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Abstract—The use of deep learning is facilitating a wide range
of data processing tasks in many areas. The analysis of fusion
data is no exception, since there is a need to process large amounts
of data collected from the diagnostic systems attached to a fusion
device. Fusion data involves images and time series, and are
a natural candidate for the use of convolutional and recurrent
neural networks. In this work, we describe how CNNs can be used
to reconstruct the plasma radiation profile, and we discuss the
potential of using RNNs for disruption prediction based on the
same input data. Both approaches have been applied at JET using
data from a multi-channel diagnostic system. Similar approaches
can be applied to other fusion devices and diagnostics.

Index Terms—Nuclear Fusion, Plasma Diagnostics, GPU Com-
puting, Deep Learning

I. INTRODUCTION

Deep learning [1] has become the state-of-the-art approach
to many problems, especially those related to image process-
ing and natural language processing. Convolutional neural
networks (CNNs) have been extremely successful in image
classification [2, 3], image segmentation [4, 5] and object
detection [6, 7], to cite only a few examples. On the other
hand, recurrent neural networks (RNNs) have been used for
speech recognition [8, 9], language modeling [10, 11] and
machine translation [12, 13], among other applications.

In general, it could be said that CNNs are appropriate
for problems involving images and computer vision, whereas
RNNS are especially useful for text and other sequential data,
including time series [14]. However, this distinction is not
clear-cut since, for example, it is possible to analyze images
with RNNs [15], it is possible to perform sequence learning
with CNNs [16], and there are hybrid models combining
features from both CNNs and RNNs [17].

For the purpose of this work, we will focus on two
broad categories: (1) image processing for plasma tomography,
which will be addressed with CNNs, and (2) time series anal-
ysis for disruption prediction, which will be addressed with
RNNs. In both cases, it becomes apparent that deep learning
can play a key role in the compute-intensive tasks associated
with the processing of large amounts of data originating from
fusion diagnostics.
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Here, we focus on JET (Joint European Torus), a D-shaped
tokamak with a major radius of 2.96 m and a minor radius of
1.25-2.10 m. JET has a vast assortment of diagnostics, includ-
ing magnetic coils to measure plasma current and instabilities,
interferometers and reflectometers to measure plasma density,
Thomson scattering to determine the electron temperature,
spectroscopy to measure ion temperature, and X-ray cameras
to measure electromagnetic radiation, among others.

In this work, we will be using on a specific diagnostic, the
bolometer system [18], which measures the plasma radiation
on a poloidal cross-section of the fusion device. The signals
collected from the bolometer system can be used to monitor
the plasma state across an entire pulse. Several phenomena,
such as impurity transport and accumulation at the plasma
core, can be detected from the bolometer signals. Since these
impurity-related phenomena are one of the most frequent
precursors of disruptions at JET, this diagnostic plays an
important role in disruption studies as well.

The data coming from this diagnostic is the basis for tomo-
graphic reconstructions that provide a 2D image of the plasma
radiation profile. The reconstruction process itself is time-
consuming. However, with a CNN trained on a large collection
of sample tomograms, it becomes possible to produce those
results much faster and with high accuracy.

In addition, the bolometer signals can be used to study
disruption precursors. With a RNN trained on these signals,
it is shown that bolometer data can provide a useful input for
disruption prediction, both in terms of probability of disruption
and time remaining to an impending disruption.

The paper is structured as follows. Section II provides a
brief overview of the bolometer system, where the data is
coming from, and of the tomographic method used at JET to
reconstruct the plasma radiation profile. Section III describes
the CNN that has been developed for plasma tomography, and
the results that can be obtained with it. Section IV describes
the RNN that has been developed for disruption prediction, and
discusses its effectiveness when compared to other methods.
Finally, Section V concludes the paper.

II. THE BOLOMETER SYSTEM AT JET

One way to measure plasma radiation is through the use of
bolometers, in particular foil bolometers [19]. These sensors
consist of a thin metal foil (about 10 um) coupled with a
temperature-sensitive resistor. As the metal foil absorbs radia-
tion power, its temperature changes and there is a proportional
change in resistance. Overall, such system provides a linear
response to the absorbed power, in the range from ultraviolet
(UV) to soft X-ray [20].
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The use of bolometers at JET dates back to the mid-1980s
when the first bolometer system was installed [21]. This was
followed by the development of other bolometer systems in the
mid-1990s. One of these systems (KB3) was mainly directed
at the divertor region at the bottom of the vessel. It has been
subject to several improvements [22], and it is still partly in
use today. Originally, KB3 included 7 cameras in the divertor
region, each with 4 lines of sight.

In the late 1990s and early 2000s, the current bolometer
system (KB5) was developed [18, 23, 24]. This diagnostic
comprises one horizontal camera and one vertical camera,
with 24 bolometers each. The lines of sight for each of these
cameras are arranged in such a way that 16 channels cover
the whole plasma, and 8 channels are directed towards the
divertor region, as illustrated in Figure 1. This means the
system provides an overview of the plasma region, and also a
more detailed view of the divertor region.
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Fig. 1. KBS5 cameras and lines of sight. KB5SH and KB5V are not in the same
octant, so we assume that the plasma is toroidally symmetric. The lines of
sight for KB3 are also shown. (EUROfusion figures database JG06.330-1c)

In addition, the vertical camera has 8 extra bolometers that
can be used as reserve channels, so in total the system provides
24 + 24 + 8 = 56 lines of sight over the plasma.

Technically, each bolometer measures the line-integrated
radiation along its line of sight. From the bolometer measure-
ments, it is possible to reconstruct the 2D plasma radiation
profile using tomography techniques. The underlying principle
is the same as computed tomography (CT) in medical appli-
cations [25], but the reconstruction method is different due to
the scarce number of lines of sight available.

The method that is used at JET [26] actually predates the
current bolometer system, and has been used with previous
generations of soft X-ray diagnostics. In essence, it uses an
iterative constrained optimization algorithm that minimizes
the error with respect to the observed measurements, while
requiring the solution to be non-negative. To do so, it solves
a generalized eigenvalue problem in order to find a solution
as a function of Lagrange multipliers, and then adjusts these
Lagrange multipliers iteratively until the non-negativity con-
straints are satisfied [27]. Figure 2 shows a sample result.

This iterative method takes a significant amount of compu-
tation time. The total run-time depends on the actual data, but
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Fig. 2. Example of a tomographic reconstruction for pulse 92213 at t=50.0s.
Many of such reconstructions have been used as training data in this work.

it can take from several minutes up to 1 hour to produce a
single reconstruction. Given that the bolometer system has a
sampling rate of 5 kHz, and a JET pulse typically lasts for
about 30 seconds, it could take several years to compute all
the tomographic reconstructions for a single pulse.

In the next section, we describe how deep learning was used
to train a CNN that is able to compute 3000 reconstructions
per second on a Graphics Processing Unit (GPU).

III. DEEP LEARNING FOR PLASMA TOMOGRAPHY

In general, CNNs have a structure comprising multiple
convolutional layers. Each convolutional layer applies several
filters (in the form of a small kernel or sliding window) to the
input. The purpose of a filter is to detect a specific feature,
so its output is called a feature map. When CNNs are used
for image classification, the first convolutional layer operates
directly on the input image, while subsequent layers operate
on the feature maps produced by previous layers.

In addition to the convolutional layers, CNNs contain sub-
sampling layers. There is usually one subsampling layer after
each convolutional layer. The purpose of having subsampling
is to make the feature maps smaller and allow their number to
progressively increase after each convolution, while keeping
the network under a manageable size.

The output from these convolutional and subsampling layers
is usually a large number of small feature maps. These feature
maps are then flattened and connected to a couple of dense
layers. The main idea behind image classification with CNNs
is to have a first stage of convolutional layers to extract
meaningful features from the input image, and a second stage
of dense layers to perform the actual classification based on
those features [28].

In summary, the input to a CNN is typically a 2D image and
its output is a 1D vector of class probabilities. However, for
the purpose of plasma tomography, it would be useful to have
a network that takes a 1D vector of bolometer measurements
as input, and produces a 2D image of the plasma radiation
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profile as output. In the literature, the inverse of a CNN
has been referred to as a deconvolutional network, and it
has found applications in image segmentation [4] and object
generation [29]. For example, by specifying the class label and
the camera position (1D data), a deconvolutional network is
able to generate an object (2D image) of the specified class
from the given camera view [30].

A. Network Architecture

Figure 3 shows the deconvolutional network developed for
plasma tomography. It receives the bolometer measurements
(a total of 56 lines of sight from both cameras) and produces
a reconstruction of the plasma radiation profile with the same
resolution as the tomographic reconstructions that are routinely
produced at JET from bolometer data (196115 pixels).

After the network input, there are two dense layers with
7500 nodes, which are reshaped into a 3D tensor of size
25x15x20. This shape can be interpreted as comprising
20 features maps of size 25x15. By applying a series of
transposed convolutions, the feature maps are brought up to a
size of 200x 120, from which the output image is generated
by one last convolution. (The output shape of 200x120 is
trimmed to 196x 115 by a simple slicing operation.)

Essentially, a transposed convolution is the inverse of a
regular convolution in the sense that, if a sliding window
would be applied to the output, the result would be the feature
map given as input. It can be shown that learning a transposed
convolution is equivalent to learning a weight matrix that is
the transpose of a regular convolution, hence the name of this
operation [31].

In Figure 3, the upsampling of feature maps from 25x 15 up
to 200x 120 is achieved by having each transposed convolution
operate with a stride of two pixels (i.e. one pixel is being
skipped between each two consecutive positions of the sliding
window). This means that the output is four times larger than
the input, except for the very last convolution which uses a
stride of one to keep the same size.
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B. Network Training

To train the network shown in Figure 3, we gathered all
the tomographic reconstructions that have been computed at
JET for the experimental campaigns from 2011 (since the
installation of the ITER-like wall [32]) to 2016 (the time of
the last completed campaign). We found 1219 pulses with
a total of 27894 reconstructions (an average of about 23
reconstructions per pulse), and we split these pulses into
80% for training, 10% for validation, and 10% for testing.
The splitting was done by pulse in order to avoid having
(possibly similar) reconstructions from the same pulse across
the training, validation and test sets. Such splitting yielded
a training set of 976 pulses with 22236 reconstructions, a
validation set of 122 pulses with 2736 reconstructions, and
a test set of 121 pulses with 2922 reconstructions.

The network was trained on an NVIDIA Titan X GPU
using accelerated gradient descent (Adam [33]) with a small
learning rate (10™*) and a batch size of 436 samples. The
batch size was chosen to be a perfect divisor of the number
of training samples (22236/436 = 51) in order to avoid having
any partially filled batch in the training set.

The network was trained to minimize the mean absolute
error between the output and the sample tomograms that were
provided for training. Figure 4 shows the evolution of the
training loss and of the validation loss across 1600 epochs.
The best result was achieved at around epoch 800, with a
minimum validation loss of 0.0128 MW m~3. To appreciate
the small scale of this error, it can be compared to the dynamic
range of the reconstruction in Figure 2 (1.0 MW m™3).

To assess the quality of the reconstructions produced by
the network, it is possible to use image comparison metrics,
such as structural similarity (SSIM) [34] or peak signal-to-
noise ratio (PSNR) [35]. On the test set, the network achieves
an SSIM value of 0.936+0.061 (the maximum is 1.0) and a
PSNR of 35.4+7.2 dB, which is roughly similar to the error
introduced when compressing an image to JPEG format.
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Fig. 3. Deconvolutional neural network for plasma tomography. The input layer receives all the 56 channels from the bolometer system and the output layer

provides an image with 196x 115 resolution.
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Fig. 4. Loss and validation loss during training of the deconvolutional
network. The minimum validation loss, and the epoch at which it occurred,
are indicated by dashed lines.

C. Full-pulse reconstructions

Once trained, the network can be used to generate the
reconstruction for any given pulse at any given point in time.
In fact, given the bolometer data from an entire pulse, the
network can generate a batch of reconstructions for every point
in time. This way, it is possible to analyze the evolution of
the plasma radiation profile across a full experiment.

As an example, Figure 5 shows the reconstruction of pulse
92213 from t=48.1s onwards, with a time step of 0.1s (due
to space restrictions only). The first and second rows show a
focus of radiation developing on the outer wall, which seems
to slowly fade away (row 3), only to reappear later at the
plasma core with particularly strong intensity (rows 3—4).

t=48.25 t=48.3s

t=48.45

t=48.55 t=48.65 t=48.75

t=48.85

This radiation peaking stays at the core for a relatively long
time (at least from ¢=52.3s to t=53.4s), while changing slightly
in shape during that interval. Eventually, it also fades away as
the heating systems are being turned off. However, just as
it seemed that the plasma was about to soft land, there is a
disruption at around t=53.7s.

For comparison, Figure 6 shows the plasma current and
heating power for this pulse. The disruption is clearly marked
by a sudden current quench.
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Fig. 6. Plasma current (top) and heating systems (bottom) for pulse 92213,
including NBI (neutral beam injection), ICRH (ion cyclotron resonance
heating) and ohmic heating.

Disruptions are one of the major problems affecting toka-
maks today. While the dynamics of disruptions are not yet
fully understood, one of the main reasons is believed to be
impurity accumulation at the plasma core, which decreases the
core temperature and eventually leads to core collapse [36].

To some extent, this phenomenon is clearly visible in Fig-
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Fig. 5. Reconstructions of pulse 92213 from ¢=48.1s to t=54.0s with a time step of 0.1s. A video of the reconstructions for this pulse can be found in the

supplementary material online.
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ure 5. It is therefore not surprising that the bolometer system
has played an key role in several disruption studies at JET [37-
40], either by providing a measurement of total radiation, or
by providing the tomographic reconstruction at a few specific
points in time. With the proposed network, it becomes possible
to quickly generate a series of reconstructions that provide a
detailed view of how the plasma profile evolves across time.

IV. DEEP LEARNING FOR DISRUPTION PREDICTION

Over the years, a number of different approaches to dis-
ruption prediction have been developed, including the use of
neural networks [41-44], support vector machines [45-47]
and decision trees [48, 49], among other techniques. In all of
these approaches, the prediction model takes a set of global
plasma parameters as input (e.g. the plasma current, the locked
mode amplitude, the total input power, the safety factor, the
poloidal beta, etc.) and outputs a probability of disruption, or
the remaining time to a predicted disruption.

More recently, the use of random forests [50, 51] and even
deep learning [52, 53] have shown promising results, but the
input signals that are provided to these models still consist
of about ten global plasma parameters derived from different
diagnostics.

In the previous section, we have seen that a bolometer
system with multiple lines of sight is able to capture some of
the physical phenomena associated with plasma disruptions.
From such bolometer data, it is possible to reconstruct the
internal shape of the plasma radiation profile and observe, for
example, an impurity concentration at the plasma core, which
could be the precursor to an impending disruption.

This suggests that the sensor measurements coming from the
bolometer system could, in principle, be used for disruption
prediction. Figure 7 shows the bolometer signals for the same
pulse that was reconstructed in Figure 5. The disruption is
clearly visible at around ¢=53.7s and it would be easy to detect
it from these signals. However, the point is whether it is be
possible to predict the disruption before it occurs.

As can be observed in Figure 7, before the disruption
there is a period of about one second where the bolometer
signals display a distinct pattern from the rest of the pulse.
This corresponds to the radiation peaking at the plasma core.
The bolometers that are yielding the strongest signals (e.g.
KB5V channel 9, KB5V channel 5, and KB5H channel 14)
are pointing precisely to that region.

In general, any model that is used for disruption prediction
should be able to detect these or other kinds of precursors
from data. In previous works, most authors used a set of global
plasma parameters to learn and detect disruption precursors.
Here, we will be using the bolometer signals, which provide
a spatial view of the plasma radiation profile.

In addition to the spatial view, another dimension that will
be important to consider is time. As shown in Figure 7, the
disruption precursor develops and endures for a relatively long
time (on the order of a second). Therefore, it will be important
to consider not only the bolometer measurements at a certain
point in time, but also the preceding measurements in order
to have a sense of how the plasma behavior is developing and
how far it is from a possible disruption.
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Fig. 7. Bolometer signals for pulse 92213. The channels that become more
active before the disruption are indicated in the figure.

With both dimensions, the input to the predictor will be a
sequence of vectors, where each vector contains the bolometer
measurements at a given point in time. This closely resembles
the way in which RNNs are used in natural language pro-
cessing. In that case, the input is also a sequence of vectors,
where the sequence is a text sentence and each vector is a
word mapped into a vector space of a certain dimensionality,
through a process called word embedding [54].

A. Network Architecture

A RNN is able to handle sequences of vectors by processing
each vector at a time. The key distinctive feature of RNNs is
that they maintain an internal state, and this internal state is fed
back to the input along with the next vector in the sequence.
A RNN can therefore “remember” features from past vectors
in the sequence.

In simple RNNs, such “memory” is necessarily short-lived,
since the network keeps updating its internal state as it receives
new vectors, and gradually “forgets” about vectors that are
in the distant past. To provide RNNs with the ability to
maintain long-term dependencies, more advanced architectures
have been proposed, namely the long short-term memory
(LSTM) [55, 56]. In a LSTM, information can be carried
across multiple time steps, and that information can be updated
or forcefully forgotten at each time step, through the use of
an input gate and a forget gate, respectively.

More recently, the combination of CNNs and RNNs has
been shown to be very effective in tasks such as video
processing [57, 58] and text classification [59, 60]. In essence,
the CNN works as a feature extractor before passing the data
to a RNN for sequential processing.

In this work, we use a similar approach to preprocess the
bolometer data through a series of 1D convolutional layers
before handing them over to a LSTM. As in a traditional
CNN, we use subsampling after each convolutional layer to
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progressively reduce the length of the time sequence, while
increasing the number of filters that are applied to it.

The resulting network is shown in Figure 8. The input has
a shape of 200x56, with the first being the sequence length,
and the latter being the vector size. The sequence length of
200 time steps correspond to a 200 Hz downsampling of the
bolometer signals. With a sequence of 200 time steps at 200
Hz, this means that one second of bolometer data is being
considered in order to produce a prediction.

As before, the vector size of 56 corresponds to the number
of lines of sight available in the bolometer system. Some
of these lines correspond to unused reserve channels, which
yield always a measurement of zero. Others correspond to
bolometers which are known to be faulty, providing erratic
measurements. In these cases, the network is expected to filter
out those channels, so the number of filters used in the first
convolutional layer (32) is actually less than the number of
input channels (56), as shown in Figure 8.

In subsequent layers, the number of filters doubles after
each convolution. A kernel size of 5 time steps is used in
all convolutions, together with a max-pooling operation in
order to reduce the sequence length to half. Eventually, the
convolutional part of the network yields a sequence of 21 steps,
where each step contains a 128-feature vector.

This sequence of feature vectors is handed over to a LSTM
with 128 units, which returns the last output after having
processed the whole sequence. One final dense layer combines
these vector elements into a single output. This output can be
either the probability of disruption or the time to disruption,
as described next.

B. Network Training

The network can be trained for two different objectives:

o Classification — To predict the probability of disruption
(i.e. the probability that the current pulse will end in a

channels

/—‘ﬁ

56

ConvlD + 32

MaxPooling

ConvlD +

disruption), the last layer of the network will contain a
sigmoid activation to produce a value between O and 1.
The loss function used to train the network will be the
binary cross-entropy [61], and the network will be trained
using both disruptive and non-disruptive pulses.

o Regression — To predict the time to disruption (i.e. the
remaining time up to an incoming disruption in the
current pulse), the last layer of the network will have
a linear activation, so that it can produce positive as well
as negative values within any range. The loss function
used to train the network is the mean absolute error, and
the network is trained using disruptive pulses only.

To train these two variants, we gathered the bolometer
signals for all pulses in the experimental campaigns from
2011 to 2016. In addition, we identified the disruptive pulses
and gathered their disruption times from the JET disruption
database [62]. Pulses with deliberate (i.e. intentional) disrup-
tions were excluded from the dataset, as is done in other
works [63]. Eventually, this yielded a total of 9323 pulses,
1444 of which were disruptive.

Again, we divided these pulses into 80% for training, 10%
for validation, and 10% for testing. To train the network for
probability of disruption, we used a data generator to draw
samples at random time points from each pulse and feed those
samples to the network, together with a binary label to indicate
whether the sample was drawn from a disruptive or non-
disruptive pulse. To train the network for time to disruption,
we used a data generator to draw samples from disruptive
pulses only, together with a label to indicate the time interval
between the sample time and the disruption time.

In both cases, a batch size of 500 samples was used, where
each sample is a 200x 56 sequence of vectors. The sample time
is defined as the latest time step in that sequence. Each training
epoch was defined as a run through 50 batches. For validation
purposes, we used samples drawn at regular intervals from the
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Fig. 8. Recurrent neural network for disruption prediction. The input layer receives a full second of data (200 samples) from the bolometer signals (56
channels) and the output layer provides a single scalar prediction, which can be either the time-to-disruption or the probability of disruption.
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Fig. 9. Loss and validation loss during training of the recurrent network. The
minimum validation loss, and the epoch at which it occurred, are indicated
by dashed lines.

validation pulses.

Figure 9 shows the training loss and the validation loss for
both variants. For probability of disruption, training ran for
2200 epochs, with the best result being achieved at around
epoch 1100 with a validation loss (binary cross-entropy) of
0.172. For time to disruption, training ran for 4400 epochs
with the best result being achieved at around epoch 2200 with
a validation loss (mean absolute error) of 2.452 seconds.

Although these loss values may appear to be somewhat high,
it should be noted that they are averaged over many samples.
For samples that are far away from the disruption, the loss
will be high because it is difficult to predict when or if a
disruption will occur. This will be compensated by a small loss
for samples that are near the disruption. Thus, the prediction
will be more accurate when it matters the most.

In particular, the validation loss for the probability of
disruption (left chart in Figure 9) seems to be quite noisy.
This has to do with the fact that random samples are being
drawn from both disruptive and non-disruptive pulses. In some
cases (e.g. at the beginning of a pulse) samples from disruptive
and non-disruptive pulses will be similar, despite having op-
posite labels. This makes the network weights oscillate across
training in order to meet such contradictory labels.

C. Full-pulse predictions

To illustrate the results that can be obtained with the trained
network, Figure 10 shows the step-by-step predictions of the
probability of disruption and of the time to disruption on an
entire pulse. The disruption time is marked with a vertical
dashed line at t=50.72s. For comparison, Figure 11 shows the
same predictions for a non-disruptive pulse.

Some important observations can be made from these and
other similar results:

o The disruption is characterized by a point in time where
the probability of disruption is close to 1.0 and the time to
disruption is close to 0.0. Therefore, when the probability
of disruption approaches 1.0 and the time to disruption
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Fig. 10. Time to disruption (#td) and probability of disruption (prd) for a
disruptive pulse. The time of disruption is indicated by a vertical dashed line.
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Fig. 11. Time to disruption (#td) and probability of disruption (prd) for a
non-disruptive pulse. The time-to-disruption reaches zero, even though there
is no disruption.

approaches 0.0 at the same time, this is a strong indicator
that a disruption is possibly imminent.

« It often happens that the probability of disruption is high
at some intermediate points during the pulse, even for
non-disruptive pulses. However, such indicator alone is
not meaningful if the time to disruption is still high.

« It also happens that the time to disruption reaches zero for
non-disruptive pulses. (Since this variant of the network
has been trained exclusively on disruptive pulses, it will
keep predicting that a disruption will occur even for non-
disruptive pulses.) However, such indicator alone is not
meaningful if the probability of disruption is low.

From these observations, it follows that the probability of
disruption and the time to disruption should both be taken
into account when deciding to take some action. For example,
when the probability of disruption exceeds a certain threshold
and the time to disruption falls below another threshold, an
alarm could be raised to trigger the disruption mitigation valve
(DMYV) [64] which, in a matter of a few milliseconds, will
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inject a massive amount of gas to cool down the plasma.!

However, even when using both predictors, there might
be some false alarms. For example in Figure 11, at around
t=51s, the probability of disruption rises and the time to
disruption decreases in a way that an alarm could be triggered,
even though the pulse is non-disruptive. Also, there might be
situations where the network might not be able to predict a
disruption on time (missed alarms).

D. Prediction accuracy

As with any binary classification problem, there will be true
positives (successfully predicted disruptions), true negatives
(correctly predicted absence of disruption), false positives
(false alarms), and false negatives (missed alarms). Table I
shows how the alarm-triggering thresholds on probability of
disruption and on time to disruption affect the prediction
results on the test set, which includes 932 pulses. For conve-
nience, the results are being reported in terms of percentage.
As a reference, the test set contains 157 (16.85%) disruptive
pulses, and 775 (83.15%) non-disruptive pulses.

TABLE 1
PREDICTION RESULTS ON THE TEST SET WITH DIFFERENT
ALARM-TRIGGERING THRESHOLDS

& prd > 0.95 prd > 0.90 prd > 0.85 prd > 0.80
TP: 7.73% | TP: 9.66% | TP: 10.62% | TP: 11.27%

id < 05| TN: 8058% | TN: 79.83% | TN: 79.51% | TN: 78.54%
= FP: 258% | FP: 333% | FP: 3.65% | FP: 4.61%
FN: 9.12% | EN: 7.19% | EN: 622% | EN: 5.58%

TP: 8.15% | TP: 9.98% | TP: 11.16% | TP: 12.02%

ud < 10| TN 8026% | TN: 79.51% | TN: 7897% | TN: 76.93%
= FP: 290% | FP: 3.65% | FP: 4.18% | FP: 6.22%
FN: 869% | FN: 687% | FN: 5.69% | FN: 4.83%

TP: 9.12% | TP: 10.84% | TP: 11.70% | TP: 12.34%

wd < 15| TN:7994% | TN: 7897% | TN: 77.90% | TN: 76.29%
= FP: 322% | FP: 4.18% | FP: 526% | FP: 6.87%
FN: 7.73% | FN: 601% | FN: 515% | FN: 4.51%

TP: 955% | TP: 11.59% | TP: 12.34% | TP: 12.88%

wd < 205 | TN: 7940% | TN: 7822% | TN: 77.15% | TN: 75.54%
= FP: 3.76% | FP: 494% | FP: 6.01% | FP: 7.62%
FN: 730% | EN: 526% | EN: 451% | FN: 3.97%

The results in bold (diagonal) illustrate the trade-off between
false alarms (FP) and missed alarms (FN). As the threshold on
probability of disruption becomes lower, and as the threshold
on time to disruption becomes higher, the network is able to
catch more disruptions, but at the expense of raising more
false alarms. A good balance seems to be prd > 0.85 and ttd
< 1.5, where both precision TP/(TP+FP) = 69.0% and recall
TP/(TP+FN) = 69.4% yield a similar value.

These results are below those reported in the literature. For
example, the disruption predictor that is currently being used
at JET (APODIS) has a recall of 85.38% and a false alarm
rate (FP) of 2.46% [66]. However, it should be noted that
APODIS is based on a set of global plasma parameters, while
our prediction is based on the bolometer signals alone. The
conclusion is that the bolometer signals are informative for
disruption prediction, and they could possibly be combined

'An alternative approach that is currently being developed for disruption
mitigation at JET and other tokamaks is shattered pellet injecton [65].

with other inputs in order to improve the accuracy of current
predictors.

In recent works [67, 68] the bolometer signals have been
used to extract one or two peaking factors of the radiation pro-
file, which were then combined with other global parameters
for disruption prediction. An advantage of using deep learning
is that, in principle, it should be possible to extract these and/or
other relevant features directly from the raw signals.

E. Warning time

Every time a disruption is correctly predicted, it is possible
to calculate the warning time as the difference between the
disruption time and the time at which the alarm was triggered.
For the alarm-triggering thresholds prd > 0.85 and #d < 1.5
we have already seen that the recall (i.e. the percentage of
correctly predicted disruptions) is TP/(TP+FN) = 69.4%. The
question now is how far ahead, in terms of warning time, those
disruptions are predicted.

Figure 12 shows the cumulative fraction of correctly pre-
dicted disruptions as a function of warning time. As expected,
it is more difficult to predict disruptions far away from the
disruption time (i.e. with higher warning times). However,
in global terms, this yields an average warning time of
about 2 s, which is significantly higher than that of APODIS
(0.35 s). This suggests that a recurrent network applied to
the time series of bolometer data may contribute to detecting
disruption-relevant behavior earlier than other methods.

100%
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40%

cumulative fraction (%)

20% 4
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Fig. 12. Cumulative fraction of correctly predicted disruptions vs. warning
time, for a recurrent neural network based on bolometer data.

V. CONCLUSION

In this work, we have applied deep learning to a single,
multi-channel diagnostic at JET. Based on the signals from
this diagnostic, we used a CNN to reconstruct the plasma
radiation profile, and a RNN to perform disruption prediction.
The CNN provides results with high accuracy, and is therefore
a reliable alternative to more time-consuming methods. On the
other hand, the RNN does not reach the performance of other
methods presently used at JET, but it provides the prospect of
improving current disruption predictors.
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Both of these tasks could benefit from the use of data from
multiple diagnostics. For example, it is possible to use the
magnetic equilibrium to improve the plasma radiation profile,
and this could be provided as an additional input to the CNN.
On the other hand, disruption prediction can be made more
accurate by taking into account several plasma parameters,
and these could be additional inputs to the RNN.

In the future, it should be possible to build large deep
learning models using data from many diagnostics in order
to gain insights into the plasma behavior. The approaches
described herein are just the beginning, and it is possible to
envision that these approaches can be extended and applied to
other fusion devices with minimal adaptations.
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