

Deep Learning for Plasma Tomography and Disruption Prediction

D. R. Ferreira, P. J. Carvalho, H. Fernandes, and JET Contributors IPFN / IST, University of Lisbon, Portugal

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Deep Learning

Convolutional Neural Networks (CNNs)

Y. Lecun et al., Gradient-based learning applied to document recognition, 1998

A. Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks, 2012

Deep Learning

- **Recurrent Neural Networks (RNNs)** ${}^{\bullet}$
 - speech recognition ۲
 - language modeling •
 - machine translation •
 - time series •

•

Deep Learning

- Convolutional Neural Networks (CNNs)
 - image processing
 - e.g. plasma tomography
- Recurrent Neural Networks (RNNs)
 - time series analysis
 - e.g. disruption prediction

• Reconstruction of the 2D plasma radiation profile

• "Deconvolutional" neural network

D. R. Ferreira et al., Full-pulse Tomographic Reconstruction with Deep Neural Networks, 2018

- Dataset
 - JET ILW pulses 80128-92504
 - ~28k sample reconstructions
 - 80% training, 10% validation, 10% test
- Training
 - loss function: mean absolute error
 - min. validation loss: 0.0128 MW m⁻³
- Test set
 - loss: 0.0147 MW m⁻³
 - SSIM: 0.936
 - PSNR: 35.4 dB

JET pulse 92213 t=47.00s

D. D. Carvalho et al., Deep Neural Networks for Plasma Tomography with Applications to JET and COMPASS, ECPD 2019

• Full-pulse reconstruction (92213)

Recurrent Neural Network

• Two variants

- probability of disruption (classification)
 - output: sigmoid activation
 - loss: binary cross-entropy
 - training: disruptive and nondisruptive pulses

- time-to-disruption (regression)
 - output: no activation
 - loss: mean absolute error
 - training: disruptive pulses only

- Training
 - min. validation loss
 - probability of disruption: 0.172 (binary cross-entropy)
 - time-to-disruption: 2.45s (mean absolute error)

• Full-pulse prediction (90433)

• Full-pulse prediction (90363)

- Alarm-triggering thresholds
 - example: $(prd \ge 0.85) \land (ttd \le 1.5)$
 - TP: 11.7%
 - TN: 77.9%
 - FP: 5.3% (false alarms)
 - FN: 5.2% (missed alarms)
 - precision: TP/(TP+FP) = 69.0%
 - recall: TP/(TP+FN) = 69.4%
 - comparison: APODIS*
 - recall: 85.4%
 - FP: 2.5% (false alarms)

* Moreno et al., Disruption prediction on JET during the ILW experimental campaigns, 2016

Conclusion

- Several opportunities for deep learning
 - $CNN \rightarrow plasma$ tomography
 - $\mathsf{RNN} \rightarrow \mathsf{disruption}\ \mathsf{prediction}$
- From single to multiple diagnostics
 - magnetic equilibrium \rightarrow CNN
 - plasma parameters \rightarrow RNN
- From JET to other devices
 - CNN \rightarrow JET and COMPASS (*)
 - RNN \rightarrow JET and DIII-D (**)

(*) D. D. Carvalho et al., *Deep Neural Networks for Plasma Tomography with Applications to JET and COMPASS*, ECPD 2019 (**) J. Kates-Harbeck et al., *Predicting disruptive instabilities in controlled fusion plasmas through deep learning*, Nature, 2019