(εk) = t(εk)−t(ε1). In particular, h(ε1) = 0. We also define
the duration d(τ) of a trace τ = 〈ε1, ε2, ..., εn〉 as the time
of the last event: d(τ) = h(εn) = t(εn)− t(ε1). In practical
scenarios, we will measure h(·) and d(·) in hours.

Definition 5 (Knowledge base). A knowledge base is a set
of statements that represent the facts in an event log L
in terms of the predicates event/4, followed/7, and
duration/2.1 In particular, the knowledge base for a given
event log L comprises the following kinds of statements:

• event(i, a, u,h(ε)). ∀τ∈L,∀ε=(i,a,u,t)∈τ

• followed(i, a′, u′,h(εk), a′′, u′′,h(εk+1)).
∀τ∈L,∀εk=(i,a′,u′,t′),εk+1=(i,a′′,u′′,t′′)∈τ

• duration(i(τ),d(τ)). ∀τ∈L
1We use the PROLOG notation predicate/arity to indicate the number

of arguments for each predicate.



Def. 5 means that an event log L will be translated into
a set of facts using the predicates event/4, followed/7,
and duration/2. For example, the logical representation of
case 1 in Table III will be:

event(1, a, u1, 0.000).
event(1, b, u2, 57.744).
event(1, d, u6, 59.437).
event(1, g, u7, 151.677).
event(1, e, u8, 157.187).
event(1, f, u9, 176.024).
event(1, h, u4, 209.341).
followed(1, a, u1, 0.000, b, u2, 57.744).
followed(1, b, u2, 57.744, d, u6, 59.437).
followed(1, d, u6, 59.437, g, u7, 151.677).
followed(1, g, u7, 151.677, e, u8, 157.187).
followed(1, e, u8, 157.187, f, u9, 176.024).
followed(1, f, u9, 176.024, h, u4, 209.341).
duration(1, 209.340815).

From this knowledge base, it is possible to derive additional
facts about the tasks and users in this process, and about
how these tasks and users follow each other. The following
definition provides the rules to derive additional facts:

Definition 6 (Background knowledge). We define background
knowledge as a set of general rules that allow deriving
additional facts about the behavior observed in an event log.
In particular, we define the following predicates:2

• task(I,A) :- event(I,A,_,_).
(True if task A appears in case I.)

• user(I,X) :- event(I,_,X,_).
(True if user X participates in case I.)

• performer(I,A,X) :- event(I,A,X,_).
(True if user X performs task A in case I.)

• flow(I,A,B) :-
followed(I,A,_,_,B,_,_).
(True if there is a flow from task A to task B in case
I.)

• handover(I,X,Y) :-
followed(I,_,X,_,_,Y,_).
(True if there is handover of work from user X to user
Y in case I.)

• together(I,X,Y) :- event(I,_,X,_),
event(I,_,Y,_).
(True if users X and Y work together in case I.)

These new predicates concern the control-flow perspec-
tive (task/2 and flow/3) as well as the organizational
perspective (user/2, performer/3, handover/3 and
together/3). In particular, the predicates handover/3
and together/3 allow to determine, respectively, if there
is handover of work between users and if users work in joint
cases, as defined in [4]. It would be possible to define more
predicates, for example to detect if two activities are performed
in parallel or if there is a causal relationship between them,
as in the α-algorithm [1]. However, the rules above will be
enough to begin with in the experiments of Section VI.

2Again, we use a PROLOG notation to define these predicates.

V. INDUCTION

In this work the induced hypotheses are represented as
decision trees, which are one of the most popular tools in
machine learning and data mining. Given a set of objects with
a collection of attributes, a decision tree divides the objects into
a set of mutually exclusive classes according to the values of
their attributes. The distinctive feature of decision trees is that
the conditions that determine class membership are structured
in the form of a tree. At the root of the tree we check the value
of a certain attribute and, depending on that value, we follow
one of the available branches; at the following node, there will
be a new decision based on a different attribute; and so on,
until we reach a leaf of the tree. The leaf is labeled with the
name of the class that the object belongs to.

The induction of decision trees from relational data (i.e.
objects with a collection of attributes) can be done using
popular algorithms such as ID3 [18] and C4.5 [19]. Both
ID3 and C4.5 are able to generate decision trees where
each node is associated with a certain attribute and each
branch coming out of that node is associated with a different
value for that attribute. The induction of a decision tree is
therefore a learning process, where one learns the attribute
values that are associated with the objects belonging to each
class. Such process is called propositional learning or attribute-
value learning.

Decision trees can also be used for concept learning by
associating a predicate with each node, as shown in Figure 2.
In this case, there are two branches coming out of each node in
order to represent the two possible outcomes for such predicate
(true or false). This kind of tree is referred to as logical
decision tree and its induction can be seen as a form of ILP. A
popular algorithm for inducing logical decision trees is TILDE,
which is an upgrade of C4.5 with logical predicates.3
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Fig. 2. Structure of a logical decision tree

When decision trees are used for classification, the output
variable is discrete (i.e. the object belongs to one from a

3TILDE is developed by K. U. Leuven and it is part of the ACE data mining
system that can be found at: https://dtai.cs.kuleuven.be/ACE/



set of classes). However, in some applications the output
variable is continuous (i.e. each class corresponds to a range
of values). The induction of such tree usually involves linear
regression and therefore this kind of tree is sometimes referred
to as a regression tree [20]. This is precisely the case in our
present problem, where process instances are to be classified
according to their duration, which is a continuous variable.
TILDE supports the induction of both logical decision trees
and logical regression trees, so it becomes an especially useful
tool for our purpose.

VI. EXPERIMENTS

In this section we report on a set of experiments using
event logs obtained through simulation of the business process
described in Section III. Each event log contains N = 100
process instances (i.e. cases). In each experiment, the simulator
inserts deliberate delays in the process instances, according
to a given condition. The event log is then translated into a
knowledge base according to Def. 5. This knowledge base,
together with the background knowledge of Def. 6, is provided
as input to TILDE, which generates the decision tree. Our goal
is to check whether the decision tree is able to capture the
correct cause for the delay. These experiments were chosen to
illustrate some problems that may arise in practice.

Experiment 1: When user u8 participates in the process, the
process gets delayed, on average, about 80 hours.

In this experiment, we inserted a delay with mean µ = 80.0
and standard deviation σ = 15.0 in those process instances
that have some activity performed by user u8. The delay
is inserted in the total duration of the process instance, as
indicated by predicate duration/2. After the event log has
been converted into a knowledge based, running TILDE on this
knowledge base together with the background knowledge of
Def. 6 yields the following result:

duration(I,X) [287.75] 100
task(I,d) ?
+--yes: [324.88] 85
| user(I,u8) ?
| +--yes: [355.30] 59
| | together(I,u6,u9) ?
| | +--yes: [372.95] 32 [8.97]
| | +--no: [334.38] 27 [10.12]
| +--no: [255.84] 26 [11.02]
+--no: [77.38] 15 [7.28]

The first line contains the target predicate and the two
values following it are the average duration and the total
number of cases, respectively. Each predicate with a question
mark represents a node, and the labels yes and no represent
the branches (whether the predicate is true or false). For
each branch, the first number in square brackets indicates the
average duration in the group, the second is the number of
examples that can be found in the group, and the third number,
again in square brackets, and when applicable, provides the
standard deviation within the group.

The tree begins by dividing the cases into two groups,
depending on whether the case contains the task d or not. The
cases that do not contain this task have an average duration of
about 77 hours, which is significantly shorter than the average

duration for all cases (about 288 hours). Going back to the
process model in Figure 1, one realizes that this corresponds
to the process instances where the requisition was not approved
and therefore the task d was not performed. This group was
discovered in all experiments, so we will not refer to it again
in subsequent experiments.

The remaining cases are further divided into two sub-
groups. The first subgroup contains the cases where both task
d was executed and user u8 performed some task. In this tree,
the predicate user(I,u8) is a child node with respect to
the root node with predicate task(I,d). Therefore, the rule
for this child node can be expressed as a conjunction of the
predicates user(I,u8) and task(I,d). The duration of
cases in this subgroup is about 355 hours on average, which is
around 100 hours above the average of the opposite subgroup.
The rule and the duration of the first subgroup correspond to
the conditions that were set for this experiment, and therefore
we can say that TILDE found the cause of the delay.

Since we use regression, TILDE tries to discover rules for
all distinct groups of process instances with similar duration.
An event log may give origin to a large number of such
groups. However, not all of them may be of interest to the
process analyst. In order to define whether a particular group
is important or not, the process analyst can calculate the
difference between the target variable in the branches created
by a given predicate, and compare it to the same difference
calculated for other predicates.

For example, in this experiment we can find a further
subdivision of the tree with predicate together(I,u6,u9)
that forms two groups with a duration difference of 38.57
hours. Comparing this to the same difference for the pred-
icate user(I,u8) which is 99.46 hours, and for the
predicate task(I,d) which is 247.50 hours, the analyst
may conclude that the division formed by the predicate
together(I,u6,u9) is not as relevant as the previous
ones. However, it may be the case that a difference of 30 hours
is important and therefore those groups should be considered.
The fact that the predicate together(I,u6,u9) creates
additional groups in this experiment is due to the randomness
in the event logs, which was mentioned in Section III, and
which may generate unintended patterns.

It is possible to adjust TILDE’s sensitivity by changing a
parameter that sets the minimal number of instances to be
included in each leaf. By doing so, the analyst may characterize
the group of delayed instances more precisely. However, it
may also happen that some meaningful groups are lost. For
example, if we change the value of this parameter from 10 to
30 instances and run TILDE over the same event log, the node
that is associated with predicate task(I,d) is lost:

duration(I,X) [257.86] 100
user(I,u8) ?
+--yes: [341.40] 59 [5.91]
+--no: [137.65] 41 [15.24]

Experiment 2: When users u3 and u4 work together in the
process, there is a delay, on average, of about 100 hours.

In this experiment, TILDE yields the following tree:

duration(I,X) [233.35] 100



task(I,d) ?
+--yes: [266.61] 80
| together(I,u3,u4) ?
| +--yes: [359.49] 12 [13.08]
| +--no: [250.22] 68 [6.36]
+--no: [100.31] 20

together(I,u3,u4) ?
+--yes: [162.45] 6 [9.77]
+--no: [73.67] 14 [5.66]

The cause for delay can be found in the nodes with the
predicate together(I,u3,u4).

Experiment 3: When different users perform tasks d and g the
process gets delayed, on average, about 70 hours.

In this experiment, we simulate the scenario where the tasks
d and g are performed by different users. These tasks should be
performed by the same user and, whenever it does not happen
that way, the process suffers some delay. TILDE produces:

duration(I,X) [264.16] 100
task(I,c) ?
+--yes: [77.11] 11 [7.25]
+--no: [287.27] 89

together(I,u6,u7) ?
+--yes: [314.78] 45 [8.36]
+--no: [259.14] 44 [7.66]

Since there is no special predicate either in the knowledge
base or in the background knowledge for expressing the fact
that two tasks are performed by different users, TILDE derives
this rule in terms of others predicates, particularly with the
help of predicate together(I,u6,u7). If we go back to
Figure 1 to analyze the assignment policies, then the fact that
u6 and u7 work together implies that tasks d and g are indeed
performed by different users. It should be mentioned that the
knowledge about assignment policy is not hard to get from the
event log if it is unknown, what is more important is that there
is no guarantee that the initially defined background knowledge
will contain all necessary predicates for describing the reason
for process delay.

Such kind of problem will inevitably arise in practice. In
order to mitigate it, the analyst should be ready to modify the
background knowledge during the course of analysis based on
some additional insights about the business process that can be
obtained from studying the output decision trees. In general,
running TILDE over the same event log with different sets of
predicates may help the analyst discover the true reason for the
delay. For example, when analyzing the tree above, the analyst
may come up with idea that the real reason for process delay
is in fact that tasks d and g were performed by different users
and, in order to verify this idea, the following predicate could
be included in the background knowledge of Def. 6:

• sameperformer(I,A,B) :-
event(I,A,X,_), event(I,B,X,_).
(True if tasks A and B are performed by the same user
in case I.)

Then TILDE derives the following tree from the same event
log, which can be interpreted without prior knowledge of the
assignment policy, and which captures the cause for delay more
explicitly:

duration(I,X) [264.16] 100
task(I,c) ?
+--yes: [77.11] 11 [7.25]
+--no: [287.27] 89

sameperformer(I,d,g) ?
+--yes: [259.14] 44 [7.66]
+--no: [314.78] 45 [8.36]

In addition, a condition can be equivalently expressed in
terms of different predicates, and TILDE may not choose the
easiest expression for interpretation. An example of equiva-
lent expressions for the same condition can be seen in the
groups of process instances where task c is performed. In
Experiments 1 and 2 this fact is expressed with the predicate
not(task(I,d)), while in this experiment it is expressed
with predicate task(I,c).

Experiment 4: When u6 hands over work to u7 then the process
completes earlier, on average about 80 hours.

Since the process completes earlier, here we are testing for
a “negative delay”, and TILDE yields:

duration(I,X) [192.29] 100
task(I,d) ?
+--yes: [240.79] 72
| performer(I,d,u6) ?
| +--yes: [212.04] 31 [11.25]
| +--no: [262.53] 41 [8]
+--no: [67.55] 28 [5.85]

According to the definition of handover(I,X,Y) (see
Def. 6), this predicate is true when user X performs a task
which is followed by another task performed by user Y. Users
u6 and u7 execute tasks d and g, and d is followed by g in
the process model. However, in the event log it is possible to
find the sequences dgef , degf and defg, since e and f are in
parallel with g. In the sequences degf and defg, even if task
d is executed by u6 and g is executed by u7, the predicate
handover(I, u6, u7) will be false. Therefore, the tree
above does not capture the true reason for the delay.

This problem could be addressed by defining appropriate
predicates to capture the fact that some activities are being
performed in parallel. However, in order to demonstrate how
this approach can be used together with process mining al-
gorithms, we address the problem in a different way. Let us
assume that we run some process discovery algorithm (such as
the α-algorithm) over the event log, and from that algorithm
we obtain the following relationships between activities:

flow(a,b).
flow(b,c).
flow(b,d).
flow(d,e).
flow(e,f).
flow(d,g).
flow(f,h).
flow(g,h).

These facts capture the sequence flow (i.e. the arrows)
between the activities in the model of Figure 1. We can add
these facts to the knowledge base and remove the predicate
flow/3 rule from the background knowledge. We can also



redefine the predicate handover/3 to take into account the
actual flow between activities:

• handover(I,X,Y) :- event(I,A,X,_),
event(I,B,Y,_), flow(A,B).
(True if there is handover of work from user X to user
Y in two activities that are connected by a flow.)

After this update, the newly induced tree correctly de-
scribes the reason for the (negative) delay:

duration(I,X) [192.29] 100
task(I,d) ?
+--yes: [240.79] 72
| handover(I,u6,u7) ?
| +--yes: [182.04] 18 [13.15]
| +--no: [260.38] 54 [6.79]
+--no: [67.55] 28 [5.88]

We have conducted additional experiments with more com-
plicated conditions, e.g., “when u3 hands over work to u6 and
user u8 executes task f then the process gets delayed”, and
again the tree captured the correct cause for the delay.

VII. DISCUSSION

From the experiments above and other experiments that we
carried out, it is possible to conclude the following:

1) It is possible to find the cause of delays in process
instances, if indeed the cause is related to facts that can
be derived from the event log. These facts should be
represented by appropriate predicates.

2) In general, any additional knowledge (e.g., about the
process model, or about the assignment policy) that can be
extracted from the event log can be helpful in determining
and interpreting the cause of delays. This additional
knowledge may be obtained, for example, through the
use of process mining algorithms.

3) The predicates defined in this paper should not be con-
sidered as being universally valid. This approach assumes
that there will be a process analyst who understands the
business process and can adjust the background knowl-
edge according to domain-specific needs. Moreover, in
some cases it may be necessary to change the initially de-
fined background knowledge during the course of analysis
as the analyst gets more insights into the business process,
as illustrated in Experiments 3 and 4. Also, it may happen
that not all of the defined predicates will be used in the
tree (e.g., predicate flow/3 in Def. 6).

4) The cause for delay can be equivalently expressed in dif-
ferent ways with the predicates available in the language
bias (e.g., not(task(I,d)) and task(I,c)). Some
forms may be easier to interpret than others.

Besides the experiments described in the previous section,
we carried out additional experiments to assess the approach
with respect to scalability and noise-tolerance.

A. Scalability

Regarding scalability, we carried out a series of tests using
the same scenarios as in Section VI. We increased the number
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Fig. 3. Total run time for TILDE with increasing number of cases.

of process instances N successively by amounts of 10, from
N = 100 to N = 1000. It would have been possible to go
further, but the range 100 ≤ N ≤ 1000 was enough to produce
an observable trend. This trend was similar for all experiments.
Figure 3 illustrates the results for Experiment 2.

For N = 100, TILDE takes about 5 seconds to induce
the decision tree. This includes the time to start the program
and to load the knowledge base and the background knowl-
edge, which is fairly quick. Most of the time is spent in
induction. For N = 1000, TILDE takes about 314 seconds
to complete (i.e. over 5 minutes). However, at this point the
trend is practically linear, as illustrated in Figure 3. The solid
line in the plot is a least-squares fit with a cubic function
f(x) = ax3 + bx2 + cx + d where: a = −2.50 × 10−7,
b = 0.000664, c = −0.119, and d = 11.7. At x = 1000,
the slope of this function is f ′(1000) = df

dt

∣∣
1000

' 0.46
seconds/case, i.e. an additional 4.6 seconds per each increase
of 10 cases.

The fact that tree induction appears to scale linearly agrees
with the claim that, under some general assumptions, the com-
plexity of TILDE is linear with the number of examples [21].

B. Noise tolerance

With regard to noise, we carried out two different experi-
ments. In the first experiment we changed the amount of delay
that was inserted in the event log and the number of process
instances that were affected by it. The results suggest that, in
order to be able to discover the group of delayed instances,
the delay should be more than one standard deviation of the
process duration (i.e. if the process duration has mean µ and
standard deviation σ, then the duration of a delayed instance
should be at least µ + σ). The standard deviation for the
duration of the process described in Section III is about 60
hours, so this should be regarded as the minimum amount
of delay to be used in experiments. On the other hand, the
number of process instances that suffer from delay should
be statistically significant. For example, if there are very few
delayed cases, say 2 or 3 out of 100, and the delay is not much
more than one standard deviation, it will be difficult to isolate
this group. In this case, the delayed instances are likely to be



bundled together with other instances in some other group that
satisfies a rule that is not the cause for the delay.

In the second experiment we inserted in the event log the
same types of noise as used in [22]–[24], namely:

(a) missing head, i.e. the removal of events at the beginning
of a case;

(b) missing body, i.e. the removal of events in the middle of
a case;

(c) missing tail, i.e. the removal of events at the end of a case;
(d) swap tasks, i.e. the interchange of two events in a case;
(e) remove task, i.e. the removal of an arbitrary event from a

case;
(f) mix all, i.e. a combination of all of the above.

After trying out each type of noise separately, we used
mostly option (f) with a percentage to specify the amount
of cases that should be affected by noise. The type of noise
applied to each instance was selected randomly. In these
experiments, we observed that it was possible to raise the
amount of noise to as much as 40% (meaning that about 40 out
of 100 instances were affected by noise) and still discover the
correct cause for the delay. Above 40%, however, the decision
tree stops capturing the correct cause for the delay.

VIII. CONCLUSION

In this paper we addressed the analysis of process delays
from a classification perspective and proposed an ILP-based
approach to discover the reason why some process instances
become delayed. This approach relies on first-order logic for
data representation, whose expressiveness can fully capture
the knowledge embedded in an event log. The event log is
expressed as a set of logic facts (knowledge base) and through
a set of common rules (background knowledge) it is possible
to derive additional facts. All of these facts may contribute to
identify the cause for delay. This cause is expressed as a rule
extracted from a logical decision tree that classifies all process
instances according to duration.

We conducted several experiments with synthetic event
logs, where we inserted deliberate delays in process instances
according to a certain condition. The decision tree was able
to capture that condition, although in some experiments it was
necessary to include additional predicates to better express the
cause for the delay. We also carried out experiments to study
the scalability and noise-tolerance of the proposed approach.

The same approach can also take into account information
about the data-flow perspective of the business process, if
available, and we are planning to demonstrate that in future
work. It can also be used to study other response variables
besides duration. Currently, the use of predicates such as
handover/3 and together/3 provides a way to explain
the occurrence of delays based on the interaction or partici-
pation of certain users, and this provides an indication of the
effectiveness of such collaborations in the process.
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