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Abstract

In real-world business processes it is often difficult to explain why some process instances take longer than usual to complete.
With process mining techniques, it is possible to do an a posteriori analysis of a large number of process instances and detect the
occurrence of delays, but discovering the actual cause of such delays is a different problem. For example, it may be the case that
when a certain activity is performed or a certain user (or combination of users) participates in the process, the process suffers a
delay. In this work, we show that it is possible to retrieve possible causes of delay based on the information recorded in an event
log. The approach consists in translating the event log into a logical representation, and then applying decision tree induction to
classify process instances according to duration. Besides splitting those instances into several subsets, each path in the tree yields a
rule that explains why a given subset has an average duration that is higher or lower than other subsets of instances. The approach
is applied in two case studies involving real-world event logs, where it succeeds in discovering meaningful causes of delay, some
of which having been pointed out by domain experts.
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1. Introduction

Why does a business process become delayed? There may
be many possible reasons, but here we focus on causes that can
be inferred from run-time data about the past executions of the
process. Such data is usually recorded in the form of an event
log [1, 2], which can be analyzed from a number of different
perspectives, namely the control-flow perspective, the organi-
zational perspective, and the performance perspective:

• In the control-flow perspective, the goal is to extract a
process model from the sequence of tasks recorded in the
event log (examples of techniques are the α-algorithm [1],
the heuristics miner [3], and the genetic miner [4]).

• In the organizational perspective, there are techniques to
analyze the interaction between process participants and
to extract a social network from the event log [5, 6].

• In the performance perspective, there are ways to cal-
culate performance indicators and to detect bottlenecks
based on the timestamp of events [7, 8].

A practical case study that includes these three different per-
spectives can be found in [9]. Here, we focus mainly on the
performance perspective, but we also seek causes of delay that
are possibly related to the control-flow and to the organizational
perspectives. Since an event log contains information about the
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tasks that have been performed and the users who have per-
formed them [10], it should be possible to identify causes of
delay such as:

– when a certain activity is executed;
– when a certain user participates in the process;
– when a certain user performs a certain activity;
– when a certain activity follows another activity;
– when a specific group of users participate in the process;
– etc.
The causes that can be considered are only limited by the

type of data recorded in the event log. If the event log includes
information about the data perspective (as in e.g. [11]), it may
be possible to find causes based on data properties as well.

As a baseline, we assume that the event log has some min-
imal information about each event, namely: a case id (i.e. the
process instance identifier), a task, a user, and a timestamp. The
analysis is based on the total time that each process instance
takes to complete. This will be referred to as duration and it
is measured from the timestamp of the first event to the times-
tamp of the last event recorded for a given process instance.1

An instance is said to be delayed if it takes longer than usual to
complete, meaning that it takes longer than the average duration
of all instances recorded in the event log.

We transform the event log into a logic representation, so
that it becomes possible to use inductive reasoning to find the
cause of delays. In particular, we capture the information in the
event log as a set of first-order logical predicates, and we feed
this knowledge base to a decision tree learner which induces a

1The concept of duration will be discussed in more detail in Section 2.2.
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logical decision tree [12, 13]. This decision tree splits the pro-
cess instances into a set of classes according to their duration.
Each class is defined by a specific rule, which is expressed as
a conjunction of predicates (e.g. “the instances where task a is
performed and user u1 participates have an average duration of
252.4 hours”). This rule can be interpreted as the reason why
that group of instances has such duration. For those classes of
instances which take longer to complete, we take the rule as an
indication of a possible reason of delay.

The main challenge in this approach is not in inducing the
logical decision tree (an algorithm for that purpose, known as
Tilde [12], already exists), but in defining the predicates that
will appear in such tree. In essence, those are the predicates
that will be used to express the cause of delays. The approach
we present here is based on two layers of predicates:

• The first layer comprises a small set of base predicates
that are used to create a logical representation of events
as they have been recorded in the event log.

• The second layer consists in a set of rules that define
new predicates in terms of the base predicates. These
new predicates are meant to represent high-level concepts
such as the flow between tasks or the handover of work
between users, and they can be automatically inferred
from the logical representation of the event log.

In real-world applications, it is possible for the analyst to
use custom predicates to focus on domain-specific issues or to
analyze specific causes of delay. Therefore, the main goal of
this work is two-fold: on one hand, we aim to show how ef-
fective the use of logical decision trees can be in discovering
the causes of delay and, on the other hand, we intend to illus-
trate how the analyst may use of custom predicates to analyze
specific causes of delay. These goals are better achieved by re-
sorting to concrete examples, so we present two case-study ap-
plications involving real-world event logs. The approach itself
is also presented by means of a simple example.

The structure of the paper is as follows: Section 2 devel-
ops the base predicates and rules that lay the foundation for a
logical representation of the event log. Section 3 discusses the
induction of logical decision trees and the use of regression to
support continuous variables, as is the case with duration. A
first example of a logical decision tree which captures a cause
of delay is also introduced in Section 3. Then Section 4 presents
two case studies using real-world event logs. The second case
study illustrates the use of custom predicates. Finally, the paper
ends with an overview of some related works.

2. Event log representation

Consider a simple purchase process which can be described
as follows:

An employee fills out a requisition form and sends
it to a manager for approval. If the requisition is
not approved, it is archived and the process ends.

Otherwise, the requisition is approved, and the re-
quested product is ordered from a supplier. Then
two things will happen in parallel: the warehouse
receives the product and updates the stock, and the
accounting department takes care of payment to
the supplier. When these tasks are complete, the
requisition is closed, and the process ends.

A model for this process, using the BPMN language2, is
shown in Figure 1. Each task in this process is assigned to some
user (e.g. u1, u2, etc.). There may be several users who are able
to perform the same task, but only one user will be selected
to perform the task for a given process instance. On the other
hand, each user may be assigned multiple tasks, either from
the same process instance or from different process instances.
The result is that each user has its own list of work assignments
(a.k.a. “task list”, “work list”, or “to-do list”), and it is assumed
that users carry out their assignments one at a time.

Table 1 shows an excerpt of a sample event log that can
be generated from such process. This is similar to the event
logs that are typically used for process mining (see e.g. [14],
[15]). In the excerpt of Table 1 there are only three process
instances, but it is possible to recognize several features of the
process. For example, case 1 has a trace in the form abde f gh,
while case 2 has a trace in the form abdge f h, which comes as a
result of the parallelism between g and the branch e f . Also, in
cases 1 and 2 the requisition is approved, while in case 3 (trace
abc) it is archived. Furthermore, it is possible to see different
users performing the same task (e.g. u1 and u2 performing task
a) as well as the same user performing different tasks (e.g. u2
performing tasks a and h).

Table 1: Excerpt of a generated event log

case id task user timestamp
1 a u1 2014-06-09 17:36:47
1 b u3 2014-06-11 09:11:13
1 d u6 2014-06-12 10:00:12
1 e u7 2014-06-12 18:21:32
1 f u8 2014-06-13 03:27:41
2 a u2 2014-06-14 08:56:09
2 b u3 2014-06-14 09:36:02
2 d u5 2014-06-15 00:16:40
1 g u6 2014-06-16 19:14:14
2 g u6 2014-06-19 15:39:15
1 h u2 2014-06-19 20:48:16
2 e u7 2014-06-20 15:39:45
2 f u8 2014-06-22 03:16:16
2 h u1 2014-06-23 07:39:24
3 a u2 2014-06-25 21:19:46
3 b u4 2014-06-29 03:56:14
3 c u1 2014-06-30 03:41:22
... ... ... ...

Here we are looking for a different representation of the
event log because our aim is to capture the knowledge contained

2http://www.omg.org/spec/BPMN/2.0/
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Figure 1: BPMN model of a simple purchase process

therein as a set of logical facts. At the simplest level, these log-
ical facts can be used to express that certain events occurred,
and that they occurred in a certain order. This is essentially the
same kind of information as presented in Table 1. However, the
distinct advantage of using a logical representation for the event
log is that simple facts can be used to derive other facts which
may represent concepts at a higher level of abstraction.

For example, suppose that we use a logical predicate event/3
to capture the first two events in Table 1 as event(1, a, u1) and
event(1, b, u3).3 Also, we need to say that the second event fol-
lows the first, so we could use a predicate f ollows/5 to express
that fact in the following way: f ollows(1, a, u1, b, u3).

Now, suppose that we want to determine whether two users
have worked together in the same case. We can express this
with the following rule:

together(I, X,Y) D event(I, , X), event(I, ,Y).

Here, together/3 is a new predicate, where I is a variable
that stands for a case id, and X and Y are variables that stand
for any users.4 The rule above says that users X and Y work
together in case I if there is an event with user X and an event
with user Y recorded for that case. The actual tasks in those
events do not matter, so we leave them as anonymous variables,
i.e. using an underscore, which stands for “any term”.

A predicate such as together/3 would be useful to study
the organizational perspective, e.g. by mining the social net-
work of users according to the “working together” metric, as
defined in [5]. Additional predicates can be defined to support
other metrics and also other analysis perspectives, namely the
control-flow perspective. For example, suppose we want to cap-
ture the fact that task b is executed after task a. In other words,
we say that there is a “flow of work” [16] from task a to task b.
This could be represented with the following rule:

f low(I, A, B) D f ollows(I, A, , B, ).

This rule states that there is a flow from task A to task B
if an event with task B follows an event with task A. Note

3We use the Prolog notation predicate/arity to indicate the number of ar-
guments for each predicate.

4Here we adopt the Prolog convention that variables begin with an upper-
case letter or underscore.

that A and B are variables, and therefore they can stand for
any task that appears in the event log. In particular, if we
have f ollows(1, a, u1, b, u3) (note the use of lowercase letters
to represent concrete terms rather than variables) then the fact
f low(1, a, b) can be derived.

Above, the predicates together/3 and f low/2 allow us to
derive new facts from a knowledge base containing just facts
expressed with event/3 and f ollows/5. The interesting point
is that whereas all the base facts expressed with event/3 and
f ollows/5 must be enumerated exhaustively, the new predi-
cates (together/3, f low/2, and possibly others as well) can be
defined as general rules. In this work, the purpose of these gen-
eral rules is to define new predicates that can be used to explain
the cause of delays.

For example, suppose that the process is delayed whenever
users u1 and u3 work together in the same instance and activity
g occurs after f in that instance. Then the rule that explains this
cause of delay could be written as:

delayed(I) D together(I, u1, u3), f low(I, f , g).

In this work, our goal is to find such rules through induction
over the available facts and predicates. Also, the rule above
yields a result of true or false (i.e. either the process instance is
delayed or not). However, a delay is a continuous variable and
there may be different amounts of delay. Therefore, we need
to consider the actual duration of process instances, which can
be calculated from the timestamp of events. For this reason,
we need to include the timestamps in the base predicates, as
explained in the following subsections.

2.1. Base predicates
There are two base predicates that we will use to capture the

information in an event log:

• event/4 – this predicate captures the fact that a certain
task has been completed by a certain user at a certain
time, for a certain process instance.

• f ollows/7 – this predicate captures the fact that two events
follow each other within the same process instance.

These two predicates are similar to the ones described be-
fore, except that now they include the timestamp of each event.
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For convenience, the timestamp will be represented as a floating-
point number rather than a date and time. The timestamp of the
first event in the event log will be set to 0.0 and will be used
as reference for the remaining events. Subsequent events will
have a timestamp that denotes the time elapsed (in hours) since
that first event. Following these conventions, the event log in
Table 1 can be represented as follows:

event(1, a, u1, 0.000000).
event(1, b, u3, 39.573889).
event(1, d, u6, 64.390278).
event(1, e, u7, 72.745833).
event(1, f , u8, 81.848333).
event(1, g, u6, 169.624167).
event(1, h, u2, 243.191389).
f ollows(1, a, u1, 0.000000, b, u3, 39.573889).
f ollows(1, b, u3, 39.573889, d, u6, 64.390278).
f ollows(1, d, u6, 64.390278, e, u7, 72.745833).
f ollows(1, e, u7, 72.745833, f , u8, 81.848333).
f ollows(1, f , u8, 81.848333, g, u6, 169.624167).
f ollows(1, g, u6, 169.624167, h, u2, 243.191389).

event(2, a, u2, 111.322778).
event(2, b, u3, 111.987500).
event(2, d, u5, 126.664722).
event(2, g, u6, 238.041111).
event(2, e, u7, 262.049444).
event(2, f , u8, 297.658056).
event(2, h, u1, 326.043611).
f ollows(2, a, u2, 111.322778, b, u3, 111.987500).
f ollows(2, b, u3, 111.987500, d, u5, 126.664722).
f ollows(2, d, u5, 126.664722, g, u6, 238.041111).
f ollows(2, g, u6, 238.041111, e, u7, 262.049444).
f ollows(2, e, u7, 262.049444, f , u8, 297.658056).
f ollows(2, f , u8, 297.658056, h, u1, 326.043611).

event(3, a, u2, 387.716389).
event(3, b, u4, 466.324167).
event(3, c, u1, 490.076389).
f ollows(3, a, u2, 387.716389, b, u4, 466.324167).
f ollows(3, b, u4, 466.324167, c, u1, 490.076389).

The decision to include the timestamps also in the f ollows/7
predicate has to do with the fact that, depending on the business
process, the same task may be performed more than once in the
same process instance, so the inclusion of timestamps allows to
distinguish between those different occurrences.

2.2. Duration

The total length or duration of a process instance can be cal-
culated as the difference in timestamps between the last event
and the first event recorded for that process instance. In some
cases, this may not be perfectly accurate, but it will suffice when
the goal is just to compare the duration of different process in-
stances. For example, consider the following scenarios:

• If each event in the event log marks the completion of a
task, and we define the duration of a process instance to

be the difference between the last event and the first event
recorded for that instance, then the time it took to perform
the first task will not be taken into account. (An extreme
example: if a process instance consists of a single task,
its duration will be zero.) However, this is regarded as a
problem of event logging. If both “start” and ”complete”
events [17] are recorded for each task, then it is possible
to overcome this problem, but for the sake of generality
we assume that only “complete” events are available.

• In a real-world event log, some process instances may
have been incompletely recorded. This may happen be-
cause the instance was already running when event log-
ging was started (in this case, events that occurred ear-
lier than that have been missed) or because the instance
was still running when event logging was stopped (in this
case, events that occurred after that have been missed).
Again, this is a problem of event logging. If it is possi-
ble to distinguish between the complete instances and the
incomplete ones, then the analysis can focus on the com-
plete ones only. Otherwise, the analysis can be carried
out anyway, but the analyst should have in mind that the
relatively short duration of some instances may be due to
the fact that they are incomplete.

To calculate the duration of each process instance, we intro-
duce the following rule:

duration(I,D) D event(I, A, X,T1),
not( f ollows(I, , , , A, X,T1)),
event(I, B,Y,T2),
not( f ollows(I, B,Y,T2, , , )),
D is T2−T1.

This rule calculates the difference D between two times-
tamps T2 and T1, where T2 is the timestamp of the last event
and T1 is the timestamp of the first event in process instance
I. The first event is the one which does not follow any other,
hence the use of not( f ollows(I, , , , A, X,T1)). The last event
is the one which is not followed by any other, which is ensured
by not( f ollows(I, B,Y,T2, , , )). Since it is possible that mul-
tiple events have the same timestamp, it is necessary to include
all attributes to identify each event.

The application of the above rule to the logical representa-
tion of the event log in the previous subsection yields:

duration(1, 243.191389).
duration(2, 214.720833).
duration(3, 102.36).

2.3. Other rules
Besides duration/2 introduced above, there are other pred-

icates which can be useful to explain the cause of delays. Ear-
lier, we have introduced some examples, such as together/3
and f low/3. Here we are going to add some more predicates
and also redefine those earlier ones in order to take into account
that the base predicates event/4 and f ollowed/7 now include
timestamps.

The first two predicates to be considered are:
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• task/2 – this predicate captures the fact that a certain task
appears in a certain process instance. It is defined as:

task(I, A) D event(I, A, , ).

• user/2 – this predicate captures the fact that a certain user
participates in a process instance. It is defined as:

user(I, X) D event(I, , X, ).

With these predicates, it is possible to find causes for delay
based on the fact that some particular task is performed or some
particular user is involved.

Additionally, we defined the predicate:

per f orms(I, A, X) D event(I, A, X, ).

to express the fact that a certain user performs a specific task,
and this may also be a cause of delay.

Now we introduce some predicates that represent common
concepts in the field of process mining.

First, we address the control-flow perspective by introduc-
ing the following predicate:

f low(I, A, B) D f ollows(I, A, , , B, , ).

This expresses the fact that there is a flow from some task
A to some task B in instance I. In the field of process min-
ing, such concept is useful to identify constraints in the control
flow, such as ordering relations [1] or dependencies [3] between
tasks, which are the basis for several process mining algorithms.
With this predicate, we can find causes of delay that are related
to the flow between tasks.

Second, we address the organizational perspective by intro-
ducing a predicate to capture the fact that there is handover of
work between users:

handover(I, X,Y) D f ollows(I, , X, , ,Y, ).

and another predicate to capture the fact that users work to-
gether on the same process instance:

together(I, X,Y) D event(I, , X, ), event(I, ,Y, ).

The concepts of handover of work and working together are
usually employed to extract the social network of interactions
between users in the process [5]. For that purpose, one usu-
ally counts the number of times that a user hands over work to
another user, or the number of cases in which two users work
together. In contrast, here we simply collect those facts in or-
der to check whether some particular interaction between users
could be the cause of delay.

There could be additional predicates to capture other con-
cepts. For example, in declarative process mining [18, 19, 20]
there are concepts such as co-existence and responded existence
constraints between tasks; these concepts can also be captured
with the introduction of new predicates. For illustrative pur-
poses, we find it convenient to focus on a concrete set of predi-
cates, and therefore we use the predicates above whenever pos-
sible. However, the reader should keep in mind that there is
large degree of flexibility in defining these predicates, and that
it is possible to use a different set of predicates without funda-
mentally changing the approach.

3. Logical decision trees

In this work, we use logical decision trees [12, 13] to clas-
sify process instances based on their duration, and according to
the logical facts that are known about those instances. Logical
decision trees use first-order logical predicates to express the
branching conditions in the tree.

Figure 2 illustrates the difference between logical decision
trees and common decision trees:

• In a common decision tree, at each decision there are as
many output branches as possible (discrete) values for a
selected data attribute, e.g. x in Figure 2(a). Branching
conditions using continuous variables are also possible.
The subset of data below a given branch complies with
the condition associated with that branch, and with any
upper branches that it descends from.

• In a logical decision tree, branching conditions are based
on logical predicates and there are only two possible out-
comes from each decision. The subset of data that is
below a given branch is characterized by the fact that
the selected predicate (e.g. P1 in Figure 2(b)) holds (or
does not hold) for all instances in the subtree under that
branch.

In both types of decision tree, the initial dataset is succes-
sively divided into different subsets, until eventually reaching
the leaf nodes, where each leaf represents a class of data. Typ-
ically, a class is associated with a certain value for the target
variable. If the target variable is continuous, as is the case with
duration, then each class corresponds to an average value of the
target variable for that subset of data.

For any given leaf node, the path in the tree (from the root
to that leaf node) is a conjunction of all the conditions that are
found along that path (e.g. x = x2 ∧ y = y1), and this can be
interpreted as a rule that explains why that subset of data (in
the leaf node) belongs to a certain class. In the context of this
work, such rule (e.g. ¬P1∧P2) is interpreted as the reason why
a group of instances have a certain duration.

3.1. Tree induction

Typically, decision tree induction is based on a top-down
procedure which, at each step, divides the dataset into disjoint
subsets according to a splitting criterion [21]. This splitting cri-
terion consists in selecting the attribute (or predicate, in the case
of logical decision trees) that is the most appropriate to split the
data, in the sense that the resulting subsets should be as homo-
geneous as possible with respect to the target variable. There
are several ways to measure the homogeneity of the resulting
subsets. For example, ID3 [22] uses information entropy [23],
C4.5 [24] uses the normalized information gain [25], and an-
other popular criterion is the Gini index [26].

Besides the splitting criterion, an important feature of an
induction algorithm is the stopping criterion, which determines
when a node should not be further divided into subsets. Such
node becomes a leaf in the tree. Examples of common stopping
criteria are: when every instance in the subset belongs to the
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Figure 2: Decision trees with different types of branching conditions

same class; when there are no more attributes (or predicates) to
consider for branching conditions; or when the number of in-
stances in the subset is smaller than a given threshold. Another
option is to use a stopping criterion based on an F-test [27],
which checks whether there is a statistically significant change
in variance after a split.

In summary, an induction algorithm is characterized by hav-
ing certain splitting and stopping criteria. Apart from these cri-
teria, the structure of any top-down induction algorithm is sim-
ilar to the one described in Algorithm 1.

Algorithm 1 Tree induction algorithm for a given dataset S , a
set of data attributes �= {x, y, z, . . .} and a target variable t.

1. Create the root node of the tree with the full dataset S .
2. If the current node complies with the stopping criterion,

mark it as a leaf and label it with the most common (or
average) value for t within that (sub)set of data. Other-
wise, proceed to step 3.

3. Find the attribute from � which yields the best split ac-
cording to the splitting criterion. (Some algorithms do
not allow the same attribute to be used more than once; if
this is the case, then pick the best attribute which has not
been used before.) Split the data into subsets according
to the possible values for the chosen attribute, and create
a child node in the tree for each of these subsets. For each
of these child nodes, apply recursively step 2 above.

This procedure can be adapted to logical decision trees by

considering the set of available predicates instead of the set
of data attributes �. This is the main idea behind Tilde [12],
which is equivalent to C4.5 with binary attributes.5 When the
target variable is continuous, Tilde uses a splitting criterion
based on the sum of squares, as explained next.

3.2. Regression trees
An advantage of being based on C4.5 is that Tilde is able

to handle continuous target variables as well, as is the case with
duration. Such type of decision tree is usually referred to as
a regression tree [28], since the homogeneity of each subset is
measured using the sum of squares.

For any given set of data C (which can be the whole dataset
or any of its subsets arising from a split), the sum of squares is
calculated as E(C) =

∑
i∈C(ti − t)2 where ti is the value of the

target variable for each element in C, and t is the average value
of the target variable across all elements in C.

If C is (further) split into subsets {C1,C2, . . .} then the sum
of squares after such split can be computed as E′(C)=

∑
k E(Ck).

The splitting criterion for a regression tree consists in selecting
the attribute or predicate which yields the largest decrease in the
sum of squares, i.e. the attribute or predicate which maximizes
the difference E(C)−E′(C).

3.3. An example
To illustrate the results that can be obtained with Tilde, we

generated an event log from the purchase process described in

5Tildewas developed by K. U. Leuven and it is part of the ACE data mining
system: https://dtai.cs.kuleuven.be/ACE/
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Section 2. For this example, the event log had 1000 instances,
and we modified it by inserting an artificial delay in every in-
stance where users u1 and u3 work together and also where task
g follows task f .6

We converted the event log to the logical representation of
Section 2.1, using the base predicates event/4 and f ollows/7.
The event log was then provided as input to Tilde, together with
the predicates defined in Sections 2.2 and 2.3. Figure 3 shows
a graphical representation of the output produced by Tilde.

1000
[227.21]

flow(I,b,c)

258
[74.38]

yes

742
[280.35]

no

together(I,u2,u3) together(I,u1,u3)

142
[71.36]

yes

116
[78.07]

no

376
[298.34]

yes

366
[261.86]

no

flow(I,f,g) flow(I,d,e)

138
[349.66]

yes

238
[268.58]

no

171
[253.54]

yes

195
[269.16]

no

Figure 3: Example of a logical regression tree induced by Tilde

The root node of the tree indicates that there is a total of
1000 instances with an average duration of 227.21 hours. The
first decision, based on f low(I, b, c), separates those instances
into two subsets depending on whether there is a flow from task
b to c or not. A quick look at Figure 1 reveals that the flow
from b to c happens when the process ends prematurely; there-
fore, these instances are noticeably shorter than the rest, as is
indicated by their average duration (74.38 hours).

As for the longer instances (with an average duration of
280.35 hours), these are further subdivided into two subsets
depending on whether u1 and u3 work together or not. Sub-
sequently, the instances where u1 and u3 work together are split
into those where there is a flow from f to g, and those where
such flow does not take place. The leaf node which contains
the longest instances of all (with an average duration of 349.66
hours) is highlighted with a dark shade of gray and is character-
ized by the following rule:

¬ f low(I, b, c) ∧ together(I, u1, u3) ∧ f low(I, f , g)

6Since the process has an average duration of 216.95 hours and a standard
deviation of 98.18 hours, we inserted an amount of delay equal to one standard
deviation.

In this rule, the underlined sub-expression is exactly the
cause of delay that was inserted in the event log.

The tree contains other splits, namely those based on the
predicates together(I, u2, u3) and f low(I, d, e), which do not con-
tribute to provide much of a distinction between the resulting
subsets, in terms of average duration. The presence of these ad-
ditional splits is due to the fact that we specified, as a stopping
criterion, that no leaf should have less than 100 instances. (It
can be seen in Figure 3 that this is indeed the case.) In practice,
the analyst can adjust this parameter to control how deep the
tree will grow.

4. Case Studies

In this section we describe how the approach has been ap-
plied in two case studies involving real-world and publicly avail-
able event logs. The two case studies were selected due to their
complementary characteristics. The first event log comes from
a structured business process and there is no prior information
about which factors have an influence on the duration of the
process. In contrast, the second event log comes from a case-
handling scenario where the process is much less structured, but
there are some initial clues about the possible causes of delay.

In both case studies, a few adaptations were required in or-
der to represent the event log in terms of the base predicates
defined in Section 2.1. To the furthest extent possible, we tried
to use the same predicates so as not to confuse the reader with
the introduction of new predicates. However, we recall that, in
practice, the analyst may choose to use different or additional
predicates to capture the cause of delays. We illustrate this pos-
sibility in the second case study.

4.1. A loan application process
The event log used in this case study was originally re-

leased in the context of the BPI Challenge 2012.7 The event
log was provided by a Dutch financial institution and it con-
cerns a loan application process. Originally, the event log was
provided without a specific analysis goal, and participants were
free to analyze it using any tools and techniques available. This
resulted in a number of submissions8 focusing on different as-
pects of the event log, with some of them focusing on the per-
formance and duration of the process, but not on the cause of
delays as we do here.

The loan application process that generated the event log
can be described as follows:

1. A loan application is submitted through a website, which
performs some preliminary checks.

2. An employee gets in contact with the customer by phone
in order to gather additional information.

3. If the applicant is eligible, then an offer is sent to the
customer by mail.

7More information about the BPI Challenge 2012 can be found at: http:
//www.win.tue.nl/bpi/2012/challenge

8The submissions are available at: http://www.win.tue.nl/bpi/2012/
challenge
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4. When the offer is returned by the customer, it is assessed.
5. If the offer is incomplete, the missing information is added

by contacting the customer again.
6. When the final assessment is done, the loan application

is approved and activated.

Table 2 shows the events recorded for the first loan appli-
cation that appears in the event log. In the second column, it
is possible to see that the event log comprises three main kinds
of events. The events labeled with the prefix ‘a ’ denote the
state of the loan application, the events labeled with ‘o ’ denote
the state of the offer that is exchanged with the customer, and
the events labeled with ‘w ’ concern the work items (i.e. tasks)
that are performed by employees. According to the information
released together with the event log, the process is actually a
merge of these three sub-processes.

In the third column of Table 2 it can be seen that while
the ‘a ’ and ‘o ’ events are one-time occurrences (only com-
plete events are recorded), the ‘w ’ events represent activities
that are scheduled, started, and eventually completed by an em-
ployee. Scheduling an activity means adding it as a new item
to the work list of some employee. The activity starts when the
employee fetches the work item from the list, and it completes
when the employee either releases the work item, puts it back
in the queue, or transfers it to another queue.

In particular, the ‘w ’ activities that appear in Table 2 can
be interpreted as follows: “completeren aanvraag” means com-
pleting the loan application with the additional information pro-
vided by the customer; “nabellen offertes” consists in calling
the customer after the offer is sent; and “valideren aanvraag”
consists in validating or assessing the loan application.

Given that the event log is a merge of three sub-processes,
when representing the event log in terms of the base predi-
cates event/4 and f ollows/7, we consider that the f ollows re-
lationship applies separately to the events of each sub-process
(e.g. ‘a ’ events follow ‘a ’ events, and ‘w ’ events follow ‘w ’
events, but ‘a ’ events do not follow ‘w ’ events.).

Also, we consider only the complete events, since it is im-
portant to know that one activity follows another, but it is not so
relevant to include the behavior of schedule, start and complete
events, as these occur always in the same strict order.

Therefore, the sequence of events in Table 2 can be repre-
sented as follows (with timestamps converted to hours since the
beginning of the event log):

event(173688, a submitted, 112, 0.0).
event(173688, a partlysubmitted, 112, 0.0).
event(173688, a preaccepted, 112, 0.014).
event(173688, a accepted, 10862, 11.066).
event(173688, o selected, 10862, 11.106).
event(173688, a f inalized, 10862, 11.106).
event(173688, o created, 10862, 11.107).
event(173688, o sent, 10862, 11.107).
event(173688,w completeren aanvraag, 10862, 11.108).
event(173688,w nabellen o f f ertes, 10862, 11.640).
event(173688,w nabellen o f f ertes, 10913, 183.887).
event(173688, o sent back, 11049, 226.905).
event(173688,w nabellen o f f ertes, 11049, 226.905).
event(173688, o accepted, 10629, 297.979).
event(173688, a approved, 10629, 297.979).

event(173688, a registered, 10629, 297.979).
event(173688, a activated, 10629, 297.979).
event(173688,w valideren aanvraag, 10629, 297.981).
f ollows(173688, a submitted, 112, 0.0,

a partlysubmitted, 112, 0.0).
f ollows(173688, a partlysubmitted, 112, 0.0,

a preaccepted, 112, 0.014).
f ollows(173688, a preaccepted, 112, 0.014,

a accepted, 10862, 11.066).
f ollows(173688, a accepted, 10862, 11.066,

a f inalized, 10862, 11.106).
f ollows(173688, a f inalized, 10862, 11.106,

a approved, 10629, 297.979).
f ollows(173688, a approved, 10629, 297.979,

a registered, 10629, 297.979).
f ollows(173688, a registered, 10629, 297.979,

a activated, 10629, 297.979).
f ollows(173688, o selected, 10862, 11.106,

o created, 10862, 11.107).
f ollows(173688, o created, 10862, 11.107,

o sent, 10862, 11.107).
f ollows(173688, o sent, 10862, 11.107,

o sent back, 11049, 226.905).
f ollows(173688, o sent back, 11049, 226.905,

o accepted, 10629, 297.979).
f ollows(173688,w completeren aanvraag, 10862, 11.108,

w nabellen o f f ertes, 10862, 11.640).
f ollows(173688,w nabellen o f f ertes, 10862, 11.640,

w nabellen o f f ertes, 10913, 183.887).
f ollows(173688,w nabellen o f f ertes, 10913, 183.887,

w nabellen o f f ertes, 11049, 226.905).
f ollows(173688,w nabellen o f f ertes, 11049, 226.905,

w valideren aanvraag, 10629, 297.981).

In this representation there are three separate sequences of
events, because the relationships established by the predicate
f ollows/7 for ‘a ’, ‘o ’, and ‘w ’ events are disconnected from
each other. Therefore, the duration of a process instance can
no longer be computed with the rule defined in Section 2.2;
instead, it must be determined by the more simple procedure of
subtracting the largest timestamp from the smallest timestamp
for a given process instance. For the example above, we have:

duration(173688, 297.981).

As for the predicates that will be used as branching condi-
tions in the decision tree, these are the same as those defined
in Section 2.3, namely: task/2, user/2, per f orms/3, f low/3,
handover/3 and together/3.

Figure 4 shows an excerpt of decision tree produced by
Tilde. As before, the darker nodes indicate longer durations,
and these appear mainly on the left-hand side of the tree. At the
root of the tree there is a split based task(I, a f inalized). This
means that instances can be divided into two major groups, de-
pending on whether the loan application reached the a f inalized
state or not, with the ones that have reached such state having a
longer duration, on average, than the ones which have not.

At the second level in the tree, both splits use the predicate
per f orms(I, a cancelled, 112) to check whether the loan appli-
cation has been canceled by the system (the 3-digit username
112 is assigned to the system; employees have a 5-digit user-
name). In general, a loan application is automatically canceled
by the system if no approval decision has been reached within
one month after the application was originally submitted. This
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Table 2: The first instance recorded for the loan application process

case id activity event type user timestamp
173688 a submitted complete 112 2011-10-01 00:38:44
173688 a partlysubmitted complete 112 2011-10-01 00:38:44
173688 a preaccepted complete 112 2011-10-01 00:39:37
173688 w completeren aanvraag schedule 112 2011-10-01 00:39:38
173688 w completeren aanvraag start 112 2011-10-01 11:36:46
173688 a accepted complete 10862 2011-10-01 11:42:43
173688 o selected complete 10862 2011-10-01 11:45:09
173688 a finalized complete 10862 2011-10-01 11:45:09
173688 o created complete 10862 2011-10-01 11:45:11
173688 o sent complete 10862 2011-10-01 11:45:11
173688 w nabellen offertes schedule 10862 2011-10-01 11:45:11
173688 w completeren aanvraag complete 10862 2011-10-01 11:45:13
173688 w nabellen offertes start 10862 2011-10-01 12:15:41
173688 w nabellen offertes complete 10862 2011-10-01 12:17:08
173688 w nabellen offertes start 10913 2011-10-08 16:26:57
173688 w nabellen offertes complete 10913 2011-10-08 16:32:00
173688 w nabellen offertes start 11049 2011-10-10 11:32:22
173688 o sent back complete 11049 2011-10-10 11:33:03
173688 w valideren aanvraag schedule 11049 2011-10-10 11:33:04
173688 w nabellen offertes complete 11049 2011-10-10 11:33:05
173688 w valideren aanvraag start 10629 2011-10-13 10:05:26
173688 o accepted complete 10629 2011-10-13 10:37:29
173688 a approved complete 10629 2011-10-13 10:37:29
173688 a registered complete 10629 2011-10-13 10:37:29
173688 a activated complete 10629 2011-10-13 10:37:29
173688 w valideren aanvraag complete 10629 2011-10-13 10:37:37

13087
[206.65]

task(I,a_finalized)

5015
[449.0]

yes

8072
[56.09]

no

performs(I,a_cancelled,112) performs(I,a_cancelled,112)

560
[839.26]

yes

4455
[399.94]

no

flow(I,o_cancelled,o_selected) together(I,10861,10913)

... ... ... ...

154
[1035.12]

yes

406
[764.97]

no

272
[707.03]

yes

4183
[379.97]

no

444
[735.78]

yes

7628
[16.52]

no

performs(I,w_completeren_aanvraag,11203)

239
[154.27]

yes

7389
[12.07]

no

Figure 4: Decision tree induced from the event log of the loan application process

9



usually happens due to lack of response from the customer: ei-
ther the application needs to be completed with additional info
and the customer does not provide such info, or an offer is sent
to the customer but the customer does not reply.

At the third level in the tree we find a split with the predi-
cate f low(I, o cancelled, o selected) which separates cancelled
instances into two further subgroups. As it happens, even after
the loan application has been canceled there are cases when an
employee selects a timed-out offer and tries to contact the cus-
tomer again. These instances will run some weeks longer. At
the third level in the tree, we also find a split based on the pred-
icate together(10861, 10913), indicating that those instances in
which these two employees participate last longer.

In summary, we find that there is at least one external cause
and one internal cause of delay in this process. The external
cause has to do with the fact that customers often do not pro-
vide feedback in a timely fashion (be it additional info, or a
reply to an offer). The internal cause is that there is an inter-
action between users 10861 and 10913 which should be further
investigated by the company. Possibly, this interaction can be
made more efficient in order to avoid unnecessary delays.

4.2. An incident management process
The event log used in this case study concerns an incident

management process at Volvo IT, and it was made available in
the context of the BPI Challenge 2013 [29]. Incident manage-
ment is a well-known business process that deals with unantic-
ipated problems in the operation of a product or service. The
goal of incident management is to restore the normal operation
of the product or service as soon as possible [30]. The event log
was collected from an information system (called VINST) that
supports the incident management process in several countries
where Volvo IT operates.

An interesting feature of this case study is that some possi-
ble causes of delay have been identified beforehand, namely:

• Ping-pong behavior – ideally, each incident should be
solved quickly and the number of support teams involved
should be small. However, it often happens that sup-
port teams keep sending incidents back and forth to each
other, which is an unwanted behavior. It is suspected that
there is a correlation between this ping-pong behavior
and the total lifetime of an incident.

• Wait-user status – given that there are different ways to
measure the total lifetime of an incident, sometimes the
support teams will try to find a workaround to stop the
clock from ticking. One way to do this is to manually
set a “wait user” status for the incident. Although there
are guidelines for not doing so (unless someone is really
waiting for input from a user), it is known that some peo-
ple are deviating from this guideline.

Our main goal is to check whether (and if so, how) these
two factors appear in the decision tree.

As we did in the previous case study, Table 3 shows the
sequence of events for a sample instance that appears in the
event log. The first column is the incident number, which is

equivalent to the case id. The second column (status) denotes
the changes in the state of the incident; in a traditional event
log, this would denote the task or activity that was performed
on the incident. The third column indicates the support team
that is trying to resolve the incident.

Here we can see an important feature of this event log: some
support teams have a suffix (‘2nd’ or ‘3rd’) to indicate higher
lines of support. The teams without a suffix are assumed to be
first-line. The meaning is as follows: the first line of support is
the service helpdesk that is the entry point for end-user support;
the second line takes care of those incidents which cannot be
resolved in the first line; and the third line involves product
experts who are called in when the incident cannot be resolved
in the second line. Ideally, incidents should be handled at the
first line, and they should be sent to the second line or to the
third line only if they cannot be solved at the first line (this is
referred to as the push-to-front principle).

The ping-pong behavior refers to the sending of incidents
back and forth between support teams. As can be seen in the
example of Table 3, an incident may go across multiple support
teams and different support lines. In particular, this incident
goes from first line (S42) to second line (N52), then to third
line (O3), then back to second line (G140, N52, and G137),
then back to first line (M25), then again to second line (G142),
and finally back to the first line (M25 and S42).

There are many incidents with a similar behavior but involv-
ing a different set of teams. Also, some teams are functionally
equivalent (e.g. G137, G140, and G142 in Table 3). Therefore,
to analyze this behavior we will abstract from the actual names
of the support teams and instead we will focus on whether it
is a first-line, second-line, or third-line support team. The han-
dover of work back and forth between these support lines will
be taken as an indication of ping-pong behavior. The sequence
of events in Table 3 can then be represented as follows:

event(467153946, in progress, f irst line, 7320.800).
event(467153946, in progress, f irst line, 7320.804).
event(467153946, awaiting assignment, second line, 7320.805).
event(467153946, in progress, second line, 7320.875).
event(467153946,wait user, second line, 7320.943).
event(467153946, awaiting assignment, third line, 7392.686).
...
f ollows(467153946, in progress, f irst line, 7320.800,

in progress, f irst line, 7320.804).
f ollows(467153946, in progress, f irst line, 7320.804,

awaiting assignment, second line, 7320.805).
f ollows(467153946, awaiting assignment, second line, 7320.805,

in progress, second line, 7320.875).
f ollows(467153946, in progress, second line, 7320.875,

wait user, second line, 7320.943).
f ollows(467153946,wait user, second line, 7320.943,

awaiting assignment, third line, 7392.686).
...

This representation allows us to use the same predicates as
defined in Section 2.3, and also the predicate duration/2 as
defined in Section 2.2. It should be noted that here the con-
cept of “task” corresponds to the status of the incident (i.e.
in progress, awaiting assignment, wait user, etc.) and the pos-
sible “users” are f irst line, second line and third line.
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Table 3: An instance recorded for the incident management process

incident no. status support team timestamp
467153946 In Progress S42 2011-01-31 11:12:22
467153946 In Progress S42 2011-01-31 11:18:44
467153946 Awaiting Assignment N52 2nd 2011-01-31 11:19:05
467153946 In Progress N52 2nd 2011-01-31 12:59:46
467153946 Wait - User N52 2nd 2011-01-31 14:37:55
467153946 Awaiting Assignment O3 3rd 2011-02-03 08:28:58
467153946 In Progress O3 3rd 2011-02-07 12:37:33
467153946 Wait - Implementation O3 3rd 2011-02-07 12:38:25
467153946 In Progress G140 2nd 2011-03-09 11:08:06
467153946 Wait - Implementation G140 2nd 2011-03-09 11:27:05
467153946 In Progress G140 2nd 2011-03-10 11:53:10
467153946 Assigned G140 2nd 2011-03-10 11:53:22
467153946 In Progress G140 2nd 2011-03-10 12:17:22
467153946 Wait - User G140 2nd 2011-03-10 12:21:51
467153946 Wait G140 2nd 2011-03-10 14:45:27
467153946 Assigned G140 2nd 2011-03-14 07:56:20
467153946 In Progress G140 2nd 2011-03-14 07:58:01
467153946 Wait G140 2nd 2011-03-14 07:58:55
467153946 In Progress G140 2nd 2011-04-05 16:59:52
467153946 Awaiting Assignment N52 2nd 2011-04-05 17:02:01
467153946 In Progress N52 2nd 2011-04-06 09:32:07
467153946 Assigned N52 2nd 2011-04-06 10:47:50
467153946 In Progress N52 2nd 2011-04-06 10:48:33
467153946 Wait - User N52 2nd 2011-04-06 11:08:47
467153946 In Progress N52 2nd 2011-04-07 12:36:47
467153946 Wait N52 2nd 2011-04-07 13:06:06
467153946 In Progress N52 2nd 2011-04-08 13:10:59
467153946 Wait N52 2nd 2011-04-08 13:17:44
467153946 Awaiting Assignment G137 2nd 2011-04-08 13:20:00
467153946 In Progress G137 2nd 2011-04-12 14:16:47
467153946 In Progress M25 2011-08-08 14:28:38
467153946 Assigned M25 2011-09-12 10:22:38
467153946 In Progress M25 2011-11-21 13:52:19
467153946 Wait - Implementation M25 2011-11-21 13:52:57
467153946 Awaiting Assignment G142 2nd 2012-01-25 15:50:41
467153946 In Progress G142 2nd 2012-01-25 15:53:07
467153946 Awaiting Assignment M25 2012-01-25 15:54:00
467153946 In Progress S42 2012-05-15 16:56:51
467153946 Resolved S42 2012-05-15 16:57:39
467153946 Closed S42 2012-05-23 00:22:25

Figure 5 shows an excerpt of the decision tree that has been
obtained from the complete event log. At the root of the tree, it
is possible to see that there is a first split between long and very
short instances depending on whether the incident has reached
the resolved state. The incidents where the resolved state does
not occur are those which are solved at the helpdesk, while in
contact with the customer. Naturally, these are the shortest ones
in the event log, since there is no transfer of the incident to
another support team.

If we follow those incidents which do have to be transferred
to another team in order to be solved (left branch), then the
second-level split that appears in the tree is based on the pres-
ence of a handover of work from the second line to the first
line. This is already an indication of ping-pong behavior be-
cause, since incidents start in the first line, a handover of work
from second line to first line means that the incident is being
sent back to the first line.

The ping-pong behavior is more apparent when we consider
the third-level split based on per f orms(I, closed, f irst line),
where we see that there are some incidents which, despite being
sent back from second line to first line, are not closed in the first

line. This means that these incidents will be sent yet again to
the second line or to the third line to be closed.

In the other subtree we see the effect of the wait-user sta-
tus. Basically, those incidents which have a wait-user status last
longer (on average, 427.5 hours) than those which do not enter
such state (250.96 hours). However, the effects of the wait-user
status do not seem to have as much impact in the duration of
the process as those of ping-pong behavior.

4.3. Using a custom predicate

To further investigate ping-pong behavior as a cause of de-
lay in the previous case study, it would be useful to have a
special-purpose predicate to count the number of times an inci-
dent is handed over between different support lines.

For this purpose, we redefine the handover/3 predicate:

handover(I, X,Y) D f ollows(I, , X, , ,Y, ),
not(X =Y).

where not(X = Y) is the condition that ensures that the support
lines are indeed different.
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7554
[294.79]

task(I,resolved)

5663
[389.98]

yes

1891
[9.71]

no

handover(I,second_line,first_line)

1007
[706.86]

yes

4656
[321.45]

no

performs(I,closed,first_line) task(I,wait_user)

739
[434.57]

yes

268
[1457.69]

no

1859
[427.5]

yes

2797
[250.96]

no

... ... ... ...
Figure 5: Decision tree induced from the event log of the incident management process

7554
[294.79]

pingpong(I,3)

556
[1012.86]

yes

6998
[237.74]

no

performs(I,wait,second_line) task(I,resolved)

136
[1768.33]

yes

420
[768.23]

no

performs(I,resolved,second_line)

195
[1112.44]

yes

225
[469.92]

no

5107
[322.17]

yes

1891
[9.71]

no

task(I,wait_user)

2091
[423.85]

yes

3016
[251.67]

no

... ...
Figure 6: A second decision tree induced from the event log of the incident management process
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The new predicate can then be defined as follows:

pingpong(I,N) D
aggregate all(count, handover(I, , ),M),
M >= N.

which yields true if incident I contains at least N handovers of
work between different support lines.

The predicate aggregate all/3 is an aggregation operator
defined in some Prolog implementations (namely SWI-Prolog
[31]) which is being used here to count how many facts in the
form handover(I, , ) can be inferred from the event log. The
result is stored in the variable M, which is compared to N. The
condition M >= N guarantees that pingpong(I,N) is true if
there are N or more handovers of work.

Figure 6 shows the new decision tree induced after replac-
ing handover/3 with the new version and adding pingpong/2 to
the set of available predicates. In comparison with Figure 5, the
most important difference is right at the top of the tree, where
we have pingpong(I, 3) instead of task(I, resolved).

The split based on pingpong(I, 3) divides incidents into those
that have less than three handovers, and those which have three
handovers or more. Since there are only three support lines,
and every incident begins in the first line, an incident with less
than three handovers must have been sent from first line to sec-
ond line and back, or from first line to second line and then
on to third line, for example. On the other hand, an incident
with three handovers must have visited the second line or the
third line several times, meaning that there was definitely some
amount of ping-pong behavior involved.

The predicate task(I, resolved) can still be found in Fig-
ure 6, but it is now at the second level in the tree. This means
that ping-pong behavior has such a large impact on the lifetime
of incidents that any other factor becomes of second impor-
tance, including the effect of the wait-user status, which appears
only at the third level in the tree.

4.4. Finding new custom predicates

In this case study we were able to verify certain causes of
delay which were already known from the start. In particular,
with the custom predicate pingpong/2 it became evident that
ping-pong behavior is a major cause of delay. However, one
might wonder how the analysis would have been carried out if
these causes of delay had not been provided beforehand. For
example, how could the analyst ever come up with the idea of
ping-pong behavior if this had not been suggested before? This
section explains how the analyst could have proceeded to find
new custom predicates for such high-level concepts.

In the absence of any clue about the possible reasons of
delay, the analyst could start with the predicates defined in Sec-
tion 2.3, but instead of using them all at once (which would
yield the tree in Figure 5), it is possible to try them one at a
time to gain a feeling for which features have the largest impact
on the duration of the process. For example, by starting with the
task/2 predicate, the tree in Figure 7 would immediately raise
suspicion about the “wait” and “wait user” status.

7554
[294.79]

task(I,resolved)

5663
[389.98]

yes

1891
[9.71]

no

task(I,wait)

1064
[620.78]

yes

4599
[336.58]

no

task(I,wait_user) task(I,assigned)

555
[712.36]

yes

509
[520.93]

no

1259
[468.74]

yes

3340
[286.77]

no

... ...
Figure 7: Decision tree induced with the task/2 predicate only

The analyst could therefore define a custom predicate,

has wait(I) D task(I,wait).
has wait(I) D task(I,wait user).
has wait(I) D task(I,wait implementation).

to capture the fact that a given instance has some kind of wait
status (wait OR wait user OR wait implementation). Here, the
custom predicate involves multiple statements of the same pred-
icate (task/2), but it might as well combine different predicates
into an OR-clause.

When the analyst considers the predicate together/3 in iso-
lation, the tree in Figure 8 immediately points to a suspicious
delay when the three support lines are involved.

7554
[294.79]

together(I,first_line,second_line)

2107
[546.39]

yes

5447
[197.46]

no

together(I,first_line,third_line) together(I,first_line,third_line)

195
[719.52]

yes

1912
[528.73]

no

129
[510.07]

yes

5318
[189.88]

no

together(I,second_line,third_line)

109
[465.79]

yes

5209
[184.11]

no

Figure 8: Decision tree induced with the task/2 predicate only
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The analyst could therefore define a custom predicate,

all three lines(I) D user(I, f irst line),
user(I, second line),
user(I, third line).

to capture the fact that the three lines work together in the same
incident ( f irst line AND second line AND third line). Again,
the custom predicate involves multiple statements of the same
predicate (user/2), but it might as well combine different pred-
icates into an AND-clause.

Such kind of OR- and AND-clauses are the building blocks
to create new custom predicates that capture high-level con-
cepts or domain-specific issues concerning the scenario at hand.

After considering the handover/3 predicate in isolation, the
analyst would realize that the delay is related not only to the
fact that the three support lines work together, but also to the
fact that they keep handing over incidents back and forth be-
tween each other. At that point, the analyst would be led to
define some sort of custom predicate to capture that ping-pong
behavior, as we did in Section 4.3.

On a final note, the discovery of such new custom predi-
cates should be validated by a domain expert or process owner
with a profound understanding of the business process, since
such knowledge could help simplify the generalization of ob-
servations (e.g. moving from handover and together predicates
towards a new ping-pong predicate). This validation could even
be crucial as the proposed generalization might not be appropri-
ate without such key knowledge or understanding.

5. Related work

The induction of logical decision trees can be seen as a form
of Inductive Logic Programming (ILP) [32, 33]. In ILP terms,
the logical representation of the event log that we introduced in
Section 2.1 would be called the input examples, and the rules
that we introduced in Sections 2.2 and 2.3 would be called the
background knowledge. The top-down induction of a logical
decision tree is similar to the way an ILP algorithm searches
for an hypothesis that covers the input examples.

ILP techniques have been used before in the area of process
mining, but not for the purpose we describe here. For example,
[34] uses ILP and Tilde to learn the preconditions of each activ-
ity from the event log and from a set of negative events that are
generated artificially to discover the process model. Ref. [20]
uses a related technique called inductive constraint logic [35] to
learn declarative models from an event log containing traces la-
beled as compliant or non-compliant. Also, [36] uses ILP com-
bined with a planning algorithm in a framework that supports a
continuous learning of business processes.

Some recent works [37, 38, 39, 40] are more closely re-
lated to our approach in the sense that they use classification
techniques for the analysis of performance and other perspec-
tives. Ref. [37] proposes an architecture for a business process
intelligence tool that makes use of classification techniques for
the analysis of process behavior. Ref. [38] analyzes how case
data affects the routing of process instances with the help of

decision trees. Ref. [39] describes an approach that uses deci-
sion trees to find out whether there is a relationship between the
workload of resources and the fact that the process gets overdue
(i.e. duration exceeds a threshold); for this purpose, the authors
make use of an event log that is enriched with workload infor-
mation. Finally, ref. [40] uses decision trees to answer general
questions based on characteristics extracted from the event log;
although process duration could be one of those characteristics,
the framework requires characteristics to be discretized and this
discretization may have large repercussions in the results.

Our present approach differs from those previous works in
that we do not place any special requirements on the event log.
Rather, we translate the event log, as is, into a first-order logic
representation using a set of predicates, and we provide the an-
alyst with the possibility of discovering the cause of delays us-
ing high-level concepts defined as rules over those predicates.
Also, by using regression trees, process instances are classified
based on their actual duration (i.e. using time as a continu-
ous variable), rather than on discrete categories or intervals as
in [37, 39, 40]. This allows us to analyze different amounts
of delay without the need to define a strict borderline between
classes of delayed and non-delayed instances.

6. Conclusion

Typically, the event logs used for process mining contain
information about the tasks that have been performed and the
users who have performed them. In addition, from the times-
tamps of events it is possible to calculate the duration of each
process instance. For those instances which take longer to com-
plete, there may be several possible reasons for the delay. In this
work we have shown that if the delay is caused by specific tasks,
by specific users, or by some relationship between them, then
it is possible to discover such cause of delay from the simple
facts recorded in the event log.

Logical decision trees are a powerful and effective tool for
this purpose. As a classifier, the logical decision tree picks up
the most relevant predicates to split the input data into groups
according to the desired target variable (i.e. duration). These
predicates may represent common concepts in the process min-
ing domain, such as the flow between tasks, the handover of
work between users, etc., but it is also possible to define cus-
tom predicates to analyze specific causes of delay.

Overall, we may have given the impression that the ap-
proach is straightforward. However, applying the approach in
practice is not without some ingenuity, since translating the
event log into a logical representation may require some ad-
justments, as it happened in the first case study. Furthermore,
even when everything has been done correctly, the analysis may
depend on a correct interpretation of the decision tree, together
with an assessment of whether custom predicates should be in-
troduced, as we did in the second case study.

For these reasons, in future work we will be looking into the
possibility of using heuristics or other mechanisms to assist in
the translation of the event log, and to provide the analyst with
some indication as to whether the use of standard predicates
alone provides a good classification of process instances.
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