
Pattern Mining on Stars with FP-Growth

Andreia Silva and Cláudia Antunes

Instituto Superior Técnico
Av Rovisco Pais 1
1049-001 Lisboa

{andreia.silva,claudia.antunes}@ist.utl.pt

Abstract. Most existing data mining (DM) approaches look for pat-
terns in a single table. Multi-relational DM approaches, on the other
hand, look for patterns that involve multiple tables. In recent years, the
most common DM techniques have been extended to the multi-relational
case, but there are few dedicated to star schemas. These schemas are com-
posed of a central fact table, linking a set of dimension tables, and joining
all the tables before mining may not be a feasible solution. This work
proposes a method for frequent pattern mining in a star schema based
on FP-Growth. It does not materialize the entire join between the tables.
Instead, it constructs an FP-Tree for each dimension and then combines
them to form a super FP-Tree, that will serve as input to FP-Growth.

1 Introduction

While most existing data mining approaches look for patterns in a single data
table, multi-relational data mining (MRDM) approaches look for patterns that
involve multiple tables (relations) from a relational database or data warehouse.
In recent years, the most common types of patterns and approaches considered
in data mining have been extended to the multi-relational case and MRDM now
encompasses multi-relational (MR) association rule discovery, MR decision trees
and MR distance-based methods, among others. MRDM approaches have been
successfully applied to a number of problems in a variety of areas[4].

From those works, just a few are dedicated to frequent itemset mining on
star schemas [2,8,10].

This work aims to find frequent patterns in a set of tables of a data warehouse,
following a star schema, without materializing the join of its tables.

A data warehouse is a subject-oriented, integrated, time-variant, and non-
volatile collection of data in support of management’s decision-making process
[7]. In terms of data modeling, a data warehouse consists of one or several dimen-
sional models that are composed of a central fact table and a set of surrounding
dimension tables, each corresponding to one of the dimensions of the fact table.
The most used dimensional model is the star schema, which consists of multiple
dimension tables that are associated by foreign keys to a central fact table.

At first glance, it may seem easy to join the tables of a star schema, and then
do the mining process on the joined result[8]. However, when multiple tables

are joined, the resulting table will be much larger and the mining process more
expensive and time consuming. There are two major problems: First, in large
applications, often the join of all related tables cannot be realistically computed
because of the distributed nature of data, large dimension tables and the many-
to-many relationship blow up. Second, even if the join can be computed, the
multifold increase in both size and dimensionality presents a huge overhead to
the already expensive pattern mining process:
(1) the number of columns will be close to the sum of the number of columns in
the individual tables.
(2) If the join result is stored on disk, the I/O cost will increase significantly for
multiple scanning steps;
(3) For mining frequent itemsets of small sizes, a large portion of the I/O cost
is wasted on reading the full records containing irrelevant dimensions;
(4) Each tuple in a dimension table will be read multiple times in one scan of
the joined result. The number of times that a tuple appears in the fact table is
the number of times the whole tuple will be read in the joined result.

One of the great potential benefits of MRDM is the ability to automate the
mining process to a significant extent. Fulfilling this potential requires solving
the significant efficiency problems that arise when attempting to do data mining
directly from a relational database, instead of a single pre-extracted flat file[3].

The proposed algorithm is an adaptation of FP-Growth [5] to mine a star
schema. The main idea is to adapt the construction of the FP-Tree, so that
FP-Growth can run.

Like FP-Growth, it scans each table only twice: first to count the support of
each item, and second to construct the FP-Tree. It is divided in 3 stages:

1. Support Counting: The fact table is scanned to count the support of each
foreign key.

2. Local Mining: An FP-Tree is constructed for each dimension table (DimFP-
Tree), with a slight modification of the original FP-Tree, taking into account
the support calculated in the previous step.

3. Global Mining: The FP-Trees of each dimension are combined to form a
Super FP-Tree, according to each fact and an established order of dimen-
sions. This Super FP-Tree is then mined with FP-Growth, without a change,
giving all the frequent patterns.

Several orders for the dimensions were studied and are presented and com-
pared in this work.

The rest of this paper is organized as follows. Section 2 presents the related
work on MRDM on star schemas. The proposed algorithm is described on sec-
tion 3. Section 4 gives some experimental results and section 5 presents the
conclusions.

2 Related Work

The work related to multi-relational pattern mining on star schemas is increasing.
Experiments showed that the approach of “mining before join” outperforms the

approach of “join before mining” even when the latter adopts known to be fastest
single-table mining algorithms[8].

Jensen and Soparkar (2000) presented an Apriori based algorithm [2], that
first generates frequent itemsets in each single table using a slightly modified
version of Apriori[1], and then looks for frequent itemsets whose items belong
to distinct tables via a multi-dimensional count array. It does not construct
the whole joined table but processes each row as the row is formed, thus storage
cost for the joined table is avoided. However, the number of candidates generated
explodes as the number of dimensions, attributes and values increase.

Ng et al.(2002) proposed an efficient algorithm without actually performing
the join operation [8]. They perform local mining on each dimension table, and
then “bind” two dimension tables at each iteration, i.e. mine all frequent itemsets
with items from two different tables without joining them. After binding, those
two tables are virtually combined into one, which will be “binded” to the next
dimension table. They use vertical data format, and a prefix tree to compress
the fact table and to speed up the calculation of support.

Xu and Xie (2006) proposed MultiClose [10], which discover frequent closed
itemsets without materializing join tables. It first converts the dimension tables
to vertical data format, and then mines each of them with a closed algorithm.
After local mining, frequent closed itemsets are stored in two-level hash table
result trees, and the frequent closed itemsets across two tables are discovered by
traversing those result trees.

Several multi-relational methods have been developed by the Inductive Logic
Programming community over the recent years, but they are usually not scalable
with respect to the number of relations and attributes in the database. Therefore
they are inefficient for databases with complex schemas. Another drawback of
the ILP approaches is that they need the data in the form of prolog tables.

There are other algorithms for finding multi-relational frequent itemsets,
however they just consider one common attribute at a time. They would have
to run as much times as the number of dimensions, since there is no attribute
common to all the tables. Instead, in a star schema, the fact table has one at-
tribute in common with each dimension, and the dimensions have no common
attribute between them. The patterns discovered by those algorithms will not
reflect the relationships between dimensions.

The proposed algorithm also mines star schemas without computing the en-
tire join nor materializing join tables. After constructing an FP-tree for each
dimension, the corresponding tables are discarded. The trees already take into
account the minimum frequency and incorporate transaction ids. The super FP-
tree that represents the whole star is then constructed, by aggregating the di-
mension trees all together, based on the fact table. Finally, this tree in mined
using the known pattern growth method, FP-Growth[5].

3 Mining Stars

Consider a relational database modeled as a star schema.

There are multiple dimension tables, which we will denote as A, B, C, ...,
each containing only one primary key, denoted by transaction id (tid), some other
attributes and no foreign keys. In fact, what we want is to discover potentially
useful relationships among the attributes, other than primary keys. The set of
values for an attribute is called the domain of the attribute.

In order to simplify our discussion we assume the fact table, denoted as FT,
only contains the tids from dimension tables as foreign keys (tidA, tidB , tidC ,
...). If it contains some fields other than primary keys, we can place them into
an extra dimension table and insert a new foreign key corresponding to it into
the fact table. They are considered facts or measures.

As example, lets consider a dataset of the real movies database used in the
experiments, only with three dimensions: Award (A), Studio (B) and Movie (C).
Table 1 presents a conceptual representation of the dimension tables, where ai,
bi and ci denote the tid of dimension tables A, B and C, respectively, and xi, yi
and zi denote each possible value of A, B and C. Table 2a shows the fact table.

tidA Itemsets Support

a1 x1 3
a2 x2x3x4 1
a3 x5x6x7 5
a4 x8x6x7 1

(a) Table A

tidB Itemsets Support

b1 y1 2
b2 y2y3y4 1
b3 y5y3y6 1
b4 y7y3y6 2
b5 y8y3 1
b6 y9y3y6 2
b7 y10y11y6 1

(b) Table B

tidC Itemsets Support

c1 z1z2 1
c2 z3z4 1
c3 z5z4 1
c4 z6z4 1
c5 z7 1
c6 z8z2 1
c7 z9z4 1
c8 z10z11 1
c9 z12z4 1
c10 z13z4 1

(c) Table C

Table 1: Dimension Tables

tidA tidB tidC
a3 b2 c1
a3 b4 c2
a3 b6 c3
a3 b4 c4
a1 b1 c5
a1 b5 c6
a3 b7 c7
a1 b1 c8
a2 b3 c9
a4 b6 c10

(a) Fact Table

ItemsetsA ItemsetsB ItemsetsC
x6x7x5 y3 –
x6x7x5 y3y6 z4
x6x7x5 y3y6 z4
x6x7x5 y3y6 z4

– – –
– y3 –

x6x7x5 y6 z4
– – –
– y3y6 z4

x6x7 y3y6 z4

(b) Denormalized Fact

Table 2: Fact table and the frequent itemsets corresponding to each tid

This example will be used to show how the proposed algorithm works, with a
minimum support equals to 40% of the database. The sample of the database has
10 transactions, therefore 40% of it corresponds to 4 transactions. This means
that an itemset is frequent if its support is no less than 4 transactions.

Let I = {i1, i2, . . . , im} be a set of distinct literals, called items. A subset of
items is denoted as an itemset. A transaction T = (tid, X) is a tuple where tid
is a transaction-id and X is an itemset in I. Each table, in a relational database
D, is a set of transactions. The support (or occurrence frequency) of an itemset
It, is the number of transactions containing It in the database. It is frequent if
its support is no less than a predefined minimum support threshold, σ.

In a database modeled as a star schema, where there are several tables, we
have to be more specific: the local support of an itemset It, with items belonging
to a table A (A.localSup(It)), is the number of occurrences of It in A. For
example, on table 1a, A.localSup(x1) = 1 and A.localSup(x6) = 2. The global
support (or just support) of an itemset It is the number of transactions of the
fact table containing all the tids that contain It, as in equation 1:

globalSup(It) =

tid(It)∑
tid

FT.localSup(tid) (1)

Following the example above, globalSup(x1) = FT.localSup(a1) = 3 and
globalSup(x6) = FT.localSup(a3) +FT.localSup(a4) = 5 + 1 = 6.

3.1 The Algorithm

Star FP-Growth mines multiple relations for frequent patterns in a database
following a star schema. The result is the same as mining the joined table, but
without materializing it.

It is based on FP-Growth [5], and the main idea is to construct a Super FP-
Tree, combining the FP-Trees of each dimension, so that the original FP-Growth
can run and find multi relational patterns. Like FP-Growth, it scans each table
only twice: first to count the support of each item and second to construct the
FP-Tree.

The overall steps are:

Step 1: Support Counting: The fact table is scanned to count the support
of each tid of each dimension. In the example, the tid support is shown in
the third column of each dimension table (Table 1).

Step 2: Local Mining: An FP-Tree is constructed for each dimension table
(DimFP-Tree), with a slight modification of the original FP-Tree, taking into
account the support calculated in the previous step.

Step 3: Global Mining:

Step 3.1: Construct the Super FP-Tree: The DimFP-Trees of each dimension are
combined to form a Super FP-Tree, according to each fact and an established
order among dimensions.

Step 3.2: Mining the Super FP-Tree: Run FP-Growth [5], without a change,
with the Super FP-Tree and the minimum support threshold. The result of
this step is a list of all patterns, not just those relating to one dimension,
but also those which relate the various dimensions.

Constructing the DimFP-Tree A DimFP-Tree is very similar to an FP-
Tree[5]. There are two major differences between the construction of a DimFP-
Tree and an FP-Tree:

First, the support used here is the global support of each item, i.e. we con-
sider the occurrences of an item in all database, not only in the item’s table.
Therefore, a node does not start with the support equals to one, but with sup-
port = support(T), with T the tid of the transaction that originated the node.
It also is not incremented by only one, but by support(T).

For example, b4 has a support = 2, which means that that transaction occurs
two times in the database. Adding two times the same transaction with support
= 1 is the same as adding it one time with support = 2. Starting a node with
support = support(T) and incrementing by support(T) avoids being repeatedly
inserting the same transaction.

Second, instead of the header table, the DimFP-Tree has other structure, the
branch table, that keeps track of the path correspondent to each tid. It stores the
last node of that path for each tid. This structure will help the global mining. If
we want to know which frequent items belong to a tid, we follow the link in that
table to find the last node, and then we just have to climb through its parents
till we reach the root node. The items of the nodes in the path we took are the
frequent items of that transaction.

The result is the same as if we have the table with the transactions and their
frequent sorted items. However, the size of the tree is usually much smaller than
its original database, therefore, not having that table materialized in memory
usually saves a lot of space and avoids duplicates [6]. If we keep the table instead
of the tree, and if two transactions have the same frequent items, those items
will be repeated two times. With the tree, there is just one path corresponding
to the two transactions. Further, shared parts can also be merged using the tree.
Therefore, in a larger scale, the more transactions there are, the greater the
difference.

�� ���

�� ���

�� ���

�

�

�

���

�����	

���

(a) DimFP-Tree A

�� ��� �� ���

�� ���

	�

	

	�

	�

	�

	�

	�

���
�����	

���

(b) DimFP-Tree B

�� ���

��

�

��
��
��

��
��
��

��
���

���
�����	

���

(c) DimFP-Tree C

Fig. 1: DimFP-Trees for each dimension table

Lets consider the construction of the DimFP-Tree (figure 1b) of table B:

Step 2 starts with a first scan to the table B to calculate the support of each
item. Only y3 and y6 are frequent, i.e. have a support no less than four transac-
tions (sup(y3) = 7 and sup(y6) = 6). Therefore, only the itemsets containing just
y3 and/or y6 would be frequent, according to the anti-monotone property[1]. For
each transaction b1, b2, . . . , b7, frequent items are selected and sorted according
to the support descending order, and then inserted in the tree. At the same time,
the branch table is constructed, linking each tid to the respective node in the
tree. b1, for example, does not have any frequent item, therefore its branch link
links to the root node. b3 corresponds to the first path of the tree, therefore its
branch link points to the last node in that path. The other transactions follow
the same reasoning. Figure 1 shows the results for all dimensions.

Constructing the Super FP-Tree The Super FP-Tree is just like an FP-
Tree, since it will serve as input to FP-Growth. The construction is very similar
to the construction of an FP-Tree [5]. Despite this, there are three differences:

First, it is not necessary the first scan to any table to calculate the supports.
They are already calculated and stored in each dimension tree.

Second, a fact is a set of tids, therefore the denormalization of each fact is
necessary before ordering the items or inserting them in the tree. A denormalized
fact is an itemset with the items corresponding to its tids. Through the branch
table of each DimFP-Tree we can get the path corresponding to the itemset of
each tid. Furthermore, according to the anti-monotone property, if an itemset
is not frequent, no other itemset containing it will be. Thus, we only check the
frequent items in the transactions of each tid, ensuring that the final tree has
only the frequent items of each dimension. Table 2b, one can see the result of
denormalizing each fact of our example.

And third, the ordering of items in a transaction does not have to be the
frequency descending order. As verified in the improvement of FP-Growth pro-
posed in [6], an FP-tree based on frequency descending ordering may not always
be minimal.

The support descending ordering enhances the compactness of the FP-tree
structure. However, this does not mean that the tree so constructed always
achieves the maximal compactness. With the knowledge of particular data char-
acteristics, it is sometimes possible to achieve even better compression.

There are two related and important properties of the FP-tree that can be
derived from its construction process [6].

On one hand, given a transaction database DB, and without considering the
root, the size of an FP-tree is bounded by

∑
T∈DB |freq(T)|.

The height of the tree is bounded by maxT∈DB{|freq(T)|}, where freq(T)
gives the frequent items of transaction T.

This means that the number of nodes of an FP-Tree (size) is, at most, the
number of frequent items in all the transactions, and the number of levels (height)
is, at most, the maximal number of frequent items in a transaction.

On the other hand, given a transaction database DB, the number of paths in
an FP-tree is bounded by |DB|, i.e., it is, at most, the number of transactions in

the database, if each transaction contributes to one different path of the FP-tree,
with the length equal to the number of frequent items in that transaction.

With those lemmas in mind, several orders among dimensions were studied
and compared in terms of the properties defined above. The three most relevant
are the following:

1. Support descending order of items

This ordering does not have into account any order of dimensions. After de-
normalizing the fact, the transaction may have items from multiple dimensions.
Sorting them in a support descending order may result in an itemset with items
from multiple dimensions intermixed. This is the order used in the original FP-
Growth. So, the tree resulting from applying this ordering is the same as the
tree resulting from joining the tables in one and applying directly FP-Growth
to it (but in this case, the joining is not materialized).

2. Support descending order of dimensions

�� ���

�� ���

��

	�

�

	�

��

��

����

����

��	
 �� ���

� ���

� ��� �� ���

�� ���

�� ���

�� ���

�� ���

�� ���

�� ���

�� ���

�� ���

Fig. 2: Super FP-Tree with a sup-
port descending order of dimensions

As the support descending ordering
enhances the compactness of the FP-tree
structure, it is a promising order for the
dimensions. Dimensions with higher sup-
port are more likely to be shared and thus
arranged closer to the top of the FP-tree.

Since each dimension can have multi-
ple items with different supports, we con-
sider that the dimension support corre-
sponds to the support of its least frequent
item. Dimensions with the same support
are ordered alphabetically, and the items
of a dimension are also ordered in a sup-
port descending order.

Note that, with this ordering, items
from multiple dimensions are not inter-
mixed. Items from dimensions with higher
support will always appear before those
from dimensions with lower support.

In our example, the lowest support in dimensions is five in dimension A, and
six in B and C. The support descending order of these dimensions is B → C → A
((yis) → (zis) → (xis)). Figure 2 presents the resulting Super FP-Tree. The
branch table shows the items according to this ordering.

3. Path ascending order of dimensions

If we look at the number of paths of a tree, |paths| (or just P), we can state
that, when joining 2 or more trees of different |paths| (i.e. adding one tree to
every leaf of the other), the order in which the trees are joint influences the size
of the resulting tree. Note that the |paths| of the joined tree is always the same
and equals to

∏
t∈TS |P (t)|, where TS is the set of the trees we want to join.

The number of paths of a tree is the same as the number of leafs.

Its size (without the root) is given by
|TS|∑
i=1

i−1∏
j=1

P (tj)

× size(ti) (2)

where P (t) gives the number of paths in the tree t and TS is the set of trees in
the order they are joint. The explanation is the following: a tree is inserted in
each leaf of the tree immediately above, which in turn, was also inserted in each
leaf of the preceding tree.

For example, imagine we have a tree A with 1 path, and another, B, with 3
paths (Figure 3a and 3b). If we join A with B, a copy of B is inserted in each
leaf of tree A. Therefore, the resulting tree will have 4 nodes (without the root),
as shown in figure 3c. Joining B with A will result in a tree with more nodes, 6
(figure 3d). This is because, the more leafs the tree above had, more copies of
the tree below are needed.

�

(a) Tree A

�

(b) Tree B

�

(c) A with B

�

(d) B with A

Fig. 3: Joining two trees

As we stated, joining trees in a path ascending order, will result in the small-
est tree. However, joining two DimFP-Trees is not that linear. We may have to
insert one tree not just in the leafs of the other, but also in a middle node, if
that node corresponds to the last node of one transaction. Expressions above
are also valid for this case, if we consider that P (t) gives the number of nodes
that correspond to the last node of a transaction.

Summing, this ordering consists in joining DimFP-Trees in a path ascending
order. Dimensions with the same number of paths are ordered alphabetically,
and the items of one dimension are ordered in a support descending order, like
the other orderings.

These orderings have been applied to the movies database and the results
are presented in section 4. Note that the set of frequent items is independent of
the order applied. The result is the same for every orderings.

4 Experimental Results

The Super FP-Tree is the main structure of this algorithm. This is the tree
that will be mined with FP-Growth, and this is the tree that holds the patterns
we want to find. Therefore, the Super FP-Tree is the central object of these
experiments.

Our goal is to analyze the impact of different orderings on the performance
of our algorithm. In order to do that, the three orderings for the construction of

the Super FP-Tree are compared, varying the minimum support threshold and
the time spent in each step is analyzed.

The dataset is a real movies database[9]. The real database has six dimen-
sions, with different numbers of records, from about 20 to 11000, and with a fact
table with about 11000 transactions.

Among the data, we encounter a description of the directors, producers and
awards received for each film and time information about them.

To achieve reliable results, the data was split into five equal datasets. The
tests were applied to each dataset and we considered the average of each local
result. Therefore, we analyze about 2000 facts at each time.

When comparing the size of the Super FP-Tree (figure 4), i.e. the number
of nodes, the tree that is more compact is the one resulting from applying some
order to the dimensions. In terms of compression, the support descending and
path ascending orders of dimensions are very similar, and better than the support
descending order of items. In this experiments, this ordering gave always the tree
with more nodes. This difference happens because assigning an ordering for the
dimensions, taking into account their characteristics and the properties described
above, increase the number of shared nodes, and therefore, the compactness of
the Super FP-Tree.

Note that the support descending order of items gives the same results as
constructing an FP-Tree from the flat table (resulting from the join of the star),
therefore, it serves as a reference to the other orderings.���������������� ��� ��� ��� ��� ����	
��
��������� �	���
�������������������������������� ��!"#�!����������� ����������������� ��� ��� ��� ��� ����	
��
��������� �	���
�������������������������������� ��!"#�!����������� �
Fig. 4: Average size of the Super FP-
Tree

������������������������ �	� �	� �	� �	� �	�
��
��� �� �	� �	� �	� �	� �	�
��
��� � !!"#$��
Fig. 5: Average time on Super FP-Tree
construction

In terms of the number of paths in the Super FP-Tree, the resulting trees
are very similar. Although the support descending order of items gives the less
compact tree, it gives a tree with slightly less paths than the other orders.

The average time spent in the mining process was also studied. On average,
98% of the time is spent in the construction of the DimFP-Trees (step 2), and
counting the global support (step 1) only takes 0,20% of the time. The difference
between the application of the three orderings is mostly seen in step 3. As can be
seen in figure 5, the support descending order of items takes less time construct-
ing the Super FP-Tree than the other orders. With the support descending and
the path ascending orders of dimensions, each transaction of the fact table has

to be ordered according to that ordering before it can be inserted in the tree,
yielding the previous results.��������������������	
��
� �� ��� ��� ��� ��� �����	
��
� � !!"#$��
Fig. 6: Average time of FP-Growth

Fig. 7: Average total time on Star FP-
Growth

Even though the time for the construction of the Super FP-Tree is smaller
for the support descending order of items, the FP-Growth will take longer to
execute (figure 6), due to resulting tree’s size (figure 4 shows its size is bigger).
Therefore, in the end, the total time needed for running Star FP-Growth (figure
7) is very similar for all orderings.

The size of the trees, as well as the time spent, depend not just on the size and
characteristics of the data, but also on what the user wants. As minimum support
decreases, the number of patterns increases, and therefore the tree and time will
also increase. However, the memory needed to keep the trees will generally be
much less than the memory needed to keep the tables.

The computer used to run the experiments was an Intel Xeon E5310 1.60GHz
(Quad Core), with 2GB of RAM. The operating system used was GNU/Linux
amd64 and the algorithm was implemented using the Java Programming lan-
guage (Java Virtual Machine version 1.6.0 02). The tables were maintained in
memory, as well as all the trees. However, the dimension tables were freed before
Global Mining, as well as the fact table before running FP-Growth.

5 Conclusions

Star FP-Growth is a simple algorithm for mining patterns in a star schema.
It does not perform the join of the tables, making use of the star properties.
Building a tree for each dimension taking into account the global support of
items allows us to discard the respective table and to keep only the frequent
items. The main purpose is to prepare the FP-Tree that represents the data,
combining the dimension trees, so that it can serve as input to FP-Growth.

Three orderings for dimensions were analyzed and the results state that ap-
plying a support descending or a path ascending order for the dimensions achieve
better compression than the usual support descending order of items. The time
spent in the mining process was very similar for both orderings, but it actu-
ally depends on the size and characteristics of the data, and on what we want:
minimum support, performance, memory.

Using a pattern growth method and the FP-Tree gives us an important ben-
efit: the size of an FP-tree is bounded by the size of its corresponding database
because each transaction will contribute at most one path to the FP-tree, with
the length equal to the number of frequent items in that transaction. Since there
are often a lot of sharing of frequent items among transactions, the size of the
tree is usually much smaller than its original database. Unlike the Apriori-like
method which may generate an exponential number of candidates in the worst
case, under no circumstances, may an FP-tree with an exponential number of
nodes be generated.

If the tree cannot be maintained in main memory, several techniques can be
used, whether representing and storing the tree in hard disk, or partitioning the
database into a set of projected databases, and then for each projected database,
constructing and mining its corresponding FP-tree [6].

The proposed algorithm can also be generalized to be applied to a snowflake
structure, where there is a star structure with a fact table FT , but a dimension
table can be replaced by another fact table FT ′, which is connected to a set of
other dimension tables. We can consider mining across dimension tables related
by FT ′ first. Then consider the resulting Super FP-Tree as a derived DimFP-Tree
and continue processing the star structure with FT . This means that mining a
snowflake starts from their “leaves”.

References

1. Agrawal, R., and Srikant, R. Fast algorithms for mining association rules in
large databases. In VLDB’94, Proceedings of 20th International Conference on
Very Large Data Bases (Sept. 1994), pp. 487–499.

2. Crestana-Jensen, V., and Soparkar, N. Frequent itemset counting across
multiple tables. In PADKK ’00: Proceedings of the 4th Pacific-Asia Conference
on Knowledge Discovery and Data Mining, Current Issues and New Applications
(London, UK, 2000), Springer-Verlag, pp. 49–61.

3. Domingos, P. Prospects and challenges for multi-relational data mining. SIGKDD
Explor. Newsl. 5, 1 (2003), 80–83.

4. Džeroski, S. Multi-relational data mining: an introduction. SIGKDD Explor.
Newsl. 5, 1 (2003), 1–16.

5. Han, J., Pei, J., and Yin, Y. Mining frequent patterns without candidate gen-
eration. In SIGMOD’00: Proceedings of the 2000 ACM SIGMOD international
conference on Management of data (New York, NY, USA, 2000), ACM, pp. 1–12.

6. Han, J., Pei, J., Yin, Y., and Mao, R. Mining frequent patterns without can-
didate generation: A frequent-pattern tree approach. Data Mining and Knowledge
Discovery 8, 1 (2004), 53–87.

7. Inmon, W. H. Building the data warehouse (2nd ed.). John Wiley & Sons, Inc.,
New York, NY, USA, 1996.

8. Ng, E. K. K., Fu, A. W.-C., and Wang, K. Mining association rules from stars.
In In Proceedings of the 2002 IEEE International Conference on Data Mining
(2002), pp. 322–329.

9. Wiederhold, G. Movies database documentation, 1989.
10. Xu, L.-J., and Xie, K.-L. A novel algorithm for frequent itemset mining in data

warehouses. Journal of Zhejiang University - Science A 7, 2 (2006), 216–224.

	Pattern Mining on Stars with FP-Growth
	Andreia Silva and Cláudia Antunes

