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Abstract—The theory of Normalized Systems addresses the
problem of developing information systems that can evolve over
time, by guaranteeing that each new feature can be implemented
with a limited number of changes that does not depend on
the actual size of the system. The theory is supported by a
software architecture that includes a set of five distinct elements
to implement the application logic. One of those elements is
the workflow element, which represents a sequence of actions
and can be used to implement process behavior based on state
machines. In this work, we propose a different approach to
the implementation of process behavior in Normalized Systems.
Specifically, the approach is based on the use of rules and events
as fine-grained elements to build complex behavior. Our previous
experience in the retail industry suggests that such approach is
capable of dealing with the increasing complexity of business
processes in that sector. We also discuss some details regarding
the implementation of this new architecture on top of a popular
technological platform and its supporting tools.

Keywords—Normalized Systems, Workflow and Business Pro-
cesses, ECA Rules

I. INTRODUCTION

Normalized Systems (NS) [1] is a software engineering
approach to the development of business information systems,
with a special focus on supporting the evolvability of such
systems. In particular, NS theory requires that it must be
possible to implement any added functionality with a fixed
number of changes, in order to guarantee system-theoretic
stability over time [2]. If implementing a new feature requires
an unbounded set of changes, or a number of changes that
depends on the size of the system, then this is referred to as
a combinatorial effect. These effects are undesirable because,
as the system grows over time, it will become too difficult
and costly to change it. NS theory is a means to avoid
combinatorial effects by design.

This is achieved by adopting a set of design principles and a
software architecture that is based on the following elements:

• Data element – represents a data entity with primitive
fields and possible references to other data entities.

• Action element – represents a functional task that con-
sumes and produces data entities as input and output.

• Connector element – encapsulates I/O operations with
external systems during the execution of an action.

• Workflow element – represents a sequence of actions
which are called in a stateful way, by keeping state
between consecutive calls.

• Trigger element – encapsulates the activation of an action
or workflow in an automatic or periodic way.

NS theory ensures stability and evolvability with respect to
a set of anticipated changes to these elements. Specifically,
NS theory supports incremental changes such as creating
additional Data elements, creating additional Action elements,
adding Actions to Workflow elements, etc.1 Through extensive
use of the principle of version transparency (whereby an
element can be replaced by a new version without breaking
other elements), it can be shown formally that this set of
anticipated changes can be performed on a normalized system
without the occurrence of combinatorial effects [2].

A. Problem statement
One of the key elements in this software architecture is the

Workflow element, which allows the embedding of process
logic in a normalized system. Traditionally, this process logic
is specified as a state machine that defines a sequencing of
Actions, and where the execution of each Action brings the
process from a previous state into a new state. In this work,
we argue that the implementation of process logic in this way
actually goes against some of the fundamental principles on
which NS theory is built, namely:

• the principle of having a fine-grained modular structure
which can accommodate changes without requiring an
extensive system overhaul;

• the principle of having low coupling between elements
so that a change in one element has the least potential to
require a change in another element.

As a composition of Actions, the Workflow element is a
coarse-grained construct when compared to the other elements
in the software architecture. It is also a factor of coupling
between Actions, since these must bring the workflow from an
initial state to a desired final state, with every state in between
being both the output state of an Action and the input state of
another Action. This creates a tightly coupled set of Actions
which, in general, will be difficult to reuse in other workflows
or even in different versions of the same workflow. If there is
a change in the process logic, then this change may create a
combinatorial effect that depends on the size of the workflow.

1In this paper we use capitalized words (e.g. Action) when we refer to
specific elements in the software architecture of NS. We use non-capitalized
words (e.g. action) to refer to general concepts beyond the context of NS.



B. Contribution

The goal of this work is to support changes in process logic
while avoiding those combinatorial effects. For this purpose,
we extend the software architecture of normalized systems
with two complementary perspectives: the structural perspec-
tive, and the behavioral perspective. While the structural
perspective is based on the usual Data and Action elements,
the behavioral perspective introduces new elements, namely
the Event element and the Rule element. As will be shown,
Events and Rules are the behavioral counterpart of structural
elements such as Data and Actions. The purpose of introducing
these new elements is to create a fine-grained structure for
implementing process behavior. This is illustrated by means
of an application scenario in the retail industry, and we also
discuss some details regarding its implementation.

C. Paper structure

The paper is organized as follows: Sections II and III
discuss two important principles that justify the need for the
behavioral perspective and also the use of events and rules.
Section IV shows that these rules are conceptually similar
to traditional ECA rules. Section V describes the proposed
architecture, its software elements, the anticipated changes on
those elements, and their run-time interactions. Section VI
describes the application scenario in the retail industry where
the proposed architecture supports several changes to a sales
process. Finally, Section VII discusses the implementation of
a new development framework for normalized systems based
on the proposed architecture.

II. DUALITY OF STRUCTURE AND BEHAVIOR

In the late 1970s, Data Flow Diagrams (DFDs) [3], [4] be-
came a popular tool for system analysis and design. Basically,
DFDs described the data flows across system functions; in the
Yourdon/DeMarco notation [3], functions were represented as
circles and data flows were represented as arrows between
circles. For this technique to be effective, it required the
system to be properly divided into a set of functions; therefore,
having a correct functional decomposition of the system was
as important as having a correct specification of the data flows.
In other words, the structural and behavioral perspectives of
the system were developed in tandem.

Later developments in object-oriented modeling and de-
sign [5] have seen such functional decomposition being refined
into class diagrams, which brought a significant advance in
the structural perspective. On the other hand, the behavioral
perspective was being developed more in the realm of process
modeling and workflow management [6], although without
settling on a standard language, as each workflow system used
its own modeling language. The development of UML [7]
brought the structural and behavioral perspectives under a
common umbrella, but in separate diagrams; and the efforts
to define a standard process modeling language eventually led
to BPMN [8], which has some similarities to UML Activity
Diagrams, but has been growing to address specific needs
related to the modeling of business processes.

The point that we would like to make here is that the
need for functional decomposition (structural perspective) and
process modeling (behavioral perspective) have always been
present in system analysis and design. One cannot go without
the other, and if in NS theory the structural perspective
is addressed with Data and Action elements for functional
decomposition, the same cannot be said about the behavioral
perspective, where it lacks an equivalent set of fine-grained
elements. In this work, we introduce Events and Rules in
the behavioral perspective, as the dual elements of Data and
Actions in the structural perspective.

III. DUALITY OF STATES AND EVENTS

In the original NS theory [1], processes are modeled as
a state machine where the transition between states takes
place through the execution of Actions. Therefore, a state
corresponds to the moment in time when the execution of
an Action has just finished but the execution of the following
Action has not yet begun. In this context, the execution of a
Action plays the same role as an event that causes a transition
from one state to another. There is one such event between any
two consecutive states, and there is always a state between two
consecutive events. This mutual relationship between states
and events is illustrated in Figure 1.

State a State b State cEvent 1 Event 2... ...Event 3

Fig. 1. States and events

The duality between states and events also exists in other
process modeling languages. For example, in Petri nets [9]
there are places and transitions which play a similar role to
the states and events depicted in Figure 1 (even the notation
is similar, since places are drawn as circles and transitions are
usually drawn as thick bars or rectangles).

This means that whatever behavior that is specified as a
set of states can also be described by focusing instead on
the events between those states. The two descriptions are
equivalent, and this duality has led to two different approaches
to process modeling, namely graph-based approaches that are
based on states and activities, and rule-based approaches that
are based on events and rule processing. A survey of these
modeling approaches can be found in [10].

For the purpose of modeling process behavior in normalized
systems, the difference between the graph-based approach and
the rule-based approach can become significant. The graph-
based approach favors the definition of the process as a whole,
leading to a coarse-grained construct (e.g. a workflow engine,
or the Workflow element) that controls process execution from
end to end. On the other hand, the rule-based approach favors
a decentralized, piecewise definition of the process, where the
behavior emerges from the collective effect of the application
of several rules. These rules (and their firing events) are fine-
grained constructs that can be combined in several ways to
implement a variety of workflow patterns.



IV. ECA RULES

The idea of using Event-Condition-Action (ECA) rules to
define and implement process behavior goes back to the 1990s,
with pioneering works such as TriGSflow [11], WIDE [12],
SWORDIES [13], and EVE [14]. Since then, several authors
have proposed and discussed the benefits of using ECA rules
for describing and implementing business processes [15]–[17].
Among these benefits, there are some characteristics of ECA
rules that are widely recognized and that are of special interest
in the context of normalized systems:

• ECA rules are inherently flexible in the sense that they
can be changed or adapted to new requirements, and it
might even be possible to do this without interrupting
running processes.

• ECA rules deal with error handling and exceptions in a
natural way. Since errors and exceptions are also events,
the rules to handle them can be defined in a similar way
to any other rule.

• In traditional graph-based approaches, the transition to a
new state usually occurs upon completion of an activity.
However, with a rule-based approach it is possible for a
single activity to be the source of multiple events, with
new rules being fired at any point during execution.

Basically, an ECA rule has the following form:

ON event IF condition THEN action

This means that when a certain event occurs, a condition is
evaluated and, if the condition is true, some action is invoked.
When the action raises an event, another rule will be fired,
creating a chain of actions and events that is the basis for
implementing sequential behavior.

Other common workflow patterns, such as those found
in [18], can also be implemented. For example, an AND-split
(parallelism) can be implemented with two rules that are fired
by the same event but execute different actions. As another
example, a XOR-split (branching) can be implemented with
two rules that react to the same event but the condition of one

rule is the logical negation of the other, so that only one action
will be performed.

In some application scenarios, it may be useful to extend
ECA rules with multiple events, multiple conditions, and/or
multiple actions. With multiple events it is possible, for
example, to have AND-joins (synchronization), such as having
a rule that is fired only after two different events have occurred;
with multiple conditions it is possible to have more elaborate
expressions to decide whether to execute an action or not;
and with multiple actions it is no longer necessary to define
multiple rules when several activities must be done in response
to the same event/condition.

In our proposed architecture, we will use these extensions in
a purely AND-logic, meaning that every event must occur and
every condition must be true in order to execute every action;
otherwise, no action will be executed at all. An OR-logic can
be built by defining multiple, alternative rules (i.e. rules that
respond to different events, or rules that respond to the same
event but have different conditions). At this point, it should
be noted that the firing of rules is non-deterministic, i.e. there
is no predefined order for the evaluation of rules that are fired
by the same event/condition.

V. PROPOSED ARCHITECTURE

Figure 2 illustrates the proposed architecture, which com-
prises a structural perspective and a behavioral perspective.
The structural perspective contains the standard Data and
Action elements from NS theory, which provide a fine-grained
structure for the functional decomposition of a system. On
the other hand, the behavioral perspective introduces the new
Event and Rule elements to provide a fine-grained structure
for the implementation of process behavior.

The standard Connector and Trigger elements are also
included, albeit in different perspectives. The Connector el-
ement supports the interaction with external systems; since
Connectors are called by Actions, they have been included
in the structural perspective. On the other hand, the Trigger
captures events of interest from the outside; since Triggers

ActionData Event Rule

Connector Trigger

Data store

External
system

Structure Behavior

produces/
consumes raises

creates

fires

invokes

carries

uses

Existing elements in NS theory

New elements

Fig. 2. Overview of the proposed architecture
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{ (Event ϵ Condition) ˄ (Condition ϵ Rule) => (Event ϵ Rule)}

Fig. 3. Class diagram with inheritance and aggregation relationships

instantiate Events that fire Rules, they have been included in
the behavioral perspective.

The way these elements interact with each other can be
described as follows:

• Actions manipulate Data. Data elements can be both
consumed and produced by Actions, as in standard NS
theory. However, here we introduce another kind of
output from Actions: Events.

• Actions raise Events. The most common scenario is for
an Action to raise an Event upon completion. However,
it is also possible for an Action to generate Events at any
point during its execution.

• Events carry Data. An Event has a payload comprising
zero, one, or more Data elements. Such Data are inserted
in the Event when it is created. Once the Event is raised,
its payload can no longer be changed.

• Events fire Rules. Once an event is raised, there may be
zero, one, or more Rules that are listening for that Event.
All such rules will be evaluated concurrently, in non-
deterministic order.

• Rules have Conditions. Conditions are logical expressions
over the content of Data elements carried by Events. If a
Rule has multiple conditions, all those expressions must
evaluate to true for the Rule to execute its Actions.

• Rules invoke Actions. A Rule may execute a set of one or
more Actions. Execution is asynchronous, meaning that
the Rule invokes each Action and returns immediately
without waiting for the Action to complete.

• Rules pass Data as input to Actions. When a Rule invokes
an Action, it may pass zero, one, or more Data elements
as input. Each of these Data elements must have been
brought to the Rule by one of its firing Events.

• Connectors and Triggers support external interactions.
Connectors support interactions initiated from the inside,
and Triggers support interactions initiated from the out-

side. Asynchronous interaction patterns such as request-
response and solicit-response [19] can be implemented
through a combination of Triggers and Connectors.

Figure 3 provides a more detailed view of these elements
and the relationships between them. For brevity, only inheri-
tance and aggregation relationships are shown; Connector and
Trigger elements have also been left out.

One of the fundamental principles of NS theory is version
transparency [2], and this principle is supported here by having
all elements descend from the base class Element, which
provides a Name and Version.

A number of subclasses are derived from this base class.
There are two additional elements that have been included to
further refine this structure: one is the Field element, which is a
component of the Data element, and the other is the Condition
element, which is a building block of Rules.

In the Data element, the purpose of having Fields is to
support changes in data types and also the addition/removal
of Fields in a Data element, which are common changes in
practice. In the Condition element, there is a list of Events
to indicate which Events (actually, their Data) will be needed
to evaluate the Condition. If a Rule has a Condition and that
Condition needs certain Events, then these Events must belong
to the set of firing Events of that Rule. We indicated this
restriction with a constraint in the diagram.

For each element depicted in Figure 3, the list of anticipated
changes is as follows:

• Field element – change of data type;
• Data element – addition and removal of Fields;
• Event element – addition and removal of Data;
• Action element – addition and removal of Data and

Events;
• Condition element – addition and removal of Fields;
• Rule element – addition and removal of Events, Condi-

tions and Actions.



From this description, it may appear that we support both
the addition and removal of elements, while the original NS
theory supports only additions and treats removals as a matter
of garbage collection [20]. In fact, what we support here is
the removal of a reference from a list or array of references.
The element itself continues to exist while there are references
to it. When the last reference is removed, it can be garbage
collected, as advocated by standard NS theory.

VI. APPLICATION SCENARIO

To illustrate how the proposed architecture can be applied
in practice, we turn to our previous experience in the retail
industry. For many years, the retail industry was a relatively
straightforward type of business, but the introduction of pro-
motional campaigns and customer loyalty programs signifi-
cantly increased the complexity of this business. Nowadays,
the retail industry is characterized as being a highly dynamic
business environment, where there is a constant struggle to
maintain a leading edge over competitors. In terms of IT
and supporting systems, it is common to spend several weeks
or even months on the implementation of a new feature, to
be used in a customer engagement campaign that lasts only
two weeks or even less. NS theory seems to be a perfect fit
to deal with the fast pace at which requirements change in
this scenario, especially when focusing on the promotions and
customer loyalty systems.

A. Sales process without promotions

In the first stage of this case study, we focus on a sales
process without any promotional campaigns. The goal is to
identify the basic software elements that will also be used in
subsequent stages, where the sales process grows in complex-
ity as promotional campaigns are added.

The process will have to interact with an external point-of-
sale (POS) system2, which raises different kinds of events:

• BeginSaleEvent – this marks the beginning of a sales
transaction, and is equivalent to the beginning of a new
transaction in a database system.

• AddProductEvent – this marks the moment when a prod-
uct is added to the sales basket. It can also be used
to remove products from the basket, if the quantity is
negative. Usually, a product is introduced (or cancelled)
by scanning a barcode or by manual input on the POS
keypad. Other variants involve the manual introduction
of quantity, dynamic barcodes (for multiple units of the
same product in a single pack) and weight scales (for
products sold by weight).

• RequestTotalEvent – when all products have been intro-
duced in the basket and the customer is ready to pay, the
POS system requires an intermediate operation with the
purpose of calculating all the sales subtotals and present
the final value to the customer.

2For an example of a POS system, see e.g.: https://www.toshibatec-ris.com/
products overseas/pos system/. (TOSHIBA TEC Retail Information Systems
is currently a leading provider of POS solutions after having acquired IBM’s
POS terminal business in 2012.)

• AddPaymentEvent – when the sale has been paid, the
POS system requires the execution of an operation to
register the payment and update the basket accordingly.

• EndSaleEvent – this marks the end of a sales transaction,
and is equivalent to a commit in a database system.

Table I shows these Events together with the Rules that they
fire, the Actions invoked by those Rules, and the output Events
raised by those Actions.

TABLE I
ELEMENTS FOR THE SALES PROCESS

POS Event Rule Action Raised Events

BeginSaleEvent BeginSaleRule BeginSaleAction
BeginSaleSuccess
BeginSaleFail

AddProductEvent AddProductRule AddProductAction
AddProductSuccess
AddProductFail

RequestTotalEvent RequestTotalRule RequestTotalAction
RequestTotalSuccess
RequestTotalFail

AddPaymentEvent AddPaymentRule AddPaymentAction
AddPaymentSuccess
AddPaymentFail

EndSaleEvent EndSaleRule EndSaleAction
EndSaleSuccess
EndSaleFail

At this stage, the process is mostly concerned with the man-
agement of data in the basket. These data can be represented
as one or more Data elements as shown in Figure 4. The
AddProductAction appends a new SalesLine to the Basket, and
the AddPaymentAction sets the PaymentLine in the Basket.

SalesLinesPayment

Basket

SalesLines : SalesLine[]
Payment : PaymentLine
Total : decimal

SalesLine

Barcode : string
Description : string
Quantity : decimal
UnitPrice : decimal

PaymentLine

Code : string
Description : string
Value : decimal

*

Fig. 4. Data elements for the sales basket (simplified)

B. Sales process with direct discounts

In the second stage of this case study, we modify the sales
process to include the possibility of having direct discounts
on some products. These are the simplest kind of promotions
in the retail sector, so they are a good candidate to illustrate
an incremental evolution of the previous process.

Typically, the way to implement direct discounts in the retail
industry is to have a list of existing promotions and, given
a particular basket, to look for applicable promotions to the
products contained in that basket. For this purpose, we need to
introduce a new Data element to represent a direct promotion.
In addition, the Basket will now have two more attributes and
each SalesLine may have a reference to a Promotion. The new
data elements are illustrated in Figure 5.

The implementation of direct discounts requires the intro-
duction of two new Rules. A first Rule checks whether there



*

M4SalesLines

Basket.Version2

SalesLines : SalesLine[]
Payment : PaymentLine
SubTotal : decimal
DiscountTotal : decimal
Total : decimal

SalesLine.Version2

Barcode : string
Description : string
Quantity : decimal
UnitPrice : decimal
Promotion : Promotion
Discount : decimal

Promotion

Code : string
Barcode : string
Type: {percentage|value|fixedprice}
Discount : decimal

Promotion

Fig. 5. Data elements for direct discount promotions

is a promotion for a product (SalesLine) that has just been
added to the Basket. If a promotion is found, then a second
Rule applies the discount to that SalesLine. Table II shows the
new elements to be added to the sales process.

TABLE II
ADDITIONAL ELEMENTS FOR DIRECT DISCOUNTS

Event Rule Action Raised Events

AddProductSuccess FindPromotionRule FindPromotionAction
FindPromotionSuccess
FindPromotionFail

FindPromotionSuccess ApplyPromotionRule ApplyPromotionAction
ApplyPromotionSuccess
ApplyPromotionFail

C. Sales process with “take x, pay y” promotions

In the third stage of this case study, we focus on the
possibility of having a different type of promotion which takes
into account multiple sales lines in the basket. This type of
promotions are usually called basket promotions.

The “take x, pay y” promotion is a well-known basket
promotion that allows a customer to buy x units of a certain
product but pay only a fraction (y/x) of their total price. This
is implemented by having two dedicated fields: one is the
TakeQuantity field which stores the minimum product quantity
that must exist in the basket in order to apply this promotion;
the other field is OfferQuantity, which defines how much
quantity is offered to the customer every time the promotion
is applied. Applying this promotion results in a discount being
added to one or more sales lines.

Since individual sales lines can be canceled during a sale,
the application of this promotion must occur at a later stage
of the sale transaction, when the amount of products in the
basket can no longer change. Therefore, this promotion must
be applied on the RequestTotalEvent, after all products have
been scanned and the basket is considered closed.

With the introduction of this new promotion, the possibility
of having multiple promotions targeted at the same product
arises and a conflict can occur. Therefore, promotions must
be prioritized, which requires the use of a Priority field. The
calculation of direct discount promotions as products are being
scanned can be maintained but, when the total is requested,
other promotions can prevail, overriding the existing direct
discount promotions.

For example, given two promotions targeted at the same
product – a direct promotion offering a 10% discount with

*

SalesLines

Basket.Version2

SalesLines : SalesLine[]
Payment : PaymentLine
SubTotal : decimal
DiscountTotal : decimal
Total : decimal

SalesLine.Version2

Barcode : string
Description : string
Quantity : decimal
UnitPrice : decimal
Promotion : Promotion
Discount : decimal

DirectDiscountPromotion

Type: {percentage|value|fixedprice}
Discount : decimal

TakeXPayYPromotion

TakeQuantity : integer
OfferQuantity : integer

Promotion.Version2

Code : string
Barcode : string
Priority : integer

Promotion

Fig. 6. Data elements for “take x, pay y” promotions

priority 2; and a “take 3, pay 2” promotion with priority 1
(higher priority) – then the direct discount of 10% will be
offered at each input of such product, but if there are 3 units
or more of that product in the basket, the second promotion
will replace the first promotion when the total is requested.

The implementation of basket promotions requires a refac-
toring of the data elements in order to introduce a new version
of the Promotion data element that can support both types of
promotions, as illustrated in Figure 6.

In particular, the new Promotion element contains the fields
that are common to both promotions (Code for the promotion
code, and Barcode for the product code) as well as an
additional field to indicate Priority. For direct promotions, the
Type and Discount fields continue to exist, but are now placed
in a subclass of Promotion. The same happens with “take x,
pay y” promotions, which have their own separate subclass
with TakeQuantity and OfferQuantity fields.

Finally, to support basket promotions it is necessary to
intercept the RequestTotalEvent and execute intermediate ac-
tions to find and apply matching promotions based on product
quantities, before the actual total is calculated by RequestTo-
talAction. Table III shows the changes to the process.

TABLE III
CHANGES TO SUPPORT BASKET PROMOTIONS

Event Rule Action Raised Events

RequestTotalEvent FindBasketPromRule FindBasketPromAction
FindBasketPromSuccess
FindBasketPromFail

FindBasketPromSuccess ApplyBasketPromRule ApplyBasketPromAction
ApplyBasketPromSuccess
ApplyBasketPromFail

ApplyBasketPromSuccess RequestTotalRule RequestTotalAction
RequestTotalSuccess
RequestTotalFail

VII. IMPLEMENTATION

Originally, the development framework for normalized sys-
tems was implemented over a J2EE platform based on Java
technology and structured as a 4-Tier Web application ar-
chitecture [1]. Unfortunately, this reference implementation
is not publicly available, making it difficult for the wider
community to understand how the concepts of NS theory can



be transformed into actual application code. Our approach
in this work was to develop a prototype implementation of
the proposed architecture by leveraging the rapid prototyping
capabilities of the .NET Framework and Visual Studio.

In particular, the C# programming language, the .NET
Framework, and the Visual Studio IDE were chosen for the
following main reasons:

• the .NET compilers and certain components of the .NET
Framework have been recently open-sourced3;

• it is possible to achieve a tight integration with Visual
Studio through its SDK4 and extensibility tools;

• it provides sophisticated code-generation capabilities
through the use of T4 templates5;

• in general, this platform and its tools offer great capabil-
ities for rapid application development (RAD).

A. Defining the software elements

In our implementation, the software elements (Data, Ac-
tions, Events, Rules, etc.) are defined in an XML6 file which is
then validated against an XSD7 schema definition. This XSD
schema defines each element as a complexType that contains
attributes and sequences of other elements. For example, the
Data element extends a base type Element (which provides
Name and Version), and contains a sequence of Field Ele-
ments. In essence, the XSD schema enforces the inheritance
and aggregations relationships shown earlier in Figure 3.

A series of integrity constraints are also enforced after XSD
validation. For example, one of such constraints is the one
indicated in Figure 3: if an Event belongs to a Condition, and
the Condition belongs to a Rule, then the Event must also
belong to the Rule. Some constraints could have been verified
using key and keyref mechanisms available in XSD. However,
for more complicated constraints, such as the one above, it
becomes more convenient to check them using C# and LINQ8.
With LINQ, we write queries over object collections in order
to verify that the element definitions are free of errors.

The process of translating the XML descriptor file into
actual application code involves a series of stages as illustrated
in Figure 7:

1) Syntactic checks: the XML descriptor file is saved with a
.nsd extension and is validated against the XSD schema.

2) Definition instantiation: the elements in the XML de-
scriptor file are instantiated as C# objects using XML
deserialization.

3) Semantic checks: integrity constraints are verified on the
object instances with the help of C# and LINQ.

4) Template expansion: the source code is generated with
the application of T4 templates to the object instances
created from the XML descriptor file.

3Project “Roslyn” on GitHub.
4Software Development Kit (SDK)
5Text Template Transformation Toolkit (T4)
6Extensible Markup Language (XML)
7XML Schema Definition (XSD)
8Language-Integrated Query (LINQ)

Stage 1: Syntactic check 

Stage 2: Definition instantiation

Stage 3: Semantic checks

Stage 4: Template expansion

XSD validation

XML deserialization

C# + LINQ

T4 -> C# code

XML 
descriptor
(.nsd file)

Schema
definition
(.xsd file)

Source 
code

(.cs file)

T4 
template
(.tt file)

Fig. 7. Processing stages for code generation

B. Template expansion

Once the first three stages are complete, the element defi-
nitions have been transformed into C# objects in memory. We
then use a set of T4 templates (one for each type of element)
to generate the source code for the application. Initially, we
considered the option of using XSLT9 to generate the source
code from the XML descriptor file, but T4 revealed to be more
adequate in this scenario.

In essence, a T4 template is a mixture of text blocks and
control blocks that specify how to generate an output text file.
For example, a T4 template can generate multiple repetitions
of the same text block by means of a control block with a
loop. The generated output can be a text file of any kind, such
as a Web page, a resource file, or program source code in any
language. A T4 template can therefore be seen as a “program”
that generates source code.

In our T4 template, both the text blocks (the source code
to be generated) and the control blocks (the instructions to
generate the code) are written in C#. The T4 template is
processed by special component available in Visual Studio,
called TextTemplatingFilePreprocessor. Given the T4 template and
a set of C# objects (the element definitions), the TextTemplating-
FilePreprocessor generates the source code for the application
based on the properties of those objects.

C. Custom tool

The four stages depicted in Figure 7 are implemented in
a custom tool that we developed for Visual Studio. This
custom tool is invoked whenever there is a change to the
XML descriptor file. In this case, it re-generates the application
source code automatically.

9Extensible Stylesheet Language Transformations (XSLT)



The custom tool was developed as a COM10 component
that implements the IVsSingleFileGenerator interface. Through
this interface, a custom tool transforms a single input file
into a single output file. When the input file is saved, the
custom tool is instantiated and Visual Studio calls its Generate
method, passing a reference to an IVsGeneratorProgress callback
interface that the tool can use to report its progress. This is
used to provide feedback on the expansion process.

The output generated by the custom tool (i.e. the appli-
cation source code) is added to the project together with a
dependency to the input descriptor file.

D. Visual Studio extensions

Although the software elements are to be defined in an
XML descriptor file, we certainly do not intend to require
the developer to write such XML file by hand. Therefore, we
developed a Visual Studio extension that provides a custom
designer to define those software elements with a graphical
user interface. This designer is shown in Figure 8.

Basically, this custom designer is WPF11 user control that
uses a view model that is closely related to the Visual Studio
project subsystem. With this arrangement, it is possible to edit
the descriptor file both in the custom designer and directly
in XML form, while keeping both views synchronized with
each other. It is also possible to edit the file externally while
maintaining synchronization between all editors.

Along with this extension, we also created a custom project
template and a custom project item template. These templates
appear in the “New Project” and “Add New Item” dialog boxes
in Visual Studio, under a new “Normalized Systems” category
that is present in the C# project/item template list.

10Component Object Model (COM)
11Windows Presentation Foundation (WPF)

E. Implementing version transparency

In the generated source code, we envisioned two ways to
implement version transparency: one is through inheritance
(where the new version is a subclass of the previous version)
and another is through containment (where the new version
contains an instance of the previous version).

A simple example is that of changing a Data element to
include an additional Field. With inheritance, the new version
of the Data element will extend the previous version with
the additional Field, while still being able to behave as the
previous version (its base class) for elements that have not
been upgraded yet. With containment, the new class will
contain a private member that is an instance of the previous
version. In this case, it is possible to define a cast operator
that returns the enclosed object, as follows:

public class Version2
{

private Version1 _base;

public Version2()
{

this._base = new Version1();
}

public static implicit operator Version1(Version2 obj)
{

return obj._base;
}

}

This means that an object of Version2 can be implicitly cast
to an object of Version1 in all those elements which have not
been upgraded yet. This approach is preferred, for the main
reason that it introduces fewer dependencies between different
versions of same element.

Fig. 8. Custom designer for creating an XML descriptor file



F. Customizations and harvesting

The generated code is a skeleton for the target application,
and the developer will need to add custom code to the project.
Rather than changing the generated code (which will be re-
generated at each new change to the XML descriptor file),
any custom code is kept in separate source files. The C#
language provides a convenient mechanism to allow this code
separation: using partial classes [21] it is possible to have a
class definition split across multiple source files.

All of the generated C# classes are declared as partial
to provide the possibility of being extended with additional
source files that the developer adds to the project. This
method of using partial classes when dealing with generated
code is available since .NET Framework 2.0 and is a well-
established practice nowadays. For example, it is used by
WinForms, WPF, ASP.NET Web Forms, and many other tools
and designers available in the Visual Studio environment.

Using C# with partial classes avoids having to deal with the
problem of harvesting [22], which consists in extracting any
custom code from a previous version and re-inserting it into a
new version of the application. In our framework, harvesting
is unnecessary for the following reasons:

• there is no need to edit the generated source code to inject
custom code;

• there is no need to have anchor points because the custom
code resides in a separate file;

• the custom code will not be lost with a new expansion
of the descriptor file.

G. Rule engine

The application code (with both the generated and the
custom code) is compiled and linked to a library that pro-
vides common functionality for all target applications based
on our implementation framework. An essential part of that
common functionality is the rule engine, i.e. the component
that manages the execution of the target application at run-
time. This rule engine is based on an event queue on a rule
instantiation mechanism, as depicted in Figure 9.
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Rule 1
Rule 1

Rule 1
Rule 1

Rule 1
Rule 1
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Event 1
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Fig. 9. Rule engine

First, we consider the scenario where each Rule is fired by
a single Event. In this case, the rule engine retrieves an Event
from the queue (in FIFO12 order) and searches for Rules that
are waiting for such Event. It then instantiates such Rules,
evaluates their Conditions, and invokes their Actions if the
Conditions yield true. In turn, these Actions will generate new
Events that will be added to the queue. In the meantime, the
previous Rule instances can be discarded.

For Rules that are waiting for multiple Events, the Rule is
instantiated upon the occurrence of the first Event, and such
instance is left alive, waiting for the remaining events to arrive
(no Conditions are evaluated at this point). The next Event to
arrive must have the same correlation id as the first Event
in order to be associated with that particular Rule instance.
Once all of the required Events with the same correlation id
have arrived, the Rule instance is fired, i.e. its Conditions are
evaluated and its Actions are invoked.

When a Rule instance invokes an Action, it passes its own
correlation id to the Action. In turn, the Action will insert
this correlation id into any Events that it generates during
its execution. This same correlation id will be used as the
correlation id for any new Rule instances that are created from
such Events. In general, Rule instances are selected by the
correlation id of the incoming Event. If no Rule instance with
such correlation id exists, a new one is created.

The use of correlation ids is an import mechanism in service
interactions [23], where it is often necessary to associate an
incoming message with a specific service instance. Here we
use this mechanism to associate an incoming Event with a Rule
instance. This allows multiple instances of the same business
process to be active at the same time, since the Events and
Rules from one process instance are managed separately from
the Events and Rules of other process instances.

VIII. CONCLUSION

In this paper we have proposed an improved architecture for
Normalized Systems based on the idea of using ECA rules to
implement process behavior. This is in contrast with current
NS theory, which uses a graph-based approach to control pro-
cess execution. There has been an ongoing debate in the past
two decades about the advantages of implementing business
processes with rule-based vs. graph-based approaches. Without
getting too much into that debate, we observe that a rule-
based approach fits better with the fundamental principles of
NS theory, which strives for low-coupling and aims at a fine-
grained structure to support changes.

Using an application scenario that draws on practical ex-
perience in the retail industry, we have illustrated how this
rule-based approach facilitates the accommodation of changes
to a business process and supports its increasing complexity
over time. Our current and future work is focused on a proto-
type implementation of the proposed architecture by taking
advantage of specific features of the C# language and the
extensibility of its development environment in order to bring
the benefits of NS theory to a wider range of applications.

12First in, first out (FIFO)
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