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Abstract.   Despite the increase of interest on education and the quantity of existing data about 

students’ behaviors, neither of them, per se, are enough to predict when some student will fail. 

Anticipating students’ failure becomes an even harder task, when the goal is to predict the failure 

as soon as possible. Indeed, the classification problem doesn’t deal easily with the temporal 

nature of this kind of data, since it considers each instance attribute as important as others. In this 

paper, it is shown how different data mining techniques (namely classification and pattern 

mining) can be combined to surpass this difficulty. Experimental results show that the accuracy 

of these new methods is very promising, when compared with classifiers trained with smaller 

datasets. 

1.  Introduction 

With the spread of information systems and the increase of interest on education, the quantity of 

existing data about students’ behaviors has exploded in the last decade. Those datasets are 

usually composed of records about students’ interactions with several curricular units. On one 

hand, these interactions can be related to traditional courses (taught at traditional schools), that 

reveal the success or failure of each student, on each assessment element of each unit that student 

has attended. On the other hand, there are the interactions with intelligent tutoring systems (ITS), 

where each record stores all students’ interactions with the system. In both cases, records for 
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each student have been stored at different instants of time, since both attendance of curricular 

units, and corresponding assessment elements, and ITS interactions, occur sequentially, in a 

specific order. Despite this order can be different for each student, the temporal nature of the 

educational process is revealed in the same way: each student record corresponds to an ordered 

sequence of actions and results. 

Once there are large amounts of those records, one of their possible usages is on the automatic 

prediction of students’ success. Work on this area has been developed, with the research being 

focused mainly on determining students’ models (see for example (Baker & Carvalho, 2008a) 

and (Beck, 2007)), and more recently on mining frequent behaviors ( (Antunes, EDM, 2008) and 

(Romero, Ventura, Espejo, & Hervas, 2008)). Exceptions to this general scenario are the works 

by (Superby, Vandamme, & Meskens, 2006), (Vee, Meyer, & Mannock, 2006) and (Antunes, 

2009) that try to identify failure causes. For predicting students’ success, existing data per se is 

not enough, but combined with the right data mining tools, can lead to very interesting models 

about students behavior. Classification is the natural choice, since it is able to produce such 

models, only based on historical data (training datasets as the ones described above). Once these 

models are created, they can be used as predictive tools for new students’ success. 

Despite the excellent results of classification tools on prediction in several domains, the 

educational process presents some particular issues that bring additional challenges to this task.  

In this chapter, we will describe how traditional classifiers can be adapted to deal with these 

situations, after they have been trained in full and rich datasets. We cease the opportunity to 

succinctly explain the classification problem and describe the methodology adopted to create 

ASAP classifiers (as soon as possible classifiers). The chapter will also include a detailed study 

about the accuracy of these new classifiers when compared with the traditional ones, both 



3 

  

applied on full and reduced datasets. 

In order to demonstrate that ASAP classifiers can anticipate students’ failure in an interesting 

time window, the chapter will present a case study about students’ performance recorded on the 

last five years, in a subject of an undergraduate program. 

The rest of the chapter is organized as follows: next, the classification problem is described, 

giving particular attention to the most common measures for their efficacy; in this section, the 

problem of as soon as possible classification (ASAP classification) is also introduced. In section 

3, a methodology for the ASAP classification is proposed. Section 4, presents the case study for 

evaluating the new methodology, concluding with a deep study on the impact of different factors. 

The chapter closes with a critical analysis of the achieved results and points out for future 

directions to solve the problem. 

2. The classification problem 

a. Problem statement and evaluation criteria 

Automatic classification of records has its roots on the area of artificial intelligence and machine 

learning, and aims to classify one entity in accordance to its attributes and similar historical 

entities. 

In this manner, a classifier is just a function f from the set of instances I to the set of classes or 

concepts C, where each instance is characterized by a set of attributes or variables. Whenever 

the number of elements in C is finite (usually small, say k), a classifier is just a partition 

mechanism that splits the set of instances I into k subsets, Ik, each one corresponding to one 

class. Therefore, a classifier can be seen as a model, composed by the definition of each concept 

(class). In order to find such models, classification methods use a set of historical instances, with 

their own classification (usually known as training set). Once the model is discovered, and 
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assuming that all new instances follow the same probability distribution as the training set, it 

may be applied to predict the class for any unseen instance. 

Several have been the methods applied for discovering (or training) classifiers, all of them 

needing a specific generalization language to represent learnable models (Mitchell 1982). 

Among the most well known approaches are decision trees (Quinlan 1986), neural networks 

(Nilsson 1965), Bayesian classifiers, and more recently support vector machines (Vapnik 1995). 

All of them create a model based on the training set that can be used in classification time, 

without re-analyzing known instances. 

In a general and simplified way, the different learning approaches can be compared following 

some criteria when applied to a particular problem: i) the time spent on training the classifier; ii) 

the time spent on classifying an instance; iii) the tolerance to the existence of incoherencies in 

the training set, and iv) their accuracy. Since, some problems are best solved with some of these 

approaches, and none of them are better than the others in all situations, the important issue is to 

know what classifier to apply in a particular domain, and how to assess its quality.  

The first issue does not have a consensual answer, but the second one is perfectly defined. 

Indeed, the quality of a specific classifier is measured by its accuracy in an independent dataset 

(usually known as testing set, and represented by D in the following expressions). 

The accuracy of a classifier h is the percentage of instances in the testing set D that are correctly 

classified (Figure 1), where h(xi) is the estimation for xi‘s class and c(xi) its own classification. 
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Figure 1 – Formula for accuracy 

In order to distinguish the ability to classify instances from different classes, it is usual to use the 

confusion matrix. This is a k×k matrix (with k the number of classes), where each entry xij 
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corresponds to the percentage of instances of class i that are classified as in class j. Therefore, a 

diagonal matrix reveals an optimal classifier. 

When there are only two classes, it is usual to talk about positive and negative instances: 

instances that implement the defined concept and the ones that do not implement it, respectively. 

In this case, it is usual to designate the confusion matrix diagonal entries as true positives (TP), 

and true negatives (TN), and the others as false positives (FP) and false negatives (FN), as 

depicted in Figure 2. 

  Classification 
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 Positive Negative 

Positive TP FN 

Negative FP TN 

Figure 2 – Confusion matrix for binary classification 

In the binary case, it is useful to use some additional measures, namely sensitivity and 

specificity. While the first one reflects the ability to correctly identify positive cases, the second 

one reveals the ability to exclude negative ones. Hence, sensibility is given by the ratio between 

the number of instances correctly classified as positives (TP) and the number of real positive 

instances (TP+FN), Figure 3. 
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Figure 3 – Formula for sensibility 

By the other side, specificity is given by the ratio between the number of instances correctly 

classified as negative (TN) and the number of real negative instances (TN+FP), as shown in 

Figure 4. In this manner, specificity is just sensibility for the negative class. 
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Figure 4 – Formula for specificity 
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b. Anticipating failure as soon as possible 

By nature, the educational process begins with students that do not have any knowledge about 

the topic to be taught, and aims to end with the same student full of that knowledge. At the same 

time, the process occurs during some time interval, where students are asked to interact with the 

system, either almost continuously or at specific instants of time. The results of these interactions 

are usually used to assess students’ success and progress. Another important characteristic of the 

educational process is the fact that the success or failure of the student is determined at a 

particular instant of time, usually at the end of the process. 

Consider for example, the enrolment of a student at an undergraduate subject: he starts to interact 

with the curricular unit, usually with some small assignments, that have a small weight on the 

final grade; as the time goes on, student is confronted with harder tasks and at the end of the 

semester he has to be evaluated on a final exam and has to deliver a final project. His final mark 

is determined according to a mathematical formula that weights the different interactions. In this 

case, the best classifier is the one that corresponds to that mathematical formula, which can be 

represented accurately by all the referred approaches. However, despite the perfect accuracy of 

this method, the goal is not achieved: it is not able to predict if some student will fail in advance. 

To our knowledge, in order to accomplish the goal of predicting students result in advance, the 

training of classifiers have to suffer some adaptations, namely on weighting the different 

attributes based on their instance of occurrence. In this manner, oldest attributes have higher 

weights in the classification than the youngest ones. However, this is against educational process, 

since the classifier would be almost the reverse of the optimal one. 

In the next section, a new approach is proposed, avoiding this contra-nature approach. 
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3. ASAP classification 

The amounts of data needed for training a classifier for achieving a specific accuracy has been 

study thoroughly, with very interesting results (see for example (Vapnik e Chervonenkis 1971), 

or more recently (Domingos e Hulten 2000) in other contexts). However, the problem of 

classifying instances that are partially observable, when classifiers may be trained with fully 

observable instances, is to our knowledge unstudied. Note that Bayesian networks are trained 

when such unobservable attributes exist, but this is not the problem defined here. For this reason, 

the problem statement is presented below. 

a. Problem statement 

Let I be a set of instances, A a set of attributes and C a set of possible classes; an instance xi from 

I is described by an ordered list of m attributes from A, and is represented as xi=xi1xi2…ximci, 

where ci∈C corresponds to the class of xi. 

Given a set of instances from I, described by m attributes from A, and a number of attributes n, 

such that n<m, the problem of classifying an instance xi as soon as possible consists on 

determining the value of ci – the class for xi, only considering its first n attributes, known as the 

observable attributes. 

The distinction of this formulation to the traditional formulation of classification, lies on the 

notion of order among the attributes that characterize an instance, and the fact that the classifier 

for instances with m attributes have to be able to classify instances described by a fewer number 

of attributes. 

Note, however, that nothing is said about the training process of classifiers. Indeed, the use of a 

training set, composed of historical records, is compatible with the notion that these historical 

instances are fully observable, which means, that classifiers can be trained using the traditional 
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methods without needing any adaptation. 

From this point forward, classifiers that work in the context of this formulation are denominated, 

as soon as possible classifiers – asap classifiers, for short. 

These new classifiers can be trained using two different strategies: a first one, based on the usage 

of the entire set of attributes, named the optimistic strategy, and a second one, the pessimistic 

strategy, that train the classifier only using the observable attributes. 

The pessimistic strategy converts the problem into the traditional problem of classification, by 

reducing each training instance from its original m-dimensional space, to an n-dimensional 

space, with n<m. Clearly, this strategy does not use all the information available at classification 

time. Indeed, it wastes the historical values of the unobservable attributes, existing in the training 

set. For this reason, it is expected that the pessimistic strategy will lead to the creation of less 

accurate classifiers. 

On the other hand, the optimistic strategy needs to train classifiers from m-dimensional instances 

that can be applied to n-dimensional ones. Again, it is possible to consider two approaches, either 

to convert the learnt classifier, a function from A
m
 to C, into a function from A

n
 to C, or to 

convert the n-dimensional instances into m-dimensional ones. 

Note that both approaches require some non-trivial transformation. In the case of the second 

approach, it tries to enrich non-fully observable instances, which can be achieved with any 

method capable of estimating unobservable attributes from observable ones. Next, an approach 

based on Class Associations Rules is described. 

b. CAR-based ASAP classifiers 

Association analysis is an unsupervised task, which tries to capture existing dependencies among 

attributes and its values, described as association rules. The problem was first introduced in 1993 
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(R. Agrawal 1993), and is defined as the discovery of “all association rules that have support and 

confidence greater than the user-specified minimum support and minimum confidence, 

respectively”. An association rule corresponds to an implication of the form A�B, where A and 

B are propositions (sets of pairs attribute/value), that expresses that when A occurs, B also occurs 

with a certain probability (the rule’s confidence). The support of the rule is given by the relative 

frequency of instances that include A and B, simultaneously. In this case, A and B are named the 

antecedent and the consequent of the rule, respectively. In this manner, while confidence 

measures the effectiveness of a rule, its support accounts for its coverage. 

A Class Association Rule (CAR for short) is an association rule, which consequent is a single 

proposition related to the value of the class attribute. In this manner, a set of CARs can be seen 

as a classifier. In this manner, each rule has an accuracy value, with the same meaning as 

introduced before, but that can be estimated as described in (Scheffer, 2001). 

Considering the problem of ASAP classification, as described above, and adopting an optimistic 

strategy, the CAR-based ASAP classifier, proposed in this paper, makes use of class association 

rules for estimating the values of unobservable attributes. 

Given a set of training instances D, described by an ordered list of m fully observable attributes 

and a class label y∈C (the set of class labels), say a1a2…amy. The classification of a new unseen 

instance z described by the same list of attributes, but where only the first n attributes are 

observable (with n<m), by the CAR-based ASAP classifier is done as follows: 

− First, a classifier is trained based on the entire training set D, for example using decision 

trees learners; 

− Second, for each unobservable attribute ai: 

· it creates a subset of D, Di, with instances characterized by attributes a1 to an, 
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followed by attribute ai; this last attribute is set to assume the role of class; 

· and then it finds the set of all classification association rules in set Di, that satisfy 

chosen levels of confidence, support and accuracy, CARi. 

− Thirdly, for each unobservable attribute in instance z, zi:  

· it identifies the rules from CARi that match instance z, CARzi; 

· among the consequents of rules on CARzi, it chooses the best value for filling in 

the value of zi, zi‘. 

− Finally, in order to predict the class label of instance z, it creates a new instance with m 

attributes z’, such that z’=z1 z2…zn zn+1’…zm’ and submits it to the learnt classifier. 

Note that a similar methodology can be adopted even when other estimators are used for 

predicting the value of unobservable attributes. It is only necessary to define what means “the 

best value”. In the case of the CAR-based ASAP classifier, the best value results from combining 

the different matching rules and choosing the one that better matches the instance. The 

combination of matching rules is necessary to identify the different possible values and their 

respective interest, since possibly there are several rules that match with a unique instance. 

An instance x is said to match a class association rule r, designated by x╞ r, if and only if  

� � ����…�� �	
��
� r �� 	� � ��∧	� � ��∧…∧	� � ���Y � y �

� ��∈�1, … , ��: �� �� ������� ∨  �� � �� 

A rule better matches an instance than another one, if the first is more specific than the second, 

which means that it has more matching attributes with the instance, and fewer missing values. In 

this manner, more restrictive rules are preferred. Note that despite variables xi with i≤n, are 

observable, some instances may present missing values for those variables, since their values 

may not be recorded. For example, the rule 	� � ��∧	� � ��∧	� � ���Y � y is a better match 
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than 	� � ��∧	� � ���Y � y, since it is more specific than the second one (it has an additional 

constraint on the value of an). 

The major disadvantage of the methodology proposed is that the existence of rules that match 

with some instance is determinant for the success of the final classification. Indeed, if it is not 

possible to estimate the value for each non observable attribute, then most of the times the 

classifier cannot improve its accuracy. 

One important advantage of CAR-based ASAP classifier is the direct influence of minimum 

confidence and minimum support thresholds on the number of matching rules. Definitely, with 

lower levels of support the number of matching rules increase exponentially (a phenomenon 

well-studied in the area of association analysis), and lower levels of confidence will decrease the 

certainty of the estimation, increasing the number of errors made. In order to increase the 

accuracy of the estimation of unobservable attributes, a rule is selected to estimate a value, only 

if it has an accuracy higher than a user-specified threshold. 

4. Case study 

In this chapter we claim that traditional classifiers can be beaten by ASAP classifiers on 

predicting students’ failure. In order to support this claim, some results of applying both kinds of 

classifiers to a specific dataset of an educational process, are described. 

The dataset in study stores the results of students enrolled in the five last years, in the subject of 

Foundations of Programming of an undergraduate program at Instituto Superior Técnico. The 

dataset has 2050 instances, each one with 16 attributes. From these, 12 correspond to considered 

observable attributes: 11 weekly exercises and 1 test. Unobservable attributes are the project 

(ATT13), the exam (ATT14) and another optional exam (ATT15). All have a classification from 

A to F (and NA – meaning not evaluated). The last attribute corresponds to the classification 
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obtained at the end of the semester (Approved – A, B, C, D or E, and Failed – F). 

The initial dataset was split into two sets: the training set with 75% of instances and the test set 

with 25% of instances. Training and testing sets, named train and full test set, respectively, from 

this point forward, were pre-processed creating two different sets: the small training set and the 

small testing set. These sets have the same number of instances as the preceding sets, but fewer 

attributes (in this case the first 12 attributes of the original set). The small training set will be 

used to train the pessimistic classifier and to identify CARules for each unobservable attribute 

(by being enriched with its corresponding column); the small testing set will be used to assess the 

accuracy of pessimist and CAR-based ASAP classifiers. 

In order to compare the results, three classifiers were trained using the C4.5 algorithm (Quinlan, 

1993), implemented by J48 on the WEKA software (Witten e Frank 2000)): optimal, pessimistic 

and CAR-based ASAP. 

Optimal classifier was trained in the full training dataset and tested in the corresponding testing 

set (with all attributes: observable and unobservable ones). It serves as a reference line, and gives 

the best possible classifier for this data using C4.5 (represented on Figure 5 – left). 

 

Figure 5 – Discovered decision trees for optimal (left) and pessimistic (right) classifiers 

Pessimistic classifier, on the other hand, was trained using small training set and tested in the 

corresponding small testing set. Again, it serves as a reference line for the best model created 
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when there is loss of information; the decision tree discovered is on Figure 5 – right. 

At last, CAR-based ASAP classifier corresponds to the optimal one discovered and is tested on 

the estimated testing set. This set is created by extending the small testing set with estimations 

for unobservable attributes, creating a new full testing set. 

Results confirm the expectations. CAR-based ASAP classifier presents relative success, when 

compared with pessimistic approaches. Indeed, for lower levels of support (0.5%) the accuracy 

achieved is always above the accuracy of the pessimistic classifier (Figure 6 – left). 

It is important to note that for higher levels of support, the discovered rules do not cover the 

majority of situations of recorded students’ results. This is explained by the sparsity of data, 

resulting from the large number of evaluation moments (variables): there are just a few students 

with similar behaviors. In order to find them, it is necessary to consider very low levels of 

support. 

Additionally, note that decreasing the level of confidence would decrease the quality of the 

discovered rules. See that for fixed levels of support the accuracy of the classifier decreases 

when the confidence also decreases. This is because rules with lower confidence are more 

generic and less predictive than the ones with larger confidence. 

 

Figure 6 – Accuracy, sensibility and specificity for different levels of support and 

confidence (for a minimum CAR accuracy of 50%) 

Another interesting result is on predicting failure: ASAP classifier (Figure 6 right) has always 

better specificity levels than the pessimistic one. This reflects the ability of our classifier to cover 
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both positive and negative cases with the same efficacy, since it both looks for failure and 

success rules. 

A look on the percentage of correct estimation of attribute values with CARs again shows that 

the accuracy increases with the decrease of support. However, the increase of correct values is 

not directly correlated with the decrease of missing values. Indeed, when confidence decreases, 

missing values also decrease but the correct percentage does not (Figure 7). 

 

 

 

Figure 7 – Impact of support and confidence on the estimation of unobservable attributes 

(for a minimum CAR accuracy of 50%) 

Again, this is due to the different confidence levels of discovered rules: if lower levels of 

confidence are preferred, then there will be more discovered rules, that would cover more 

instances, and then they will be used to estimate more unobservable values. However, since 

confidence is not high, the accuracy of the rule is not enough, and missing values are replaced by 

0.00

0.20

0.40

0.60

0.80

1.00

Confidence

Correct values (Att 13)

10.0% 5.0% 1.0% 0.5%

0.00

0.20

0.40

0.60

0.80

1.00

Confidence

Wrong values (Att 13)

10.0% 5.0% 1.0% 0.5%

0.00

0.20

0.40

0.60

0.80

1.00

Confidence

Missing values (Att 13)

10.0% 5.0% 1.0% 0.5%

0.00

0.20

0.40

0.60

0.80

1.00

Confidence

Correct values (Att 14)

10.0% 5.0% 1.0% 0.5%

0.00

0.20

0.40

0.60

0.80

1.00

Confidence

Missing values (Att 14)

10.0% 5.0% 1.0% 0.5%

0.00

0.20

0.40

0.60

0.80

1.00

Confidence

Wrong values (Att 14)

10.0% 5.0% 1.0% 0.5%

0.00

0.20

0.40

0.60

0.80

1.00

Confidence

Correct values (Att 15)

10.0% 5.0% 1.0% 0.5%

0.00

0.20

0.40

0.60

0.80

1.00

Confidence

Missing values (Att 15)

10.0% 5.0% 1.0% 0.5%

0.00

0.20

0.40

0.60

0.80

1.00

Confidence

Wrong values (Att 15)

10.0% 5.0% 1.0% 0.5%



15 

  

wrong ones. With higher levels of confidence, the accuracy of rules will be higher, and the 

number of wrong values will be reduced: missing values will prevail. 

Note that the most important factor on the accuracy of the CAR-based ASAP classifier is the 

accuracy of the discovered rules. Indeed, interesting results appear when the minimum cutoff for 

CAR accuracy does not impair the estimation of values (Figure 8).  

 

Figure 8 – Impact of accuracy and confidence on the estimation of unobservable attributes 
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soon as possible. In our case, this estimation is based on the discovery of class association rules. 

Experimental results show that our methodology can overcome the difficulties of approaches that 

do not deal with the entire set of historical data, and by choosing the best parameters 

(confidence, support and rule accuracy) the results become closer to the optimal classifier found 

in the same data. However, the choice of the best parameters is a hard task, followed by the 

traditional problems related with the explosion on the number of discovered rules. Other 

methodologies able to estimate the values of unobservable variables (the EM algorithm 

(A.P.Dempster 1997) is just one of such possibilities) can also be applied to determine ASAP 

classifiers. A study on their application, advantages and disadvantages is mandatory, in order to 

understand the total potential of ASAP classifiers. 
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