Assessing Agile Software Development Processes
with Process Mining: A Case Study

Rita Marques, Miguel Mira da Silva and Diogo R. Ferreira
Instituto Superior Técnico (IST)
Lisbon, Portugal
Email: {rita.marques, mms, diogo.ferreira} @tecnico.ulisboa.pt

Abstract—Software development is a growing industry with
increasingly more complex projects. Agile methodologies, such
as Scrum, have emerged in part to address this challenge. Agile
focuses on a set of best practices rather than a standardized
process, which makes it difficult to assess whether it is being
properly implemented in an organization. In this work, we
analyze the feasibility of using process mining to evaluate the
implementation of Scrum practices based on event logs collected
from a case-handling system. A case study was conducted in an
IT organization that uses Jira Software to manage its projects.
With process mining, it was possible to extract the workflow
behaviour in two different projects. While Scrum standards
like role distribution could be discovered, other practices like
customer collaboration could not be detected in the log. This
case study provided important insights regarding the application
of process mining in case-handling systems and Scrum processes.

Keywords—Agile software development, Scrum methodology,
process mining, case-handling systems

I. INTRODUCTION

Software development companies are adopting new tools
and methodologies to cope with the increasing complexity
of their projects and end-user demands [1], [2]. Approaches
combining agile methodologies (like Scrum [3]) and collab-
oration tools (like case-handling systems [4]) have emerged
as a flexible solution to address these challenges. However,
such flexibility also makes it hard to assess whether an agile
methodology is being correctly implemented in practice.

Process mining [5] provides a set of techniques to au-
tomatically extract process behavior from event logs. This
approach has been successfully applied in several fields, such
as healthcare [6], IT service management [7], [8], software
development [9], etc. Process mining techniques can also help
organizations evaluate which agile practices are being im-
plemented, based on event logs collected from case-handling
systems. The present work focuses on Scrum, since it is the
most widely adopted agile methodology. In particular, we try
to identify which Scrum practices can be discovered using
process mining techniques.

Specifically, this work aims at answering the following
research questions:

e RQ1: Which Scrum recommended practices can be dis-

covered using process mining techniques?

e RQ2: Which issues should be taken into account when

extracting and analyzing event logs with unstructured
behavior from Scrum processes?

A case study was conducted in an IT organization that
uses Scrum and Jira Software' to manage its projects. The
case study illustrates how process mining techniques can be
applied in the context of case-handling systems and the Scrum
methodology. It shows how far one can go in using process
mining to assess the implementation of agile methodologies.
This will be of interest not only to researchers in this field,
but also to organizations who are looking forward to improve
their software development processes.

The structure of the paper is as follows. After an overview
of related work, we present the case study that has been carried
out through several stages, including planning, data extraction
and processing, mining and analysis activities, and results
evaluation. The approach follows the PM? process mining
methodology as proposed in [10]. After discussing the results,
the main conclusions are presented.

II. RELATED WORK

Unlike other software development methodologies, agile is
not a standardized process with clearly defined steps [11].
Instead, it is a methodology that focuses on a set of best
practices, which advocate that people and their relations are
more important than following specific processes or tools [12].

Scrum is the most widely adopted agile methodology [13],
where work is visible to the entire team, so that every
developer always knows what is happening in the project and
can adjust their practices to achieve the desired goals [3].
Scrum teams should be cross-functional, and self-organizing.

When a Scrum project starts, the product owner creates a
product backlog with user stories covering all system require-
ments, and sorts them by priority. A sprint starts with the
sprint planning meeting, where user stories with high priority
are selected to build the sprint backlog. The Scrum master
is the team leader, responsible for ensuring that Scrum is
understood and that developers are adopting Scrum practices.

Stories are assigned to each member of the development
team, and they may be further broken down into tasks. During
the sprint, there is a daily meeting that is conducted to assess
the project status and, at the end of the sprint, an increment
of the product must be completed. The sprint finishes with
sprint review, where the increment is presented and discussed,

Uhttps://www.atlassian.com/software/jira

and sprint retrospective meetings, were the lessons learned are
discussed to improve the following sprint [3].

Even though these practices can be adapted to the needs of
a particular organization, a good Scrum implementation will
comply with most of these practices and principles.

In summary, it can be said that Scrum includes a set of
roles (product owner, Scrum master and development team),
ceremonies (sprint, sprint planning, daily meeting, sprint
review, and sprint retrospective) and artifacts (product backlog,
sprint backlog, and increment). All of these elements interact
during the software development process. In essence, the main
goal of this work is to find out how much of this interaction
can be discovered through process mining.

A. Process Mining

Process mining consists in extracting process behavior from
event logs. This approach can be extremely useful to organi-
zations who depend on information systems to manage and
execute their operational processes [14]. Based on a large
amount of run-time event data recorded by those systems,
process mining provides the means to discover the sequence
of activities and user collaborations in a business process.

In an event log, each event contains information about the
case (i.e. the process instance), activity (a step in the process),
the resource (i.e. the user who performed the activity), and
the timestamp [5]. Besides these fields, other case and event
attributes may be included as well.

It is possible to analyze the event log from different perspec-
tives, namely: the control-flow perspective, which focuses on
the activities in order to find a characterization of the possible
paths; the organizational perspective, which focuses on the
resources to discover their interactions and collaborations
during the process; and the performance perspective, which
focuses on the time it takes to perform each activity [5].

Several techniques can be applied to event logs, such as
the «o-miner [15], the inductive miner [16], the heuristics
miner [17], the fuzzy miner [18], and algorithms to dis-
cover social networks [19], for example. These techniques are
supported by research tools and commercial tools, including
ProM [20] and Disco [21].

B. Process mining and software development

The application of process mining in the field of software
development has already been investigated by several authors,
namely:

o Poncin et al. [22] propose the use of process mining
techniques to mine information extracted from different
software repositories. For this purpose, they developed an
application to combine information from various software
repositories and evaluated it in case studies from different
domains. They conclude that process mining can provide
meaningful insights into software development processes.

« Bala et al. [23] also studied how to mine software repos-
itories in order to understand software projects. Using
event logs from version control systems, they generate

Gantt charts for project managers to visualize what was
done in the project.

o Rubin et al. [24] discuss the idea of using information
stored in software configuration management systems to
construct explicit software development process models,
which are often implicit and chaotic. They conclude that
it is possible to obtain process models from real-world
software projects, using process mining and the ProM
tool in particular.

o Rubin et al. [25] suggest the embedding of process
mining into the agile development lifecycle to derive
conclusions regarding the real user and system runtime
behavior. They argue that agile environments align with
process mining preconditions, since software produced
according to this methodology is constantly delivered
and used by meaningful stakeholders, which leads to the
continuous recording of event logs.

e Lemos et al. [9] applied process mining techniques to
measure conformance checking between event logs and a
well-defined software development process. Furthermore,
they discuss the use of process mining to improve the
maturity level of software engineering organizations, as
defined by the Capability Maturity Model Integration
(CMMI).

In general, most of these works focus on extracting the
software development process rather than checking its under-
lying methodology. The work by Lemos et al. is an exception
since they use process mining to assess whether the process
conforms to its formal specification. However, this formal
specification is given as a structured process, which does not
apply to agile.

C. Process mining methodology

In the literature, several methodologies regarding the appli-
cation of process mining have been proposed, including the L*
life-cycle model [5], the Process Diagnostics Method [26], the
Process Comparison Methodology [27], and the PM? process
mining methodology [10]. In this work we adopt the PM?
methodology, since it is general enough to support the analysis
of both structured and unstructured processes.

For later reference, the PM? methodology comprises the
following stages:

1) Planning: setting up the project, including the choice of

which information system to extract information from.

2) Extraction: deciding what to extract (event data or
process models, period of the events, data attributes, etc.)
and performing the extraction.

3) Data Processing: filtering the relevant activities and
creating views over specific parts of the dataset that are
interesting.

4) Mining and Analysis: applying the process mining tech-
niques.

5) Evaluation: establishing the relation between findings
and improvement ideas, which must be validated with
stakeholders involved in the process.

6) Process Improvement and Support: modification of the
actual process execution, based on the improvement
ideas.

D. Case-handling systems

Case-handling systems are a more flexible alternative to
workflow systems, which require participants to follow a
structured process model [4], [28]. Instead of prescribing
what to do, case-handling systems often describe what is
not allowed to do, enabling less structured processes, where
process execution can greatly vary, depending on the case and
on who is working on it.

In case-handling systems, all the information related to a
case can be made visible to all workers at all times, providing
an effective overview of everything that has been done or is
yet to be done to complete the case. This can help in reducing
the effect of context tunneling [29], a situation where workers
are isolated in their own activities and lack a big picture of
the case.

A popular case-handling system is Jira Software,? a tool that
supports the entire software development process, including
planning, releasing, tracking, and reporting. The system is
built on the concept of issue, which represents a problem
that needs to be solved, after being classified according to
its type (e.g. bug, improvement, or user story). Typically, an
organization defines the states that an issue is allowed to go
through. Issues are composed by a set of data fields, including
priority (importance of an issue), resolution (the way an issue
was closed), and reporter (the worker that created the issue).

In Jira Software, the Scrum master can create new issues in
the backlog and associate them to a specific sprint. Developers
are assigned issues to work on, according to the distribution
across the team.

III. CASE STUDY

In this work, we analyzed two projects (referred to as Pro-
jectX and ProjectY) in an IT organization providing software
products and services. The company manages its software
development processes through Jira Software and Scrum. By
using process mining to understand the user behavior in the
two projects, it is possible to analyze how Scrum is being
implemented in this organization.

As stated before, to conduct this process mining analysis, we
adopted the PM? methodology. The next subsections describe
the work performed in each stage, excluding the final stage
(process improvement and support), which was not applied.

A. Planning

The main goal of this case study was to analyze the
implementation of Scrum practices in ProjectX and ProjectY,
aiming at identifying which Scrum practices can be discov-
ered by process mining techniques. For this purpose, data
was extracted from the case-handling system adopted by the
organization (Jira Software), even though Scrum is not entirely
supported by that system. In particular, no information is

Zhttps://www.atlassian.com/software/jira/features

recorded regarding Scrum meetings and roles. Nevertheless, it
is possible to verify some Scrum best practices, such as having
every issue assigned to a resource and not having any reopened
issues. In addition, we intended to investigate if other practices
could be detected during the analysis, such as the occurrence
of Scrum ceremonies.

B. Extraction

To extract data from the system, a Web-based application
using the Jira REST API® was developed. Basically, the
application lists the available projects in a given Jira instance
by making an authenticated HTTP request to the server. Then,
the projects of interest are filtered to create a JSON with
general information about each project and a detailed list of
issues.

The application subsequently iterates through the issues to
retrieve specific information about them. In particular, we
retrieve the ID, type, priority, resolution, and reporter for each
issue. We also need the status of an issue, and all the states
that the issue went through, since the execution of an activity
corresponds to a change in status.

To access the status changes, the assignees who performed
them, and the time when they occurred, the history section
of each issue had to be analyzed. This was achieved by
making an HTTP request to the access link for each issue,
and transforming the returned XML into a CSV format using a
XSLT template. In the resulting event log, each entry contains
the case id, task, assignee, timestamp, type, priority, resolution,
and reporter.

C. Data Processing

During data processing, the resource names were
anonymized (as RI, R2, etc.), and the event log was
split in two parts (one for each project), as the goal was to
first analyze them separately and then compare results. Open
issues (i.e. those that have not been completed yet) were
filtered out from the event log. The conditions applied for
this filtering were: having the resolution state Unresolved,
and having an end status other than Resolved or Closed.

D. Mining and Analysis

ProjectX comprised 795 issues, with 6011 events performed
between Dec. 2012 and March 2017 by 50 assignees. Issues
were created by 46 reporters, and the process has 176 variants.
There are 15 different types of activities. Reopened events
correspond to 1.55% of the log.

After importing the event log into ProM, it was analyzed
with the dotted chart [30], which displays the sequence of
events for each issue over time. As shown in Fig. 1, each
event is represented by a single dot, and a color code is used
to indicate the event type. This technique provides a way to
visualize all events at once and, if needed, it is possible to
zoom in to investigate particular patterns. Some interesting
patterns have been highlighted in Fig. 1.

3https://docs.atlassian.com/jira/RES T/server/

] . - . o —_—
o ey o e - . . []
A L 1 '
wie e
E - .
-
i .
< H
Al
- .
e
- :(
o I
3 [
. - - e .
<, SRt mee e
% -
2 .
@ o el
w0 e 13
& Sera .- e :
o . .«
Gov= . ol
el ey .
s . = (=t
= -
“gie £ e H . . 41 |
R .
b - . .
-« * X
ESPRT . .
e (AR H . 5o
o,
e - . . . P
- I (e $&0
 ; AT @ o
e . .-
. .
- . ’ - -
e o - . 1
K o
A .
R [b - o . o e [
I H .
Lufts - . - -
A » . % I -
=Y wim e
I .
¥ - DT .
e | . o b
. L
™ s & . wme bomn
- - I .
@ e o sEE
ik wch g
L - @ ‘e
e .. e
o,
'3 -!t-lp .
aom s gle
. :- .
o+
7\ g
-
Mai-2014 Jul-2014 Set-2014 Now-2014 Jan-2015 Mar-2015 Mai-2015 Jul-2015 Set-2015 Now-2015 Jan-2016 Mar-2016 Mai-2016 Jul-2018 Set2016 Mov-2018 Jan-2017 Mar2017

Event: time:timestamp

Fig. 1: Dotted chart for ProjectX, generated in ProM. The red rectangles highlight increases in the arrival rate, black rectangles
represent areas where a large number of issues were closed, and the black arrows point to gaps in the arrival rate.

0 w 3 i
.
] (]
: H
-: : .
L .
.
.
.
.
.
.
Inspector s
.
- .
MBlocked .
M Closed -
Documentation ’
In Progress . -
MLJIRA 6 Compatability
Del . .
Pull Request
M Reijected H bt
M Reopened = >
HResolved
esting - .
na Approval
q for
aiting for Testing m ®
aq for support PR
‘r ng QA Tests - s .
- H
10 L)
b
<o
L] .

2014 Wai-2014 Jul2014 Set2014 Nov-2014 Jan2015 Mar2015 Wai-2018 Jul2018 Set2015 Nov-2015 Jan2018 War2018 Mai-2018 Jul-2018 Set2018 Now-2018 Jan-2017 War2017
Event: time:timestamp

Fig. 2: Dotted chart for ProjectY , generated in ProM. The black rectangles represent areas where a lot of issues were closed.

In particular, the arrival rate is not constant: the areas
delimited with a red rectangle show increases in the number
of issues created (around July and Oct. 2014), while the black
arrows denote gaps in process activity (end of Dec. 2014 /
beginning of Jan. 2015; July 2016; Oct. 2016; end of Dec.
2016 / beginning of Jan. 2017).

Furthermore, there were three moments when a lot of issues
were closed by the same assignee (illustrated by the black
rectangles): Aug. 2014 (closed by RI), Dec. 2015 and Nov.
2016 (closed by R2). Other variants of the dotted chart show
that the case duration has diminished through time, and that
more issues are closed in the beginning of the week and at
the beginning of the day.

For ProjectY, a total of 82 issues and 5795 events were
recorded between April 2014 and March 2017, performed by
69 assignees and created by 97 reporters. There are 16 different
types, and 0.47% of the log correspond to Reopened events.
The process presents 165 variants.

The arrival rate for ProjectY is more constant than ProjectX,
as one can see in the dotted chart of Fig. 2. Except for a period
in Aug. 2014, there are no gaps in process activity. There are
periods where a lot of issues are closed, preceded by a batch of

In Progress
1,025

10 210
Waiting Approval
223

175

191 Waiting for Documentation
142

Waiting for Testing
826

Testing
757

Resolved
879

@®

(a) ProjectX (25% activities, 20% paths)

resolve activities. Resolving activities are mostly performed by
R4, and closing activities by R72. Again, the analysis showed
that case duration has diminished through time, and that more
issues are closed in the beginning of the week, as observed in
ProjectX.

Both event logs were analyzed according to different per-
spectives, namely:

1) Case perspective: In ProjectX, more than half of the
issues are of type Bug, which is coherent with the fact that
most issues are resolved as Fixed (93.78%). Regarding priority,
most issues are considered Major (94.81%). These values are
similar to those of ProjectY, where most issues are of type Bug
(49.84%) and Story (37.4%) are resolved as Fixed (93.74%)
and are considered Major (92.36%).

2) Control-flow perspective: Several algorithms were used
to generate a process model, namely the «a-miner, the
heuristics-miner, the inductive miner, and the fuzzy miner.
In general, the heuristics- and a-miner generated spaghetti
models. The inductive miner produced a simpler model, but
it had some misconceptions regarding the defined workflow
(e.g., Resolved and Closed appearing in parallel when they
are performed sequentially). Due to these issues, we turned to

@®

In Progress
823

Waiting for Testing
697

Pull Request
239

Resolved
829

Closed
718

®

(b) ProjectY (20% activities, 0% paths)

Fig. 3: Process models generated by Disco.

Jtraces

O3Etetine tog TEE) OPMTEE) OPETEE) OPE TEE) REEE

Fig. 4: A case variant of ProjectX, illustrating a pattern visible in both projects.

the fuzzy miner. Fig. 3 shows that, in both projects, the main
path taken by an issue is: Open — In Progress — Waiting for
Testing — Testing — Resolved — Closed.

Afterwards, some case variants were studied, which revealed
another common pattern in both projects: a loop of four activ-
ities before the issue is eventually Resolved and Closed. Fig.
4 shows an example. The sequence starts with the activities
Open — In Progress — Waiting for Testing — Testing, which
are then repeated several times before the issue is Resolved
and Closed. At first sight, this could point to the agile nature
of the process, which may require multiple attempts until a
user story is successfully implemented. However, this is not
the case, as we will see later.

3) Performance perspective: Performance was analyzed
based on the models displayed in Fig. 5, which show the time
elapsed between states. In both projects, most transitions take

/ 27.8 13.5wks \ 6.1d
In Progress Waiting Approval
instant instant
3.1d
Waiting for Merge
instant

50.1 hrs

73.4d Waiting for Documentation
instant

19.8 hrs

13.9 hrs

Waiting for Testing
instant

3.9d
Testing
instant

8.8hrs

Resolved
instant
35.8 wks
Closed
instant

(a) ProjectX

some hours or even a few days to complete. In ProjectX, the
transitions Open — Waiting Approval and Open — Resolved
last on average 13.5 weeks (three months) and 73.4 days (two
and a half months), respectively. However, the main bottleneck
is the transition Resolved — Closed, which takes on average
35.8 weeks to complete (more than eight months). In ProjectY,
although the transition Waiting for Testing — Testing takes
17.6 days (two and a half weeks) to complete, the major
bottlenecks are Waiting Approval — Open (28.8 days, almost a
month), Open — In Progress (37.3 days, more than a month),
and Resolved — Closed (45.9 days, one and a half months),
which is also a bottleneck transition in ProjectX.

4) Organizational perspective: There are 50 assignees and
46 reporters in ProjectX. The assignees R2 (36.12%), R4
(15.57%), and R5 (12.68%) are the most active, followed by
R3, R6, RI, R11, R23 and R33, each responsible for 1% to

Open
instant

In Progress 28.8d
instant

59.1 hrs 4.1d 3.7d

Waiting Approval
instant

Waiting for Testing

instant

17.6d

Testing
instant

9.7 hrs

Resolved
instant

459d

Pull Reguest
instant

Closed
instant

®

(b) ProjectY

Fig. 5: Performance perspective for both projects, based on mean duration.

®© @ ©

(a) Handover of Work (b) Sub-Contracting

Fig. 6: Social networks for ProjectX. The central assignee R2 is selected (blue outline).

2

v,

i

'l“

@ A“Ii" %
oo O

/

® @ @
(a) Handover of Work (b) Sub-Contracting

Fig. 7: Social network for ProjectY. The central assignee R72 is selected (blue outline).

10% of the activities. Reporters R2 (32.07%), R4 (22.26%),
and R1 (12.83%) are the most active, followed by R6, R3, and
R11, each responsible for creating between 1% and 6% of the
issues. Other assignees and reporters are responsible for less
than 1% of the activities.

By analyzing the handover of work [19] for ProjectX,
which is displayed in Fig. 6a, it is apparent that R2 is the
main receiver of work. The remaining active assignees also
exchange a lot of work between them, and receive work from
less active assignees, who never receive any work. From the
sub-contracting network in Fig. 6b it is possible to infer that
active assignees subcontract in both directions, and less active
assignees do not subcontract at all. Overall, R2 has a central
role in ProjectX, by working with almost everyone else.

In ProjectY, there are 69 assignees and 97 reporters. As-
signee R72 (42.86%) is the most active, followed by R4
(19.67%) and R73 (14.46%). Along with R32, R52, R58, and
R3, these assignees are responsible for more than 1% of the
activities. R72 is the main reporter (43.35%), followed by R73
(17.74%). R32, R52, R4, R1, R58, R9, R84, and R79 are the
other reporters with more than 1% of activity. Other assignees
and reporters are responsible for less than 1% of the activities.

The social networks generated for ProjectY, presented in
Fig. 7, are almost identical in structure with those of ProjectX.
R72 has the central role in ProjectY.

There are three resources common to both processes: RI,
mainly contributing as a reporter; R3, mainly contributing
as an assignee; and R4, contributing as both reporter and
assignee. The organizational structure for both projects seems
to be similar. One assignee has a central role in the process.
A group of other assignees also work a lot together. Finally,
a group of less active assignees only contribute to one or two
cases, passing work to the more active group.

E. Evaluation

After analyzing the results, these were evaluated in a vali-
dation session with a project manager linked to both projects.

Due to the small team size of ProjectX, when workers go
on vacation the project becomes idle, which justifies the gaps
in process activity. There are less idle periods in ProjectY
because its team is larger. Nevertheless, both teams have been
growing to the size advocated by Scrum (three to nine people),
which led to the reduction in case duration on both projects.

As observed, most issues are closed on Monday mornings
in both projects. This is explained by the fact that this task is
performed during Scrum review meetings, which take place in
that period for both projects. Hence, based on this pattern it
was possible to determine the timing of these meetings.

Also, while validating the results with the project manager,
the following Scrum roles were identified based on the orga-
nizational perspective analysis:

o the Scrum master is the person with the central role and
more activity;

o the development team is the small group of active as-
signees that mostly work together;

« the product owners are the people with very little activity,

only opening issues.

In addition, analysis of the dotted chart revealed that testers
(which is not a Scrum-related role) resolve issues, and Scrum
masters close issues. Two of the three assignees that are
common to both projects compose the testing team, which is
shared between projects. This happens because these teams are
task-specific and not cross-functional as advocated by Scrum.

Team self-organization could not be assessed with process
mining tecniques. However, the project manager revealed that
the organization does not follow this Scrum principle, and that
Scrum masters are responsible for assigning issues to workers.
Yet, all issues were assigned to some person, as advocated by
Scrum.

Some bottlenecks were found in the performance perspec-
tive. In both projects, issues are only closed before launching
a release into production, which is a task performed by
Scrum masters. This explains the bottlenecks in the transition
Resolved — Closed. In ProjectY, stories are only tested near
the release date, which justifies the bottleneck in the transition
Waiting for Testing — Testing. Nevertheless, this behavior does
not comply with Scrum, since stories should be completely
finished by the end of a sprint. Remaining bottlenecks are
mostly related to the transition from the product backlog to a
sprint backlog.

The fact that issues are closed only before launching a
release into production explains the periods where a lot of
issues are closed, highlighted with the black rectangles in
Fig. 1 and Fig. 2: each period correspond to the launch of a
new release. ProjectY has more releases than ProjectX because
its team is larger, meaning that the team is able to finish work
faster. In contrast to ProjectY, where stories are only tested
near the release date, the product is continuously tested in
ProjectX. However, both teams conduct exhaustive tests near
the release date, thus explaining the red rectangles in Fig. 1,
which correspond to two ProjectX releases where a lot of bugs
were created.

Issues follow the same main path in both projects. Despite
the path being consistent with a Scrum approach, the loop
pattern found in Fig. 4, expressing the iterations over the
implementation of an issue, does not represent an agile be-
havior. Instead, it shows that even though only a small portion
of issues are being explicitly reopened, they are not being
correctly developed (as they are frequently sent for testing
with many bugs). As the loop pattern is repeated too many
times, it might be leading to bottlenecks in the process. This
was a valuable information for the project manager, who was
not aware of this phenomenon.

Overall, despite the similarities in the way both projects are
managed and organized, there are differences regarding the
respective Scrum implementation.

IV. DISCUSSION

From this case study, it was possible to derive useful insights
regarding the use of process mining to evaluate the implemen-

tation of Scrum practices based on event logs extracted from
a case-handling system.

With regard to the first research question (Which Scrum
practices can be discovered using process mining tech-
niques?), we were able to conclude the following:

1y

2)

3)

4)

5)

6)

7)

It is possible to check whether all issues are prioritized
and assigned to some resource.

It is possible to identify Scrum roles, even though they
are not recorded in the case-handling system. With
process mining, we were able to identify these roles by
analyzing the organizational perspective. This revealed
that all Scrum roles are implemented.

It is possible to assess the cross-functionality of the team
based on patterns in the dotted chart. By validating the
results with the project manager, we discovered that only
testers resolve issues, which in turn are closed only by
Scrum masters. This revealed that teams do not share
responsibilities.

It is hard to evaluate if a team is self-organized based
on the information contained in an event log.

One of the principles of the agile methodology is that
customers and teams should continuously collaborate
throughout the project. With process mining, it was
possible to see that customers (with the product owner
role) are opening issues, but no evidence was found
regarding their ongoing collaboration with the team.

The analysis of Sprint review meetings can be based on
the dotted chart, where it is possible to detect the timing
when issues are resolved (a task performed during this
meeting). However, no evidence was found regarding
other types of Scrum meetings.

No insights could be derived regarding Scrum artifacts,
and the event log did not allow to determine if stories
are closed by the end of the sprint.

With regard to the second research question (Which issues
should be taken into account when extracting and analyzing
event logs with unstructured behavior from Scrum processes?),
we discuss below a set of lessons learned about using process
mining analysis to assess and improve Scrum practices:

1y

2)

The analyst should explore the case-handling system
to understand which data can be exported and how.
Because Scrum is not a structured process, the event
data to be considered should go beyond the usual case
id/task/resource/timestamp to include all attributes that
can be useful regarding Scrum practices in an organiza-
tion.

During mining and analysis, the analyst should examine
the results with close attention, since important insights
can arise unexpectedly. For example, in this case study

3)

4)

5)

6)

7

8)

we discovered the timing of Sprint review meetings
based on a dotted chart pattern, which was not expected
beforehand.

Discussing the results and findings with someone from
the organization is a crucial step. In this case study,
validation with the project manager provided a better
understanding of how Scrum is implemented in the
organization. Not only was this helpful for our research
team, but also for the organization itself, as the study
revealed some problems in the Scrum implementation
that can now be internally addressed.

By using event data extracted from a case-handling
system, some Scrum practices can be directly verified,
like the fact that all issues are prioritized and assigned
to some resource. Nevertheless, most insights arise from
a deeper analysis of the results.

Some features of the control-flow model, for example
the presence of loops, may point to issues that deserve
further investigation. In the case study, loops detected
during analysis showed that projects can present several
iteratively reworked issues, which is not compliant with
the Scrum standard, despite the fact that the fraction
of reopened issues is small. The number of times that
this loop pattern repeats varies, which was confirmed by
manually verifying all case variants. A process mining
technique that could automatically detect these loops
and present them in a more business-friendly way would
allow an easier identification of these problems.

Analyzing event data from several projects can reveal
if the implementation of Scrum practices is consistent
across the organization, or if it is specific to a single
project. While being based on the analysis of an event
log extracted from a particular system (Jira Software),
this can be generalized to other case-handling systems
as well, as long as the event log data can be extracted.

A Scrum implementation can be assessed by verifying
the presence (or absence) of advocated practices. This
is what we did in the case study. However, the degree
of implementation of Scrum practices should also be
addressed, but this is more difficult to quantify based on
an analysis of the event log.

In general, when analyzing agile processes, the mean-
ingful output of process mining is the verification of
best practices, and not the process behavior itself. How-
ever, these practices are more abstract and harder to
analyze than structured business processes, and require
knowledge of Scrum and of the inner workings of the
case-handling system. The organizational perspective
becomes more important than the control-flow perspec-
tive, as the best practices advocate that the focus should
be on people, rather than on process execution. Thus, it

becomes important to analyze the relationship between
workers and their role in the project to derive meaningful
conclusions about how to improve their effectiveness.

V. CONCLUSION

Agile methodologies provide the means to address the
challenges faced by the software development industry, but
their implementation is hard to assess from the events recorded
in a case-handling system. Process mining can play a key
role in such analysis by extracting process models and user
behavior from those events.

In this work, a case study was conducted in an IT or-
ganization, where process mining was applied to extract in-
formation from two software projects that follow the Scrum
methodology. The lessons learned in this case study can be
useful when conducting similar analysis in other organizations
and projects, especially (but not limited to) those supported
by Jira Software. Moreover, some challenges were identified
regarding the application of process mining to study software
development processes based on data from case-handling
systems. In our view, the combination of these three contexts
should be further investigated.

A more immediate goal is to improve the Web application to
extract more data from issues. This could help in discovering
some of the practices that were not identified in this case study.
The use of process mining techniques that can automatically
detect loops would facilitate the identification of problems
which do not comply with Scrum. Even though the Scrum
methodology is not fully supported by Jira Software, we are
working on introducing Scrum meetings and roles as a Jira
Software add-on which, in the future, will allow this part of
the process to be studied as well.

REFERENCES

[1] S. Overhage, S. Schlauderer, D. Birkmeier, and J. Miller, “What makes
IT personnel adopt Scrum? A framework of drivers and inhibitors to
developer acceptance,” in 44th Hawaii Intl. Conf. on System Sciences
(HICSS), 2011, pp. 1-10.

[2] A. Marchenko and P. Abrahamsson, “Scrum in a multiproject en-
vironment: An ethnographically-inspired case study on the adoption
challenges,” in Agile 2008 Conference. IEEE, 2008, pp. 15-26.

[3] K. Schwaber, Agile Project Management with Scrum. Microsoft Press,
2004.

[4] W. M. P. van der Aalst, M. Weske, and D. Griinbauer, “Case handling:
a new paradigm for business process support,” Data & Knowledge
Engineering, vol. 53, no. 2, pp. 129-162, 2005.

[5] W. M. P. van der Aalst, Process mining: Data Science in Action.
Springer, 2016.

[6] R. S. Mans, M. H. Schonenberg, M. Song, W. M. van der Aalst, and
P. J. M. Bakker, “Application of process mining in healthcare — a case
study in a Dutch hospital,” in Biomedical Engineering Systems and
Technologies, ser. CCIS, vol. 25. Springer, 2009, pp. 425-438.

[7]1 D. R. Ferreira and M. Mira da Silva, “Using process mining for ITIL
assessment: a case study with incident management,,” in Proceedings of
the 13th Annual UKAIS Conference, 2008.

[8] B. Vazquez-Barreiros, D. Chapela, M. Mucientes, M. Lama, and
D. Berea, “Process mining in IT service management: A case study,”
in International Workshop on Algorithms & Theories for the Analysis
of Event Data (ATAED), ser. CEUR Workshop Proceedings, vol. 1592,
2016, pp. 16-30.

[9]

[10]

(11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

A. M. Lemos, C. C. Sabino, R. M. E. Lima, and C. A. L. Oliveira,
“Using process mining in software development process management:
A case study,” in IEEE International Conference on Systems, Man, and
Cybernetics (SMC). 1EEE, 2011, pp. 1181-1186.

M. L. van Eck, X. Lu, S. J. J. Leemans, and W. M. P. van der Aalst,
“PM?: A process mining project methodology,” in Advanced Information
Systems Engineering, ser. LNCS, vol. 9097, Springer. Springer, 2015,
pp. 297-313.

M. Jovanovié, A.-L. Mesquida, N. Radakovi¢, and A. Mas, “Agile
retrospective games for different team development phases,” Journal of
Universal Computer Science, vol. 22, no. 12, pp. 1489-1508, 2016.

K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and
D. Thomas, “Manifesto for agile software development,” 2001.
VersionOne, “10th annual state of agile report,” Tech. Rep., 2016.

M. Dumas, W. M. P. van der Aalst, and A. H. ter Hofstede, Process-
Aware Information Systems: Bridging People and Software Through
Process Technology. Wiley, 2005.

W. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
discovering process models from event logs,” IEEE Transactions on
Knowledge and Data Engineering, vol. 16, no. 9, pp. 1128-1142, 2004.
S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discovering
block-structured process models from event logs containing infrequent
behaviour,” in Business Process Management Workshops, ser. LNBIP,
vol. 171. Springer, 2014, pp. 66-78.

A. J. M. M. Weijters, W. M. P. van der Aalst, and A. K. Alves
de Medeiros, “Process mining with the heuristics miner-algorithm,”
Eindhoven University of Technology, BETA Working Paper Series WP
166, 2006.

C. W. Giinther and W. M. P. van der Aalst, “Fuzzy mining — adaptive
process simplification based on multi-perspective metrics,” in Business
Process Management, ser. LNCS, vol. 4714. Springer, 2007, pp. 328—
343.

W. M. P. van der Aalst and M. Song, “Mining social networks: Uncov-
ering interaction patterns in business processes,” in Business Process
Management, ser. LNCS, vol. 3080. Springer, 2004, pp. 244-260.

W. M. P. van der Aalst, B. F. van Dongen, C. W. Giinther, A. Rozinat,
E. Verbeek, and T. Weijters, “ProM: The process mining toolkit,” in
BPM Demo Track, ser. CEUR Workshop Proceedings, vol. 489, 2009.
C. W. Giinther and A. Rozinat, “Disco: Discover your processes,” in
BPM Demo Track, ser. CEUR Workshop Proceedings, vol. 940, 2012,
pp. 40-44.

W. Poncin, A. Serebrenik, and M. van den Brand, “Process mining
software repositories,” in 15th European Conference on Software Main-
tenance and Reengineering (CSMR). 1EEE, 2011, pp. 5-14.

S. Bala, C. Cabanillas, J. Mendling, A. Rogge-Solti, and A. Polleres,
“Mining project-oriented business processes,” in International Confer-
ence on Business Process Management. Springer, 2015, pp. 425-440.
V. Rubin, C. W. Giinther, W. M. P. van der Aalst, E. Kindler, B. F.
van Dongen, and W. Schifer, “Process mining framework for software
processes,” in Software Process Dynamics and Agility, ser. LNCS, vol.
4470. Springer, 2007, pp. 169-181.

V. Rubin, I. Lomazova, and W. M. P. van der Aalst, “Agile development
with software process mining,” in International Conference on Software
and System Process (ICSSP). ACM, 2014, pp. 70-74.

M. Bozkaya, J. Gabriels, and J. M. v. d. Werf, “Process diagnostics:
A method based on process mining,” in International Conference on
Information, Process, and Knowledge Management, Feb 2009, pp. 22—
217.

A. Syamsiyah, A. Bolt, L. Cheng, B. F. A. Hompes, R. P. Jagadeesh
Chandra Bose, B. F. van Dongen, and W. M. P. van der Aalst, Business
Process Comparison: A Methodology and Case Study. Springer, 2017,
pp. 253-267.

C. W. Giinther and W. M. P. van der Aalst, “Process mining in case han-
dling systems,” Proceedings of the Multikonferenz Wirtschaftsinformatik,
2006.

W. M. P. van der Aalst and P. J. S. Berens, “Beyond workflow manage-
ment: Product-driven case handling,” in International ACM SIGGROUP
Conference on Supporting Group Work, 2001, pp. 42-51.

M. Song and W. M. P. van der Aalst, “Supporting process mining by
showing events at a glance,” in 17th Annual Workshop on Information
Technologies and Systems (WITS), 2007, pp. 139-145.

