
Robust regression with CUDA and its application to plasma reflectometry
Diogo R. Ferreira,1 Pedro J. Carvalho,2 Horácio Fernandes,2 and JET contributorsa)

EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK
1)Instituto Superior Técnico (IST), Universidade de Lisboa, Campus do Taguspark, Avenida Prof. Dr. Cavaco Silva,

2744-016 Porto Salvo, Portugal
2)Instituto de Plasmas e Fusão Nuclear (IPFN), Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais,

1049-001 Lisboa, Portugal

(Dated: 20 November 2015)

In many applications, especially those involving scientific instrumentation data with a large experimental error, it is

often necessary to carry out linear regression in the presence of severe outliers which may adversely affect the results.

Robust regression methods do exist, but they are much more computationally intensive, making it difficult to apply

them in real-time scenarios. In this work, we resort to GPU-based computing to carry out robust regression in a time-

sensitive application. We illustrate the results and the performance gains obtained by parallelizing one of the most

common robust regression methods, namely Least Median of Squares (LMedS). Although the method has a complexity

of O(n3 log n), with GPU computing it is possible to accelerate it to the point that it becomes usable within the required

time frame. In our experiments, the input data comes from a plasma diagnostic system installed at JET (Joint European

Torus, the largest fusion experiment in Europe), but the approach can be easily transfered to other applications.

I. INTRODUCTION

Microwave reflectometry is a plasma diagnostics technique

which can be used to determine the density profile of a

magnetically confined plasma inside a fusion device.1–3 In

essence, reflectometry consists in probing the plasma with an

EM wave of frequency fi, which is reflected at some cutoff

position ri inside the plasma where there is a density ne(ri).
While the density ne(ri) that causes total reflection can usu-

ally be predicted from fi, the actual cutoff position ri where

such reflection occurs is unknown and must be determined

based on the group delay of the reflected wave.

The density profile (i.e. the density values ne(ri) for a

series of positions ri with i = 0, 1, . . . , n− 1) can be ob-

tained by sweeping the plasma with a series of frequencies

f0, f1, ..., fn−1 in the microwave range. In the reflectometry

system installed at JET,4 this series of frequencies is divided

into four bands, known as Q (41.6–53.6 GHz), V (50.4–76.8

GHz), W (72.0–114.6 GHz) and D (108.0–136.8 GHz). In

each band, the probing frequency is increased from fi to fi+1

in fixed steps of 0.01 to 0.02 GHz, and for each fi the system

records the amplitude and phase of the reflected wave, in the

form of an I/Q signal.5 Of special interest is the beat frequency

at which such signal appears to oscillate, which is essentially

proportional to the group delay.6 The beat frequency is usu-

ally obtained through spectrogram analysis of the I/Q signal,

specifically using the short-time Fourier transform (STFT).7

A critical issue in plasma reflectometry is the need to de-

termine how much of the group delay is due to propagation

of the probing signal inside the plasma region, and how much

is due to dispersion in the waveguides that carry the probing

signal to the plasma region. Eventually, the delay component

that is due to dispersion must be subtracted from the mea-

sured group delay in order to obtain the propagation time of

a)See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA

Fusion Energy Conference 2014, Saint Petersburg, Russia

the probing signal within the plasma region.

The delay due to dispersion is usually determined through a

calibration procedure that takes place just before the presence

of plasma, and which consists in sweeping the empty chamber

with the same set of probing frequencies.8,9 When the cham-

ber is empty, the probing signal is reflected on the back wall,10

and since the back wall is at a fixed position, any variation in

group delay must be due to dispersion. This makes it possible

to determine the behavior of dispersion delay across the entire

range of probing frequencies, and to correctly compensate for

its effect at each probing frequency.

Figure 1 shows the results obtained in the Q-band for a sam-

ple sweep of the empty chamber. The x-axis is the probing

frequency, and the y-axis is the beat frequency of the signal re-

flected on the back wall. Since the beat frequency is obtained

by Fourier analysis, the results are displayed in the interval

[− fs
2
, fs

2
[where fs = 200 MHz is the sampling frequency.

40 42 44 46 48 50 52 54

fi (GHz)

−80

−60

−40

−20

0

20

40

60

80

f b
ea

t
(M

H
z)

Q band

data

LMedS

LS

FIG. 1. Beat frequencies for a sweep of the empty chamber (Q-band)

As is apparent in Figure 1, there is an overall linear trend

between probing frequency and beat frequency from the back

wall. It is this linear trend that must be captured for the pur-

2

pose of system calibration. However, Figure 1 also shows that

an ordinary least squares regression (LS) provides a poor fit

to the data. This is due to significant deviations (outliers) that

arise from experimental error or even to the presence of some

particles in the supposedly empty chamber.

A much better fit to the data can be obtained using a robust

regression method such as least median of squares (LMedS).11

This method will be discussed in Section II. However, robust

regression methods are much more computationally intensive

because they must fit a subset of the data (i.e. a subset that

excludes the outliers). Finding this subset is a computationally

demanding task, which becomes a major obstacle when trying

to perform system calibration in real-time.

For example, if the calibration sweep is performed at t = 39
seconds, and the plasma starts entering the chamber at t = 40
seconds, then there is less than 1 second to calculate the beat

frequencies and to find the fitting line. As we will see in this

paper, just finding the fitting line takes more than 1 second

even on a fast CPU. Therefore, we turn to GPU (Graphics

Processing Unit) computing, and in particular to NVIDIA’s

Compute Unified Device Architecture (CUDA)12 to develop

a parallel implementation that is able to carry out the whole

data processing in much less than 1 second, as described in

Section III. At the end of Section III, we also discuss the

use of multi-threading and multiple GPUs to achieve the same

goal, before concluding the paper in Section IV.

II. ROBUST REGRESSION

Ordinary least squares (LS) regression consists in finding

the line that minimizes the sum of the squared residuals over

all data points, i.e.:

min
a,b

n
∑

i=1

[yi − (axi + b)]
2

(1)

where a and b are the line parameters (slope and y-intercept,

respectively) and the data points are represented as (xi, yi)
with i = 1, 2, ..., n. The problem with this method is that

a single outlier can drive the fitting line away from all other

points if its residual is allowed to be arbitrarily large.

There are two main approaches to deal with this problem:

• The first approach is to consider only the h smallest

residuals in the sum of Eq. (1). This method is known

as Least Trimmed Squares (LTS).11 Its advantage is that

the n−h largest residuals (which are possibly due to

outliers) are left out of the sum, and therefore have no

influence on the fitting line. The disadvantage is that

this method is equivalent to finding the subset of h ele-

ments which yields the best fit. Since there are
(

n
h

)

sub-

sets to choose from, in general it is impractical to carry

out an exhaustive search. Some algorithms provide an

approximate solution by resorting to sub-sampling or

random search.13,14 Exact solutions of LTS can be com-

puted in O(n3 log n), and with some refinements this

can be brought down to O(n2 log n).15 Another issue

with LTS is the choice of h, which can be adjusted in

the interval n
2
<h≤n to determine the breakdown point

of the method (i.e. the proportion of outliers that the

method will be able to tolerate).

• The second approach to robust regression is to replace

the sum of squared residues in Eq. (1) with the me-

dian of those squared residues. This method is known

as Least Median of Squares (LMedS).11 Its robustness

comes from the fact that the actual residues that are ei-

ther above or below the median do not matter; only the

midpoint residue is used to decide between several can-

didate solutions. An interesting result about LMedS is

that the slope of the fitting line is equal to the slope

of a line that passes through a pair of data points.16

This suggests that it is possible to find the fitting line

by searching through all pairs of data points (there are

n(n− 1)/2 such pairs). The complexity of this ap-

proach is O(n3 log n),16 but there are some algorithms

for LMedS with O(n2 log n) or even less.17 LMedS has

the largest possible breakdown point (it tolerates up to

50% of outliers in the dataset).

For our purposes, we need not the fastest algorithm, but one

which can be easily parallelized to take advantage of the par-

allel processing capabilities of the GPU. Instead of trying to

converge to a solution through some iterative method, which

would be inherently sequential, from the perspective of paral-

lel computing it is better to explore a search space where each

candidate solution can be evaluated independently from (and

therefore in parallel with) every other.

From the two methods described above, LMedS has some

practical advantages over LTS. In terms of search space, LTS

involves
(

n
h

)

subsets of points, whereas LMedS involves only
(

n
2

)

pairs of points; also, the median is lighter to compute than

the sum of trimmed squares; and, finally, LMedS provides a

high robustness without requiring a choice of h, as in LTS.

For these reasons, we adopted LMedS in our work, and we

use the following simple algorithm which, in practice, yields

good results and can be parallelized with relative ease:

• for each pair of points (xi, yi) and (xj , yj) with j>i,

– calculate the parameters (a, b) of the line y=ax+b
that passes through (xi, yi) and (xj , yj),

– compute the squared residue [yk−(axk+b)]
2

for

every point (xk, yk) in the dataset,

– sort the residues and find the median residue,

• pick the line which yields the least median residue.

From this description it becomes clear why the complexity

of this method is O(n3 log n). There are n(n−1)/2 pairs of

points, so that is O(n2). For each pair, we need to compute

all residues, so that is a further O(n). However, the next step

(sorting the residues) is more computationally intensive since,

on average, it takes O(n log n) to sort an array. Therefore, the

overall complexity is O(n2)×O(n log n) = O(n3 log n).

3

III. IMPLEMENTATION WITH CUDA

CUDA12 is a technology introduced by NVIDIA R© to make

the parallel computing capabilities of GPUs accessible for

general-purpose programming. In general, the GPU has a

lower clock speed than the CPU, but modern GPUs have hun-

dreds or even thousands of cores, so they can largely outper-

form the CPU in certain parallelizable tasks.

CUDA is both an architecture and a programming model.

The architecture refers to the design and internal structure of

the GPU hardware, while the programming model refers to

how software can be developed on top of that hardware.

Internally, GPU cores are organized into processing units

called streaming multiprocessors.18 Each streaming multipro-

cessor has a multiple of 32 cores (the exact multiple depends

on the CUDA architecture version), and a GPU can have as

many as a dozen multiprocessors or even more (the exact

number depends on the GPU model). For example, the mid-

range GeForce GTX 750 Ti has 5 streaming multiprocessors

with 128 cores each, for a total of 640 cores.

In terms of programming model, CUDA revolves around

the idea of dividing work into a large number of independent

threads. The actual work to be carried out by each thread is

programmed into a special function called a kernel. A ker-

nel is basically a C function that executes on the GPU and is

replicated into as many threads as necessary. Each thread has

a unique thread id which can be used to distinguish between

the multiple executions of the same kernel.

Typically, a CUDA kernel reads data from one or more in-

put arrays, and writes data to one or more output arrays. All

of these arrays must be allocated on GPU memory. The thread

id is used to determine exactly on which elements of the input

and output arrays each thread will operate. Thus, by launch-

ing a sufficiently large number of threads, an entire dataset

can be processed in parallel according to the instructions of

a given kernel. The processing can also be done in several

stages, where each stage consists in invoking a different ker-

nel, and the output of one kernel becomes an input to the next,

as we will see below.

A. LMedS with CUDA

The LMedS algorithm described in the previous section can

be parallelized by first noting that each pair of points can be

processed independently of every other. For a given pair of

points (xi, yi) and (xj , yj) we can use a thread to calculate

the parameters of the line y=ax+b that passes through those

two points. Furthermore, each single residue can be computed

independently of every other; for a given point (xk, yk) and

for given line parameters (a, b) we can use a thread to com-

pute the squared residue [yk−(axk+b)]
2
. Finally, to sort the

residues and to find the least median residue there are also

techniques that can employed to take advantage of the parallel

capabilities of the GPU.

The first step is to calculate the line parameters and this is

implemented as illustrated in Figure 2. There are two input

arrays of size n, where n is the number of points. One of the

arrays contains the x-coordinates and the other contains the y-

coordinates of the data points. Each thread picks up a pair of

points (xi, yi) and (xj , yj) and calculates the line parameters

(a, b). Since there are n(n−1)/2 pairs, the number of threads

and the size of the output array is also n(n−1)/2.

... ...

xi

... ...

threads

Beat frequencies

Line parameters

... ...
Probing frequencies

(a,b)

xj

yi yj

FIG. 2. Calculating the line parameters (kernel #1)

The second step is to compute the residues, and we do

this not only for a single line, but for every point and every

line at once. This is implemented in a second kernel, and

is illustrated in Figure 3. Here, there are three input arrays,

namely the x- and y-coordinates that also served as input to

the first kernel, and the line parameters that were produced

as output from the first kernel. Since there are n points and

n(n−1)/2 lines, the total number of residues to be computed

is n2(n−1)/2. Therefore, the number of threads and the size

of the output array is also n2(n−1)/2.

... ...

... ...

Beat frequencies

Line parameters

... ...
Probing frequencies

(a,b)

... ...
Residues

threads

xi

yi

FIG. 3. Computing the residues (kernel #2)

The third step is to sort the residues for each line. For this

purpose we note that, in the previous kernel, the residues for

any given line are stored contiguously in a segment of the out-

put array. Therefore, the sorting must be applied within each

of those segments. Specifically, there are n(n−1)/2 segments

of size n to be sorted. Although there are fast algorithms to

sort a single large array on the GPU,19 here we have many

short segments instead. If possible, this should be done all at

once on the GPU, rather than sorting the segments one-by-one

which, even on the GPU, would be rather slow.

For this purpose we use the Modern GPU library,20 which

provides a segmented sort algorithm that runs efficiently on

the GPU. The algorithm is a variant of the merge sort that does

4

not swap elements across the boundaries between segments.

To use this algorithm, we need to define where the boundaries

are (basically, there is a new boundary after every n elements),

and then the algorithm sorts the entire array at once on the

GPU, as illustrated in Figure 4. This sorting occurs in-place,

so the input and output arrays are the same.

... ...
Residues

Residues

c��FT

S�������� �ort

(Moder� n	
)

... ...

S�������� �ort

(Moder� n	
)

FIG. 4. Segmented sort (with the Modern GPU library)

The fourth step is to collect the median residue for each

line. This is a matter of writing a kernel to retrieve the middle

element from each sorted segment, as depicted in Figure 5.

The input array is of size n2(n−1)/2, and the output array is

of size n(n−1)/2.

... ...
Residues

M��
���

... ...

threads

FIG. 5. Median residue for each line (kernel #3)

In a fifth and final step we need to find the least median

residue (i.e. the minimum) in the array of median residues.

The actual value of such minimum is irrelevant; only its po-

sition matters. Since the segmented sort algorithm that we

applied before keeps the order of segments, we can go back

to the array of line parameters to find, at exactly the same po-

sition, the values of (a, b) that correspond to the least median

residue. This is illustrated in Figure 6. To find the position of

the minimum element in an array in GPU memory, we use the

min element() function available in the Thrust library.21

... ...
L��� �����eters

�������

... ...
thru�s�����m������s()

best par���s���

FIG. 6. Least median residue (with the Thrust library)

B. Performance gain

To assess the performance of our CUDA implementation,

we compare it with a CPU-based version written in C. Basi-

cally, this C version is a direct implementation of the LMedS

algorithm described in Section II; it uses for loops to go

through each pair of points and to compute the residues, and

it uses the quick sort algorithm (qsort function) from the C

standard library to sort the residues.

For benchmarking purposes, we run both versions – the

CUDA version and the C version – on two different machines.

The first machine is a relatively recent desktop PC with an

i5 processor and a mid-range GPU; the second machine is a

server PC with an i7 processor and a somewhat older GPU,

which was top-of-the-line some years ago (2010).

Table I lists the hardware details and the results obtained on

the first machine. There are four frequency bands to be pro-

cessed separately, meaning that LMedS is applied four times

to find the fitting line from the data points in each of those

bands. Table I indicates the number of points and the run time

for both the CUDA version and the C version.

CPU: Intel Core i5-4690 @ 3.5–3.9 GHz

GPU: NVIDIA GeForce GTX 750 Ti with 640 CUDA cores @ 1137 MHz

Frequency band No. points C version CUDA version Performance gain

(GHz) (n) tCPU (ms) tGPU (ms) tCPU/tGPU

Q (41.6–53.6) 143 61.420 3.730 16.5×

V (50.4–76.8) 243 327.417 16.419 19.9×

W (72.0–114.6) 268 441.181 22.276 19.8×

D (108.0–136.8) 268 435.372 22.078 19.7×

Overall 1265.395 64.509 19.6×

TABLE I. Benchmarks on the desktop PC

Except for the Q-band, where the performance gain is

slightly lower, the CUDA version is about 20× faster. The

total time required to process the four bands is about 1.27 sec-

onds on the CPU, but only 64 ms on the GPU.

Table II lists the results obtained on the second machine.

Here, the CPU appears to be slightly slower, but the GPU is

faster. These two effects combine to achieve a performance

gain that, in most cases, is above 40×. In terms of total pro-

cessing time, the CPU takes about 1.45 seconds to process the

four bands, whereas the GPU takes a mere 34 ms.

CPU: Intel Core i7-3820 CPU @ 3.6–3.8 GHz

GPU: NVIDIA GeForce GTX 480 with 480 CUDA cores @ 1401 MHz

Frequency band No. points C version CUDA version Performance gain

(GHz) (n) tCPU (ms) tGPU (ms) tCPU/tGPU

Q (41.6–53.6) 143 70.278 2.527 27.8×

V (50.4–76.8) 243 374.848 8.598 43.6×

W (72.0–114.6) 268 502.891 11.532 43.6×

D (108.0–136.8) 268 499.023 11.449 43.6×

Overall 1447.047 34.120 42.4×

TABLE II. Benchmarks on the server PC

5

C. Multi-threading and multiple GPUs

In the previous benchmarks, we compared our CUDA im-

plementation with a single-threaded C version that did not

take advantage of the fact that it was running on multi-core

processors. (There are four physical cores in both the i5 and

the i7, with the i7 exposing eight logical cores through hyper-

threading.) A natural question is how much performance can

be achieved by making use of multiple cores.

In particular, there are four bands to be processed, and each

band can be handled by a separate thread. On a quad-core pro-

cessor such as the i5, it should be possible to use all of its cores

to process the four bands in parallel. For this purpose, we

developed a multi-threaded C version where the LMedS rou-

tine is inside a thread function that is instantiated four times

with a call to pthread create() from the POSIX threads

library. Although the distribution of work across CPU cores

is not controlled by the program, it is expected that the CPU

will make use of several cores to run those threads.

Table III shows the results of running the multi-threaded C

version on both machines. The performance gain is relative to

the single-threaded C version on the same machine, whose run

times have been reported earlier in Tables I and II. Here, the

processing time for each band is more or less the same. How-

ever, the total processing time is shorter, since it is roughly

equal to the run time of the longest thread. This yields a per-

formance gain of about 2.8×, which is far below of what it is

possible to achieve with the CUDA version.

Desktop PC (i5-4690) Server PC (i7-3820)

Multi-threaded Performance Multi-threaded Performance

C version gain C version gain

Band tCPU* (ms) tCPU/tCPU* tCPU* (ms) tCPU/tCPU*

Q 65.059 0.94× 70.317 1.00×

V 339.223 0.97× 377.414 0.99×

W 450.393 0.98× 509.589 0.99×

D 445.554 0.98× 493.349 1.01×

Overall 450.435 2.81× 509.654 2.84×

TABLE III. Benchmarks with the multi-threaded C version

In an analogous reasoning to the use of multiple cores, one

could argue that further performance gains could be achieved

in the CUDA version by making use of multiple GPUs. For

this purpose, we installed a second GPU on both machines,

and developed a multi-GPU CUDA version that is also multi-

threaded in the sense that there are two CPU threads dispatch-

ing work to the two GPUs. Since there are four bands, each

GPU is assigned two bands to process.

Table IV shows the results obtained with the multi-GPU

version on both machines. Again, the performance gain is

relative to the single-threaded C version on the same ma-

chine. Comparing the run times in Table IV to those of the

CUDA version in Tables I and II, one observes that the pro-

cessing time and performance gain for each band are roughly

the same. However, with two GPUs now working in parallel,

the total processing time is lower, yielding an improvement of

about 1.5× over the single-GPU version.

Desktop PC (2× GTX 750 Ti) Server PC (2× GTX 480)

Multi-GPU Performance Multi-GPU Performance

CUDA version gain CUDA version gain

Band tGPU* (ms) tCPU/tGPU* tGPU* (ms) tCPU/tGPU*

Q 3.877 15.8× 2.493 28.2×

V 16.639 19.7× 9.086 41.3×

W 22.323 19.8× 11.557 43.5×

D 22.265 19.6× 11.706 42.6×

Overall 40.978 30.9× 23.145 62.5×

TABLE IV. Benchmarks with the multi-GPU CUDA version

From these results, one can extrapolate that a multi-GPU

CUDA version running on four GPUs would yield a maximum

improvement of 3× over the single-GPU version, which is

comparable to what was obtained when going from the single-

threaded C version to the multi-threaded one.

IV. CONCLUSION

GPU computing can bring dramatic performance improve-

ments to real-time diagnostics. Even for algorithms that are

polynomial in time, as is the case with LMedS regression, the

large number cores in a GPU can bring the execution time

down to a fraction of what it would be on a CPU. The more

data- or processing-intensive an algorithm is, the more benefit

can potentially be drawn from a GPU-based implementation.

However, for this purpose the problem must be cast into a

form that allows each data element to be processed indepen-

dently, and therefore in parallel with every other.

Our implementation of LMedS with CUDA has five main

stages, where at each stage a different kernel function or li-

brary routine performs parallel processing of one or more in-

put arrays into an output array. The hardware that we used

consists of commonly available graphics cards, so it should

be possible to obtain even higher performance gains with

more powerful and specialized GPUs. In any case, this illus-

trates the immense potential of these technologies to perform

computationally-intensive tasks under stringent time require-

ments. The use of robust regression as a calibration procedure

in plasma reflectometry is an example of such scenario.

In future work, we will be looking into the possibility of

parallelizing other tasks in plasma reflectometry, namely the

calculation of the density profile,22 with a view towards en-

abling the use of such technique as a real-time diagnostic in

magnetic fusion devices.

ACKNOWLEDGMENTS

This work has been carried out within the framework of the

EUROfusion Consortium and has received funding from the

Euratom research and training programme 2014-2018 under

grant agreement No 633053. IST activities also received fi-

nancial support from Fundação para a Ciência e a Tecnologia

through project UID/FIS/50010/2013.

6

1F. Simonet, Review of Scientific Instruments 56, 664 (1985).
2C. Laviron, A. J. H. Donné, M. E. Manso, and J. Sanchez, Plasma physics

and controlled fusion 38, 905 (1996).
3L. Meneses, L. Cupido, A. Sirinelli, M. E. Manso, and JET-EFDS Contrib-

utors, Review of Scientific Instruments 79 (2008).
4A. Sirinelli, B. Alper, C. Bottereau, F. Clairet, L. Cupido, J. Fessey, C. Hog-

ben, L. Meneses, G. Sandford, M. J. Walsh, and JET-EFDA Contributors,

Review of Scientific Instruments 81 (2010).
5S. Hacquin, L. Meneses, L. Cupido, N. Cruz, L. Kokonchev, R. Prentice,

and C. Gowers, Review of Scientific Instruments 75, 3834 (2004).
6A. Silva, M. E. Manso, L. Cupido, M. Albrecht, F. Serra, P. Varela, J. San-

tos, S. Vergamota, F. Eusébio, J. Fernandes, T. Grossmann, A. Kallenbach,

B. Kurzan, C. Loureiro, L. Meneses, I. Nunes, F. Silva, W. Suttrop, and the

ASDEX Upgrade Team, Review of Scientific Instruments 67, 4138 (1996).
7W. L. Zhong, Z. B. Shi, X. L. Zou, X. T. Ding, X. L. Huang, Y. B. Dong,

Z. T. Liu, W. W. Xiao, X. Q. Ji, Z. Y. Cui, Y. Liu, L. W. Yan, Q. W. Yang,

and X. R. Duan, Review of Scientific Instruments 82 (2011).
8T. Estrada, J. Sánchez, B. Van Milligen, L. Cupido, A. Silva, M. E. Manso,

and V. Zhuravlev, Plasma physics and controlled fusion 43, 1535 (2001).
9X. Weiwen, L. Zetian, D. Xuantong, S. Zhongbing, and V. Zhuravlev,

Plasma Science and Technology 8, 133 (2006).
10G. F. Matthews, M. Beurskens, S. Brezinsek, M. Groth, E. Joffrin, A. Lov-

ing, M. Kear, M.-L. Mayoral, R. Neu, P. Prior, V. Riccardo, F. Rimini,

M. Rubel, G. Sips, E. Villedieu, P. de Vries, M. L. Watkins, and EFDA-

JET contributors, Physica Scripta 2011, 014001 (2011).
11P. J. Rousseeuw, Journal of the American Statistical Association 79, 871

(1984).
12J. Nickolls, I. Buck, M. Garland, and K. Skadron, ACM Queue 6, 40

(2008).
13P. J. Rousseeuw and M. Hubert, Lecture Notes-Monograph Series , 201

(1997).
14E.-W. Bai, Automatica 39, 1651 (2003).
15O. Hössjer, Computational Statistics & Data Analysis 19, 265 (1995).
16J. M. Steele and W. L. Steiger, Discrete Applied Mathematics 14, 93 (1986).
17D. L. Souvaine and J. M. Steele, Journal of the American Statistical Asso-

ciation 82, 794 (1987).
18J. Nickolls and W. J. Dally, IEEE micro 30, 56 (2010).
19H. Peters, O. Schulz-Hildebrandt, and N. Luttenberger, in Parallel Pro-

cessing and Applied Mathematics, LNCS, Vol. 6067 (Springer, 2010) pp.

403–410.
20S. Baxter, “Modern GPU,” (2013), http://nvlabs.github.io/moderngpu/.
21NVIDIA Corporation, “Thrust quick start guide,” (2014),

http://docs.nvidia.com/cuda/thrust/.
22E. Mazzucato, Review of Scientific Instruments 69, 2201 (1998).

