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Abstract: Convolutional neural networks (CNNs) have found applications in many image process-
ing tasks, such as feature extraction, image classification, and object recognition. It has also been
shown that the inverse of CNNs, so-called deconvolutional neural networks, can be used for inverse
problems such as plasma tomography. In essence, plasma tomography consists in reconstructing
the 2D plasma profile on a poloidal cross-section of a fusion device, based on line-integrated mea-
surements from multiple radiation detectors. Since the reconstruction process is computationally
intensive, a deconvolutional neural network trained to produce the same results will yield a signifi-
cant computational speedup, at the expense of a small error which can be assessed using different
metrics. In this work, we discuss the design principles behind such networks, including the use of
multiple layers, how they can be stacked, and how their dimensions can be tuned according to the
number of detectors and the desired tomographic resolution for a given fusion device. We describe
the application of such networks at JET and COMPASS, where at JET we use the bolometer system,
and at COMPASS we use the soft X-ray diagnostic based on photodiode arrays.
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1 Introduction

Plasma tomography [1] consists in reconstructing the plasma radiation profile, e.g. on a poloidal
cross-section of a tokamak. This reconstruction is based on measurements of line-integrated
radiation along multiple lines of sight. There are different types of diagnostics that can be used for
this purpose. For example, at JET there is a bolometer system with two cameras (one horizontal and
one vertical) providing a total of 56 lines of sight [2], while at COMPASS there are three soft X-ray
cameras based on photodiode arrays, which provide a total of 90 lines of sight [3]. The detector
technology is different, but in both cases the goal is to reconstruct the plasma radiation profile.

Figure 1 shows the lines of sight for both JET and COMPASS, together with a sample recon-
struction. At JET, the horizontal camera has 24 lines of sight, and the vertical camera has another
24, plus 8 extra detectors that can be used as reserve channels. The tomograms at JET have an
output resolution of 196×115 pixels. At COMPASS, the three cameras are referred to as A, B and
F, with A and B having 35 lines of sight each, and F having 20. This geometry might change from
time to time, by adding/removing cameras or changing the lines of sight for existing cameras. The
tomograms at COMPASS have an output resolution of 135×105 pixels.

Figure 1. Lines of sight and sample reconstructions for JET (left) and COMPASS (right).

In general, reconstructing the plasma profile from the detector measurements is a computation-
ally intensive task, and several methods exists for that purpose [4]. The method that is used at JET
is based on an iterative constrained optimization algorithm that minimizes the error with respect to
the observed measurements, while requiring the solution to be non-negative [5]. At COMPASS,
the solution is also obtained by minimizing the error to the observed measurements, but with a
regularization term that is based on the concept of Fisher information, where the weight of such
regularization is found iteratively [3]. In both cases, the methods take a significant amount of time
(from a few seconds to several minutes) to converge to a solution.

In this work, we use deep neural networks to produce similar results in a fraction of the
time. This approach has already been demonstrated at JET [6], but here we generalize it in
order to apply it across multiple devices and diagnostic systems. When running on a Graphics
Processing Unit (GPU), such networks are able to produce thousands of reconstructions per second
which, considering the sampling rate of these diagnostic systems (on the order of several kHz), is
sufficiently fast to provide the prospect of achieving real-time tomography in the near future.
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2 Deep neural networks

Deep learning [7] has had a large impact in many areas, especially those involving image processing,
where convolutional neural networks (CNNs) play a key role. Typically, CNNs comprise a sequence
of convolutional layers followed by dense layers. Each convolutional layer applies several filters
(in the form of a small kernel or sliding window) to its input. Since the purpose of a filter is to
detect a specific feature, its output is called a feature map. In addition, CNNs contain subsampling
layers usually placed after each convolutional layer. Alternatively, a stride greater than 1 (i.e. the
amount of pixels skipped between two consecutive convolutions) may be used to achieve the same
subsampling effect. The output from these convolutional and subsampling layers is usually a large
number of small feature maps. These feature maps are then flattened and connected to dense layers
in order to perform image classification based on the extracted features.

In summary, the input to a CNN is typically a 2D image and its output is a 1D vector of class
probabilities. However, in plasma tomography, the goal is to produce 2D image of the plasma
radiation profile from a 1D vector of detector measurements. For this purpose, we use a network
structure that is the logical inverse of a CNN. Such structure has been referred to in the literature as
a deconvolutional network [8].

Figure 2 shows the general, common structure of the deconvolutional networks that we use for
plasma tomography. The network has an input layer with i nodes, which correspond to the number
of available detectors (lines of sight). This is followed by two dense layers of size n, which are
reshaped into a 3D tensor of size w × h × d (so, n = w × h × d). This 3D shape can be interpreted
as comprising d features maps of size w × h. By applying a series of transposed convolutions (with
kernel size k), the feature maps are brought up to a size of 8w × 8h × d, from which the output
image is generated by one last convolution (with kernel size l). In case the desired output resolution
is not exactly 8w × 8h, the output shape can be trimmed to (8w − δ) × (8h − ε) by a simple slicing
operation that is not shown in the figure.
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Figure 2. General structure of deconvolutional networks for plasma tomography.
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Table 1 specifies the values of the hyperparameters (i, n, w, h, d, k, l, δ, ε) for JET and
COMPASS. The size n of the dense layers can be set independently of i, but it should be large
enough to provide the network with adequate learning capacity for the complexity of the plasma
profiles that are to be reconstructed. In this respect, the difference in n for JET and COMPASS does
indeed reflect the fact that bolometric profiles at JET are more featureful than soft X-ray profiles
at COMPASS. The kernel sizes k and l can be set freely, but typical values are in the range 1–5.
Finally, the hyperparameter δ is negative for COMPASS, meaning that, instead of trimming, a
zero-padding operation is being applied to increase the width of the output image.

Table 1. Hyperparameters for the trained networks.

i n w h d k l 8w 8h δ ε 8w−δ 8h−ε
JET 56 7500 15 25 20 3 3 120 200 5 4 115 196
COMPASS 90 3315 13 17 15 5 1 104 136 -1 1 105 135

3 Datasets and training

To train the network at JET, we gathered about 28000 sample reconstructions from all the campaigns
since the installation of the ITER-like wall in 2011. The dataset was divided into 80% for training,
10% for validation, and 10% for testing, where the split was done by pulse. Training was done on
an NVIDIA Titan X GPU using accelerated gradient descent with a small learning rate (10−4) and
a batch size of about 400 samples. For COMPASS, we gathered about 5800 sample reconstructions
that belong to an interval of more than 1000 shots performed with the camera geometry in figure 1.
A similar data splitting and training procedure was followed.

In both cases, the loss function to be minimized was the mean absolute error between the
network output and the sample tomograms. For JET, the best result was achieved at around epoch
800, with a minimum validation loss of 0.0128 MW m−3 (0.0147 MW m−3 in the test set). To
appreciate the small scale of this error, it can be compared to the dynamic range of the reconstruction
in figure 1 (0.5 MW m−3). For COMPASS, the minimum validation loss was 0.0054 kW m−3 at
around epoch 26000 (0.0062 kW m−3 in the test set). Again, this value is considerably small when
compared to the dynamic range of the reconstruction in figure 1 (5.0 kW m−3).

4 Results

To assess the quality of the reconstructions produced by these networks, we used image comparison
metrics such as structural similarity (SSIM) [9] and peak signal-to-noise ratio (PSNR) [10]. Table 2
presents the results achieved on the test sets for JET and COMPASS. In particular, SSIM is close
to 1.0 (maximum) and the values of PSNR (in decibels) are roughly equivalent to the error that is
introducedwhen compressing an image to JPEG format. A comparison between original tomograms
and those produced by the networks is presented in figure 3.

In addition to high accuracy, these networks have sufficient performance to produce large
batches of reconstructions. When running a GPU, it is possible to compute 3000 reconstructions
per second for JET, and 6000 reconstructions per second for COMPASS, since the size of the
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Table 2. Quality metrics on the test set. Mean and standard deviation values are presented.

SSIM PSNR (dB)
mean std.dev. mean std.dev.

JET 0.936 0.061 35.36 7.17
COMPASS 0.998 0.004 49.96 4.63

COMPASS Pulse 10165 t=1.075sJET Pulse 89077 t=47.8s
Original OriginalNN NNMW m-3
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Figure 3. Comparison between original tomogram and network output for JET (left) and COMPASS (right).

network for COMPASS (in terms of number of parameters) is basically half of the one for JET. This
allows the computation and analysis of full pulse reconstructions, where for example disruptions
and their precursors are clearly visible [6].

5 Handling missing detectors

These networks can also be trained to become robust to missing or malfunctioning detectors. For
this purpose, we insert a dropout layer [11] with a small dropout rate after the input layer. This
way, the network will be forced to learn from a randomly selected subset of detectors, where such
random selection is performed continuously during training time.

At test time, we remove up to two detectors by setting them to zero, and again evaluate the
network accuracy on the test set. To calculate the evaluation metrics, we average over all possible
combinations of missing detectors.

Figure 4 presents the results for four different dropout rates, from zero (no dropout) to 10%. It
is possible to observe that, when dropout is not used, the network accuracy degrades with missing
detectors. On the other hand, when the network is trained with dropout, it is able to maintain
its accuracy when detectors are removed. (In the case of COMPASS, there is a even a small
improvement when going from one to two missing detectors, because there is a larger number of
combinations which contribute favorably to the average.) In addition, a small amount of dropout
(5% for JET and 1% for COMPASS) seems to be beneficial even when no detectors are missing.

In conclusion, a small amount of dropout on the input layer does not harm the training
process and provides robustness to missing detectors. The dropout rate can be set as an additional
hyperparameter of the network that requires proper tunning.
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Figure 4. Quality metrics obtained for JET (left) and COMPASS (right) after training with different dropout
rates and testing by removing a given number of detectors.
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