
Constraint Relaxations for Discovering Unknown
Sequential Patterns

Cláudia Antunes and Arlindo L. Oliveira

Instituto Superior Técnico / INESC-ID,
Department of Information Systems and Computer Science,

Av. Rovisco Pais 1,
1049-001 Lisboa, Portugal

{claudia.antunes, arlindo.oliveira}@dei.ist.utl.pt

Abstract. The main drawbacks of sequential pattern mining have been its lack
of focus on user expectations and the high number of discovered patterns.
However, the solution commonly accepted – the use of constraints –
approximates the mining process to a verification of what are the frequent
patterns among the specified ones, instead of the discovery of unknown and
unexpected patterns.
In this paper, we propose a new methodology to mine sequential patterns,
keeping the focus on user expectations, without compromising the discovery of
unknown patterns. Our methodology is based on the use of constraint
relaxations, and it consists on using them to filter accepted patterns during the
mining process. We propose a hierarchy of relaxations, applied to constraints
expressed as context-free languages, classifying the existing relaxations (legal,
valid and naïve, previously proposed), and proposing several new classes of
relaxations. The new classes range from the approx and non-accepted, to the
composition of different types of relaxations, like the approx-legal or the non-
prefix-valid relaxations. Finally, we present a case study that shows the results
achieved with the application of this methodology to the analysis of the
curricular sequences of computer science students.

1 Introduction

Sequential Pattern Mining addresses the problem of discovering maximal frequent
sequences in a given database. This type of problem appears when the data to be
mined has some sequential nature, i.e., when each piece of data is an ordered set of
elements, like events in the case of temporal information, or nucleotides and amino-
acid sequences for problems in bioinformatics.

In general, we can see sequential pattern mining as an approach to perform inter-
transactional analysis, being able to deal with sequences of sets of items. Sequential
pattern mining was motivated by the need to perform this kind of analysis, mostly in
the retailing industry, but with applications in other areas, like the medical domain.
The problem was first introduced by Agrawal and Srikant, and, in the last years,
several sequential pattern mining algorithms were proposed [11], [13], [9]. Despite
the reasonable efficiency of those algorithms, the lack of focus and user control has

2 Cláudia Antunes and Arlindo L. Oliveira

hampered the generalized use of sequential pattern mining. In general, the large
number of discovered patterns makes the analysis of discovered information a
difficult task.

In order to solve this problem, several authors have promoted the use of constraints
to represent background knowledge and to filter the patterns of interest to the final
user. This approach has been widely accepted by the data mining community, since it
allows the user to control the mining process and reduces the search space, which
contributes significantly to achieve better performance and scalability levels. The
simplest constraint over the sequence content is to impose that only some items are of
interest – item constraints. An example of such constraint is the use of Boolean
expressions over the presence or absence of items [12]. When applied to sequential
pattern mining, constraints over the content can be just a constraint over the items to
consider, or a constraint over the sequence of items. More recently, regular languages
have been proposed [3] and used to constrain the mining process, by accepting only
patterns that are accepted by a regular language. In this case, constrained algorithms
use a deterministic finite automaton (DFA) to define the regular language. Generally,
these automata consist of a set of states and a set of transitions from state to state that
occur on symbols chosen from an alphabet. When applied to sequential pattern
mining, strings (sequences of symbols) are replaced by sequences of itemsets.

Although this approach has contributed to reduce the number of discovered
patterns and to match them to the user expectations, the use of regular languages
transforms the pattern mining process into the verification of which of the sequences
of the language are frequent, completely blocking the discovery of novel patterns. It is
important to note that by specifying the language, we are explicitly specifying which
are the sequences that can be considered, and the mining process is reduced to the
identification of which of these are frequent. By novel information, we mean the
information that is not trivially inferred from the constraint.

1.1 Motivation

Consider, for instance, the problem of identifying typical behaviors of company
customers. Suppose that the company considers that a well-behaved customer is a
customer who has made all its payments at the time of the analysis. This knowledge
can be represented by a context-free language, but cannot be by a regular language,
since it needs to count the number of invoices and payments.

q2q1
(a, S)�push X

(a, S)�push X
(a, X)�push X

(b, X)�pop

(ε, S)�pop

Fig. 1 Pushdown automaton for representing well-behaved customers

The pushdown automaton presented in Fig. 1 (pushdown automata are described in
the next section) is able to represent that knowledge, with a corresponding to an

Constraint Relaxations for Discovering Unknown Sequential Patterns 3

invoice and b to a payment. In conjunction with sequential pattern mining algorithms
allows for the discovery of each sequence of invoices and payments are frequent
(sequences like abab, aaabbb and aabbab).

However, if among the recorded data there are events related to second copies of
invoices, cancellations, information requests and answers to requests, for example,
and there is no knowledge about their relations with the other two kinds of events, it is
not possible to discover those relations with constrained sequential pattern mining. On
the other hand, with an unconstrained process the existing background knowledge
will be ignored. In this manner, it is clear that although constraints (formal languages
in particular) can be used to represent existing domain knowledge, they are not
enough to address the main data mining challenge: to discover novel information.

In this work, we propose a new mining methodology to solve the trade-off between
satisfying user expectations (by using background knowledge) and mining novel
information. Our methodology is based on the use of constraint relaxations, and it
assumes that the user is responsible for choosing the strength of the restriction used to
constrain the mining process. We propose a hierarchy of constraint relaxations (for
constraints expressed as formal languages – either regular or context-free), that range
from conservative to non-conservative relaxations, proposing two new types of
constraints – the approx and the non-accepted relaxations, and new relaxations
resulting from the composition of the different classes of relaxations.

After a concise description of the use of context-free languages to deal with
sequences of itemsets (section 2), the new methodology is defined (section 3),
presenting each of the relaxations (including the extension of the ones proposed in [3]
– naïve, legal and valid). In section 4, we present a case study with the analysis of
curriculum sequences, and, based on that data, we evaluate the use of constraint
relaxations, by comparing the number of discovered patterns and the processing times
using each relaxation. Section 5 concludes the paper with a discussion and ideas for
future work.

2 Context-free Languages for Sequences of Itemsets

Recent work [1] has shown that regular expressions can be substituted by context-free
languages, without compromising the practical performance of algorithms, when
dealing with strings of items. This is useful because context-free languages are more
expressive than regular languages, being able to represent constraints that are more
interesting. In particular, the structure of constrained sequential pattern mining
algorithms does not need any change to use context-free languages as constraints. The
only adaptation is the substitution of the finite automaton by a pushdown automaton
(PDA), to represent the context-free language.

A pushdown automaton is a tuple M=(Q,Σ,Γ,δ,q0,Z0,F), where: Q is a finite set of
states; Σ is an alphabet called the input alphabet; Γ is an alphabet called the stack
alphabet; δ is a mapping from Q×Σ∪{ ε}×Γ to finite subsets of Q×Γ*; q0∈Q is the
initial state; Z0∈Γ is a particular stack symbol called the start symbol, and F ⊆Q is the
set of final states [6].

4 Cláudia Antunes and Arlindo L. Oliveira

The language accepted by a pushdown automaton is the set of all inputs for which
some sequence of moves causes the pushdown automaton to empty its stack and reach
a final state.

When applied to the process of mining sequential patterns from sequences of
itemsets instead of strings (sequences of symbols), pushdown automata have to be
redefined. The problem is related with the fact that existing algorithms manipulate
one item per iteration, instead of an entire itemset. In this manner, we need to perform
partial transitions, corresponding to the item involved at the specific step iteration. To
illustrate this situation consider the pushdown automaton defined over itemsets
represented in Fig. 2 (left). This PDA generates sequences with the same number of
baskets (a,b) on the left and right side of item c, which means that it generates

q2q1

[(a,b),X]�pop

[ε, S]�pop

[(a,b), S]�push X

[(c), X]�no op

[(a,b), X]�push X

q2q1

[(a,b),XY]�pop

[ε, S]�pop

[(a,b), S]�push XY

[(c), XY]�no op

[(a,b), XY]�push XY

Fig. 2 Pushdown (left) and Extended Pushdown (right) automata

sequences like (a,b)c(a,b) or (a,b)(a,b)c(a,b)(a,b). Formally, it can be defined as the
tuple M=(Q, Σ, Γ, δ, q1, S, F), with Q={q1, q2} the set of states, Σ={ a, b, c} its
alphabet, Γ={S, X} the stack alphabet, q1 the initial state, S the initial stack symbol
and F={q2} the set of final or accepting states. Finally, δ corresponds to the five
transitions illustrated in Fig. 2-left (for example "[(a,b),S]�pushX" represents the
transition from state q1 to state q2, when the stack has the symbol S in the top and we
are in the presence of (a,b)).

Consider for example that algorithm PrefixGrowth [10] is applied and it finds a, b
and c as frequent. Then it will have to proceed to discover which items are frequent
after a. At this point, there is already one problem: given that it has found a, which
operation should it perform over the stack? If it pushes X, then c will be accepted after
a, but if it only applies the push operation after finding b, then it will accept, as
"potentially accepted", sequences like aaa, aaaaa and so on, since S remains on the
top of the stack.

In order to deal with itemsets, we extend the notion of PDA.

An extended pushdown automaton (ePDA) is a tuple E=(Q , Σ, Γ, δ, q0, Z0, F),), with Q ,
Σ, Γ, q0, Z0 and F defined as for pushdown automata, but δ defined as a mapping
function from Q×P (Σ)∪{ ε}×Γ* to finite subsets of Q×Λ*, with Λ equal to Γ* and P (Σ)
representing the powerset of Σ

The difference to standard pushdown automata is the transition function, which
manipulates itemsets and strings of stack elements instead of items and stack
elements, respectively. With this extension, it is possible to explore sequences of
itemsets with existing algorithms. Fig. 2-right illustrates an extension to the PDA
illustrated before. Clearly, on one hand, by using extended pushdown automata,
algorithms such as SPIRIT or PrefixGrowth do not need any alteration on their

Constraint Relaxations for Discovering Unknown Sequential Patterns 5

structure. On the other hand, their performances remain tightly connected to the
number of discovered patterns and almost nothing related to the complexity of the
constraint.

3 Constraint Relaxations

While the problems of representing background knowledge in sequential pattern
mining and the reduction of the number of discovered patterns can be solved using
formal languages, the challenge of discovering unknown information, keeping the
process centered on user expectations, remains open.

At this point, it is important to clarify the meaning of some terms. By novel
information , we mean both the information that cannot be inferred in the reference
frame of the information system or of the user, and centering the process in the user
has essentially two aspects: the management of user expectations and the use of user
background knowledge in the mining process. By expectation management, we mean
that the results from the process have to be in accordance with user expectations, with
similarity measured by comparing them to the user's background knowledge.

In the case of sequential pattern mining using constraints expressed as context-free
languages, it is clear that:
- the existing background knowledge is represented and integrated in the mining

process as a context-free language;
- the process is completely centered on the user, since the process will only

discover patterns that are in accordance with his background knowledge (this
means that only sequences that belong to the context-free language will be of
interest);

- it is not possible to discover novel information, since all the discovered
patterns need necessarily be contained in the context-free language specified by
the user.

Considering these limitation, we propose a new methodology to mine unknown
patterns, while keeping the process centered on the user. This methodology is based
on the use of constraint relaxations, instead of constraints themselves, to filter the
discovered patterns during the mining process. The notion of constraint relaxation has
been widely used when real-life problems are addressed, and in sequential pattern
mining, they were first used to improve the performance of the algorithm [3]. The key
point is that, in many cases, the user is able to specify easily a constraint that is too
restrictive, but is not capable to specify a constraint that is adequate for the task at
hand. For instance, the user may be able to specify a normal behavior, but will be
hard pressed to specify an almost normal or approximately normal behavior.

A constraint relaxation can then be seen as an approximation to the constraint, that
captures the essence of the user knowledge but that does not restrict too much the
universe of possible patterns. In other words, while constraints explicitly specify
which sequences can be discovered, constraint relaxations determine the way that the
knowledge (expressed by the constraint) can be used to guide the mining process. In
this manner, when used instead of the constraints expressed by the user, relaxations
can give rise to the discovery of novel information, in the sense that the patterns

6 Cláudia Antunes and Arlindo L. Oliveira

discovered can no longer be directly inferred from the background knowledge, i.e.
from the reference frame of the user. If these relaxations are used to mine new
patterns, instead of simply used to filter the patterns that satisfy the imposed
constraint, the discovery of novel information is possible. Given that the user may
choose the level of relaxation allowed (the type of relaxation), it is possible to keep
the focus and the interactivity of the process, while still permitting the discovery of
novel and unknown information. In this manner, the goal of data mining will be
achieved. Additionally, some of the unresolved challenges of pattern mining will be
addressed, namely: how to use constraints to specify background knowledge and user
expectations; how to reduce the number of discovered patterns by constraining the
search space, and how to reduce the amount of time in processing the discovery.

In order to achieve those results, we propose four main classes of relaxations over
constraints expressed as formal languages, as illustrated in Fig. 3. The differences
between them result from the redefinition of the acceptability notion for the formal
language that defines the constraint.

Constraint
Relaxation

Legal Valid-
suffix

Approximate
Constraint

Non-
Accepted

Conservative
Relaxation

Valid-
prefix

Approx
-Legal

Approx
-Suffix

Approx
-Prefix

Non-
Legal

Non-
Suffix

Non-
Prefix

Naive
Relaxation

Approx
-Naive

Non-
Approx

Fig. 3 Hierarchy of constraint relaxations

The first class of relaxations is the Naïve relaxation, which corresponds to a simple
item constraint. However, in the context of constraints expressed as formal languages,
it can be seen as a relaxation that only accepts patterns containing the items that
belong to the language alphabet.

Conservative relaxations group the other already known relaxations, used by
SPIRIT [3], and a third one – Valid-Prefix, similar to Valid-suffix.

It is important to note that conservative relaxations are not able to discover
unknown patterns, just sub-patterns of expected ones. Approximate matching at a
lexical level has been considered an extremely important tool to assist in the
discovery of new facts, but ignored in most of the approaches to pattern mining. It
considers two sequences similar if they are at an edit distance below a given
threshold. An exception to this generalized frame is the AproxMAP [7], which uses
this distance to count the support for each potential pattern. However, to our
knowledge, edit distance has not been applied to constrain the pattern mining process.

To address the need to identify approximate matching we propose a new class of
relaxations – the Approx relaxation, which accept the patterns that are at an
acceptable edit distance from some sequence accepted by the constraint.

Another important relaxation is related with the discovery of low frequency
behaviors that are still very significant to the domain. Fraud detection is the paradigm
of such task. Note that the difficulties in fraud detection are related with the explosion
of discovered information when the minimum support threshold decreases.

Constraint Relaxations for Discovering Unknown Sequential Patterns 7

To address the problem of discovering low frequency behaviors, we propose an
additional class of relaxations – the Non-accepted relaxation. If L is the language
used to constrain the mining process, Non-accepted relaxations will only accept
sequences that belong to the language that is the complement of L .

Additionally, each of these relaxations can be combined, creating compositions of
relaxations, that can be used directly as filters. Examples of such compositions are
approx-legal or non-approx.

Next, we will present each class of constraint relaxations. To illustrate the
concepts, consider the extended pushdown automaton in Fig. 2-right.

3.1 Naïve Relaxation

As stated, the Naïve relaxation only prunes candidate sequences containing elements
that do not belong to the alphabet of the language, For example, if we consider the
specified automaton, only sequences with a’s, b’s and c's are accepted by the Naïve
relaxation.

In this manner, a sequence is accepted by the naive criterion in exactly the same
conditions than for regular languages. However, this relaxation prunes a small number
of candidate sequences, which implies a limited focus on the desired patterns.

Since Naïve relaxation is anti-monotonic, no change in sequential pattern mining
algorithms is needed.

3.2 Conservative Relaxations

Conservative relaxations group the Legal and Valid relaxations, used in SPIRIT, and a
third one – Valid-Prefix, complementary to the Valid relaxation (called Valid-Suffix
in the rest of the paper). These relaxations impose a weaker condition than the
original constraint, accepting patterns that are subsequences of accepted sequences.
When used in conjunction with context-free languages, those relaxations remain
identical, but we have to redefine the related notions.

First of all consider the partial relation ψ, which maps from Q×S×Γ* to Q×Λ*
representing the achieved state q∈Q and top of the stack λ∈Λ* (with Λ equal to Γ*),
when in the presence of a particular sequence s∈S in a particular state q∈Q and a
string of stack symbols w∈Γ*. Also, consider that λ.top is the operation that returns
the first string on λ.

ψ(qi, s=<s1…sn>, w) is defined as follows:
i. (qi, λ), if |s|=0 ∧ ∃ λ∈Λ*: λ=w
ii. (qj, λ), if |s|=1 ∧ ∃ qj∈Q; λ∈Λ*: δ(qi,s1,w) ⊃ (qj, λ)
iii. ψ(qj,<s2…sn>,λ.top), if |s|>1 ∧ ∃ qj∈Q; λ∈Λ*: δ(qi,s1,w) ⊃ (qj,λ)

Additionally, consider that the elements on each itemset are ordered
lexicographically (as assumed by sequential pattern mining algorithms). In this
manner, it is possible to define two new predicates:

Given two itemsets a=(a1…an) and b=(b1…bm), with n<m: a is a prefix of b if for all
1≤i≤n ai is equal to bi and a is a suffix of b if for all 1≤i≤n ai is equal to bi+(m-n)

8 Cláudia Antunes and Arlindo L. Oliveira

Legal. The Legal relaxation requires that every sequence is legal with respect to some
state of the automaton, which specifies the constraint language. The extension of legal
relaxation to context-free languages is non-trivial, since the presence of a stack (on
the automaton) makes the identification of legal sequences more difficult. However, it
is possible to extend the notion of legality of a sequence with respect to any state of
an extended pushdown automaton.

A sequence s=<s1…sn> is legal with respect to state qi with the top of the stack w, iff
i. |s|=1 ∧ ∃ sk∈Σ∗;qj∈Q ;λ∈Λ*:δ(qi,sk,w)⊃(qj,λ)∧ s1⊆sk
ii. |s|=2 ∧ ∃ sk,sk'∈Σ∗;λ,λ'∈Λ*;q j,qj'∈Q : δ(qi,sk,w)⊃(qj',λ) ∧ s1 suffixOf sk

∧ δ(qj',sk',λ.top)⊃(qj,λ')∧ s2 prefixOf sk'
iii. |s|>2 ∧ ∃ sk,sk'∈Σ∗;λ,λ',λ''∈Λ*;q j,qj ',qj ''∈Q : δ(qi,sk,w)⊃(qj',λ)∧ s1 suffixOf sk

∧ ψ(qj',s2…sn-1,λ.top)=(qj'',λ') ∧ δ(qj'',sk',λ'.top)⊃(qj,λ'')∧sn prefixOf sk'

This means that any sequence with one itemset is legal with respect to an extended
pushdown automaton state, if there is a transition from it, defined over a superset of
the itemset (i). When the sequence is composed of two itemsets, it is legal with
respect to a state, if the first itemset is a suffix of a legal transition from the current
state, and the second itemset is a prefix of a legal transition from the achieved state
(ii). Otherwise, the sequence is legal if the first itemset is a suffix of a legal transition
from the state, s2…sn-1 corresponds to a valid path from the state and stack reached,
and the last itemset is a prefix of a legal transition from the state and stack reached
with s2…sn-1.

Examples of legal sequences with respect to the initial state of the specified
automaton are: a, b and c (by rule i), bc and (a,b)c (by rule ii) and bca and (a,b)ca (by
rule iii). Examples of non-legal sequences are ac (by ignoring rule ii) or acb (by
ignoring rule iii).

Note that ψ is only defined for non-empty stacks. Indeed, in order to verify the
legality of some sequence s, it is necessary to find a sequence of itemsets t that can be
concatenated to s, creating a sequence ts accepted by the automata.

Valid-Suffix. The Valid-Suffix relaxation only accepts sequences that are valid
suffixes with respect to any state of the automaton. Like for legal relaxation, some
adaptations are needed when dealing with context-free languages.

A sequence s=<s1…sn> is a valid-suffix with respect to state qi with top of the stack w, iff
i. |s|=1 ∧ ∃ sk∈Σ∗;λ∈Λ*;q j∈Q : δ(qi,sk,w)⊃(qj,λ) ∧ s1suffixOf sk ∧ λ.top=ε
ii. |s|>1 ∧ ∃ sk',sk''∈Σ∗;λ',λ''∈Λ*;q j,qj',qj ''∈Q : δ(qi,sk,w)⊃(qj',λ)∧s1 suffixOf sk

∧ ψ(qj',s2…sn,λ.top)=(qj,λ')∧ λ.top=ε

This means that a sequence is a valid-suffix with respect to a state if it is legal with
respect to that state, achieves a final state and the resulting stack is empty. In
particular, if the sequence only has one itemset, it has to be a suffix of a legal
transition to an accepting state.

Considering the extended pushdown automaton as before, examples of such
sequences are b, (a,b), c(a,b) and bc(a,b). Negative examples are, for instance, bca or
bcb. Note that, in order to generate valid-suffix sequences with respect to any state, it
is easier to begin from the final states. However, this kind of generating process is one

Constraint Relaxations for Discovering Unknown Sequential Patterns 9

of the more difficult when dealing with pushdown automata, since it requires a
reverse simulation of their stacks.

In order to avoid this difficulty, using prefix instead of suffix validity could
represent a more useful relaxation, when dealing with context-free languages. Note
that valid-suffixes are not prefix-monotone, and could not be easily used by pattern-
growth methods [9].

Valid-Prefix. The valid-prefix relaxation is the counterpart of valid-suffix, and
requires that every sequence is legal with respect to the initial state.

A sequence s=<s1…sn> is said to be prefix-valid iff:
i. |s|=1 ∧  ∃ sk∈Σ*; λ∈Λ*: δ(q0,sk,Z0) ⊃ (qj,λ) ∧ s1 prefixOf sk
ii. |s|>1 ∧  ∃ sk∈Σ*; λ,λ'∈Λ*;q j,qj '∈Q: ψ(q0,s1…sn-1,Z0)=(qj',λ')∧ δ(qj',sk,λ'.top) ⊃ (qj,λ)

∧ sn prefixOf sk

This means that a sequence is prefix-valid if it is legal with respect to the initial
state and the first itemset is a prefix of a transition from the initial state. Sequences
with valid prefixes are not difficult to generate, since the simulation of the stack
begins with the initial stack: the stack containing only the stack start symbol. The
benefits from using the suffix-validity and prefix-validity are similar. When using the
prefix-validity to generate the prefix-valid sequences with k elements, the frequent
(k-1)-sequences are extended with the frequent 1-sequences, in accordance with the
constraint. Examples of valid-prefixes are (ab) and (ab)ca; (a)c or bc are examples of
non-valid prefixes.

Note that the legal relaxation accepts all the patterns accepted by valid-suffix and
valid-prefix relaxations. In this manner, it is a less restrictive relaxation than the other
two. Although these relaxations have considerable restrictive power, which improves
significantly the focus on user expectations, they do not allow for the existence of
errors. This represents a strong limitation in real datasets, since little deviations may
exclude many instances from the discovered patterns.

3.3 Approx Constraints

In order to solve this problem we propose a class of relaxations that accepts sequences
that have a limited number of errors. If it is possible to correct those errors with a
limited cost, then the sequence will be accepted.

A new class of relaxations, called approx relaxations, tries to accomplish this goal:
they only accept sequences that are at a given edit distance for an accepted sequence.
This edit distance is a similarity measure that reflects the cost of operations that have
to be applied to a given sequence, so it would be accepted as a positive example of a
given formal language. This cost of operations will be called the generation cost, and
is similar to the edit distance between two sequences, and the operations to consider
can be the Insertion, Deletion and Replacement [8].

Given a constraint C, expressed as a context-free language, and a real number ε which
represents the maximum error allowed, a sequence s is said to be approximate-accepted
by C, if its generation cost ξ(s, C) is less than or equal to ε. The generation cost ξ (s, C)
is defined as the sum of costs of the cheapest sequence of edit operations transforming
the sequence s into a sequence r accepted by the language C.

10 Cláudia Antunes and Arlindo L. Oliveira

For example, considering the extended pushdown automaton defined above,
ac(a,b) and (a,b)(a,b) are approx-accepted sequences with one error, which result
from inserting a b on the first itemset, on the first example, and a c on the second
position, on the second example, respectively. c(a,b) and b(a,b) are non-approximate
accepted with one error, since two edit operations are needed to accept them.

The other four classes of approximate constraints are defined by replacing the
acceptance by legality and validity notions. In this manner, an Approx-Legal
relaxation accepts sequences that are approximately legal with respect to some state.
Approx-Suffix and Approx-Prefix relaxations are defined in a similar way. Finally,
Approx-Naïve accepts sequences that have ε items (with ε the maximum error
allowed) that do not belong to the language's alphabet.

Recent work has proposed a new algorithm ε–accepts [2] to verify if a sequence
was approximately generated by a given deterministic finite automata (DFA).
Fortunately, the extension to deal with context-free languages is simply achieved by
replacing the use of a DFA by the use of an ePDA. The results shown in this paper
were achieved by using such an algorithm.

3.4 Non-accepted Relaxation

Another important issue is related with the discovery of low frequency behaviors that
are still very significant to the domain.

Suppose that there is a model (expressed as a context-free language) able to
describe the frequent patterns existing on a huge database (say for example that the
minimum support allowed is 10%). If there are 3% of clients with a fraudulent
behavior, it is possible that they are not discovered neither by using the unconstrained
mining process, nor by using any of the proposed relaxations. However, the model of
non-fraudulent clients may be used to discover the fraudulent ones: the fraudulent
clients are known to not satisfy the model of non-fraudulent clients.

To address the problem of low frequency behaviors discovery, we propose an
additional class of relaxations – the Non-accepted relaxation, which accept sequences
that are not accepted by the constraint.

A sequence is non-accepted by the language if it is not generated by that language.

In fact, this is not really a relaxation, but another constraint (in particular the
constraint that only accepts sequences that belong to the language that is the
complement of the initial constraint). However, since they are defined based on the
initial constraint, we choose to designate them as relaxations.

The benefits from using the non-accepted relaxation are mostly related to the
possibility of not rediscovering already known information, which may contribute
significantly to improve the performance of sequential pattern mining algorithms.
Moreover, since context-free languages are not closed under complementation [6]
(which means that the complement of a context-free language is not necessarily a
context-free language), the use of the complement instead of the non-accepted
relaxation could be prohibitive.

Note that by using this new approach, it is possible to reduce the search space, and
consequently to reduce the minimum support allowed. The non-accepted relaxation
will find all the patterns discovered by the rest of the introduced relaxations,

Constraint Relaxations for Discovering Unknown Sequential Patterns 11

representing a small improvement in the focus on user expectations. In fact, it finds
all the patterns discovered by unconstrained patterns minus the ones that are accepted
by the constraint. Like for approx relaxations, an interesting improvement is to
associate a subset of the alphabet in conjunction with the non-accepted relaxation.
This conjunction focus the mining process over a smaller part of the data, reducing
the number of discovered sequences, and contributing to achieve our goal.

As before, the sub-classes of Non-Accepted relaxations result by combining the
non-acceptance philosophy with each one of the others relaxations. While non-
accepted relaxation filters only a few patterns, when the constraint is very restrictive,
the non-legal relaxation filters all the patterns that are non-legal with respect to the
constraint. With this relaxation is possible to discover the behaviors that completely
deviate from the accepted ones, helping to discover the fraudulent behaviors.

3.5 Discussion: novelty and expectedness

The discussion about the concept of novel information is one of the most difficult in
pattern mining. While the concept is clear in the reference frame of a knowledge
acquisition system, the same is not true in the reference frame of the final user.
Indeed, several interestingness measures have been proposed for the evaluation of the
discovered patterns [4]. Moreover, this issue is more critical with the introduction of
constraints in the mining process. In fact, in the presence of constraints the concept of
novel patterns becomes unclear even in the reference frame of information systems,
since they are then able to use the knowledge, represented as the constraint.

In order to bring some light into the discussion, consider that, given a model C as
constraint, a pattern A is more novel than a pattern B, if the generation cost of A by
model C is larger than the generation cost of B by model C (with the generation cost
defined as above). With this concept, it is now possible to understand the reason why
non-accepted patterns can be more novel than the patterns discovered by conservative
relaxations. It is now clear that, despite the differences between relaxations, all of
them allow for the discovery of novel information. Indeed, the conservative
relaxations are able to discover failure situations, that is, situations when for, some
reason, the given model is not completely satisfied (valid-prefix and valid-suffix
identify failures in the beginning and ending of the model, respectively, and legal
identifies problems in the middle of the model).

However, the great challenge of pattern mining is to discover novel information
that is interesting to the user. It is clear from the definition of the novel relation, that
an unexpected pattern is more novel than an expected one. In fact, the challenge
resides in the balance between the discovery of novel but somehow expected patterns.
The proposed relaxations cover a wide range of this balance, giving the user the
option of which is the most relevant issue for the problem in hands: to discover novel
information or to satisfy user expectations.

Consider the PDA and the data shown in Fig. 4: the PDA represents a more
restrictive notion of well-behaved costumer – a costumer who as at most two invoices
to pay. If we apply the proposed methodology to analyze that data, we will be able to
discover several different patterns with the different relaxations, as shown in Table 1.

12 Cláudia Antunes and Arlindo L. Oliveira

q4q3 (b, X)�pop

(a, S)�push X
(a, X)�push X

(b, X)�pop

q2 (a, X)�push Xq1 (a, S)�push X

(b, X)�pop

(ε, S)�pop

Dataset
eababraabb aababbaerb
aabbaberab ababaabbab
aebraaaccd aebaraacbe
abaaaccder abaeraacbb
aebaraaacb aaacbabab

Fig. 4 Example of a pushdown automaton and a small dataset

In order to permit an easy comparison, only maximal patterns are shown. In this
manner, some patterns appear only in some columns. In the column relative to the
approx relaxation, are shown the edit operations needed to transform each pattern to a
pattern belonging to the context-free language.

Table 1 – Comparison of the results achieved with and without constraints

Frequent Accepted Legal Prefix Approx.(ε=1)
Non-Acc (w/
Σ={a,c,d,e,r}

be
baa
era
braa
baba
baer
araa
abab
abaa
raacb
raaac
aaacb
aabbab
aaaccd
aebaraa

abab
aabbab

baba
abab
abaa
aabbab

abab
abaa
aabbab

abab
aabbab
ar�R(r,b,2)
aeb�D(e,2)
abaa�R(a,b,4)
aacb�R(c,b,3)

aer
era
raac
araa
raaac
aaaccd

As expected, by using the constraint itself we only discover two patterns, which
satisfy the context-free language. Therefore, these results are not enough to invalidate
Hipp's arguments [5] about constraints. Nevertheless, with Legal and Valid-prefixes,
it is possible to discover some other intermediate patterns, which are potentially
accepted by the complete constraint.

Finally, with approx and non-accepted relaxations, it is possible to discover
unexpected patterns. Indeed, the approx relaxation shows the most interesting
behavior, since it is possible to discover that it is usual that after sending the second
invoice, customers pay their old bills (aacb). With non-accepted relaxation, it is also
possible to discover interesting patterns. In this case, it is common that after three
invoices without any payment, and the emission of two second invoices, the customer
account is canceled (aaaccd).

Constraint Relaxations for Discovering Unknown Sequential Patterns 13

4 Discovering Frequent Curricula: a case study

In this paper, we claim that it is possible to discover unknown information, using
sequential pattern mining with constraint relaxations, without loosing the focus on
user expectations. In order to validate these claims, we present the results achieved by
applying this methodology to the discovery of frequent curricula instantiations from
the data collected from IST student's performance in one undergraduate program on
information technology and computer science. For this purpose, we will evaluate our
methodology by comparing: the performance of each mining process; the number of
discovered patterns and the ability to answer the relevant questions.

The curriculum has a duration of 10 semesters with 36 required subjects, a final
thesis and 4 optional subjects in the last year. Four specialty areas are offered: PSI –
Programming and Information Systems; SCO – Computer Systems; IAR – Artificial
Intelligence and IIN – Information Systems for Factory Automation.

0

1

2

3

4 5 6 7

8 9 10 11

16 17 18 19

12 13 14 15

(AM1,AL,IP,SD,FEX)

(AC,TC,AED,F1,AM2)

(PLF,SO,AN,F2,AM3)

(POO,SIBD,ASC,PE,TP1)

(POO,SIBD,ASC,PE,TCirc)

(POO,SIBD,TAI,PE,FA)

(POO,SIBD,ASC,AM4,PE)

(SCI1,IA,TP2,PBD) (CG,C,RC,SCI2) (M,AD,IHM,PC)

(SCI1,IA,CSE,SCD)
(SC1,IA,CSE,M)

(CG,C,SCI2,E)
(CG,C,RC1,E)

(AD,VLSI,EI,FTD)
(AD,VLSI,RC2,RDBL)

(IA,AD,FL,P) (CG,RC,TP,LP) (Rac,Apr,LN,IHM)

(IA,CC,PS,SCI) (CG,GCP,ACI,SAC) (AD,M,PAC,Rob)

20

21

22

(V,SP,SR,PA)

(SoD,AA,CDSP,ARGE)
(SoD,AA,SBM,MPSD)

(EP,SoD,AA,TP3)

(EP,FAC,SFF,SDAI)

(TFC1)

(TFC2)

Fig. 5 DFA for specifying the model curriculum for LEIC specialty areas

There are 20 common subjects in the curriculum model, 18 on the first three
semesters and the other 2 on the following two semesters. The enrollment on a
specialty area was made on the fourth semester. There are 47 other subjects,
distributed by each specialty area. The deterministic finite automaton on Fig. 5 shows
the model curriculum for each specialty area. (The existence of two different
transitions per semester for SCO students, are due to a minor reorganization of the
SCO curriculum on 1995/1996.)

Data statistics. The dataset used to analyze those questions consists on the set of
sequences corresponding to the curriculum followed by students that made at least 8
enrollments. In this manner, the dataset is composed of 1440 sequences, with an
average sequence length equal to 11.58 semesters. Most of the students (72%) have
between 8 and 12 enrollments (they had attended classes between 8 and 12
semesters). Naturally, the number of students with an odd sequence length is reduced,
since this situation corresponds to students that have registered in only one semester
on that year. In terms of the number of enrollments per semester, its mean is 4.82
enrollments on subjects per semester, with most students (75%) enrolling on between
4 and 6 units.

14 Cláudia Antunes and Arlindo L. Oliveira

Another interesting issue is the distribution of students per specialty area: 56%
follow the PSI specialty area, 19% the SCO specialty area and the remaining 26% are
equally distributed by IAR and IIN specialty areas. This distribution conditions the
number of enrollments per subject. For example, subjects exclusive to Artificial
Intelligence and IIN have at most 13% of support.

It is interesting to note that only 823 students (57%) have concluded the final work
(TFC1 and TFC2). Since it is usual that students only take optional subjects in parallel
or after finishing the final work, the support for optional subjects is at most 57%.
Since the options are chosen from a large set of choices (130 subjects), their
individual support is considerably lower. Indeed Management (G) is the optional
subject with more students, about 40%.

4.1 Evaluation of Discovered Information

The analysis of the data referring to students' performance has essentially two main
reasons: to explain the low levels of success and to identify the most common profiles
of students. In this manner, we will try to answer three questions: 'what are the most
common patterns on each scientific area?', 'what is the impact of some subjects on
others?' and 'what are the common curricula instantiations for each specialty area,
including optional subjects?'.

Finding frequent curricula on scientific areas. The discovery of the most common
patterns on each scientific area is easily achieved if we look for students, who
conclude the sequence of subjects in the same scientific area in at most four
semesters. This constraint can be specified by the extended pushdown automaton
represented on Fig. 6. In this figure, each transition represents four transitions, one per
scientific area. For example, [~X2,sa(X2)]�push sa(X2) represents
[~AED,MTP]�push MTP, [~AC,ASO]�push ASO, [~AM2,AM]�push AM and
[~F1,F]�push F. Consider that X1, X2 and X3 are the first, second and third
subjects on some of the following scientific areas: MTP, ASO, Physics and
Mathematical Analysis. Also, consider that sa is a function from the set of
subjects to their scientific area, for example sa(IP)=MTP.

2 3[(X2), sa(X2)]�noop [(X3), sa(X3)]�pop 41 [(X1), S]�push(sa(X1))

5

[(~X1), S]�push(sa(X1))

6[(X2), sa(X2)]�push(sa(X2))

7

[(~X2), sa(X2)]�push(sa(X2))
[(X1,X3), sa(X1X3)]�pop

8

[(X2), sa(X2)]�pop
[(X1,X3), sa(X1X3)]�pop[(~X2), sa(X2)]�push(sa(X2))

9 [(X3), sa(X3)]�pop

Fig. 6 ePDA for specifying the curricula on scientific areas, where students
conclude three subjects in a specific scientific area at most on 4 semesters

Constraint Relaxations for Discovering Unknown Sequential Patterns 15

The first thing that we are able to discover, using a constraint defined over the
ePDA on Fig. 6 (with a gap equal to zero) is that the majority of students are able to
conclude the sequence of MTP (61%) and ASO (57%) subjects without any failure.
Additionally, 6% of students are also able to conclude all but one of those subjects in
four semesters (see shadowed patterns in Table 2-left).

Table 2 – Discovered Patterns per Scientific Areas

Discovered Patterns
With Constraints Sup With Approx Relaxation Sup

<(IP),(AED),(PLF)> 61% <(AM1),(~AM2),(~AM3),(AM2)> 6%
<(IP),(~AED),(PLF),(AED)> 6% <(AM1),(~AM2),(AM2)> 6%
<(SD),(AC),(SO)> 57% <(AM1),(AM2),(~AM3,AM3)> 6%
<(SD),(~AC),(SO),(AC)> 6% <(FEX),(F1),(~F2)> 22%
<(FEX),(F1),(F2)> 35% <(FEX),(~F1),(~F2),(F1)> 8%
<(FEX),(~F1),(F2),(F1)> 5% <(FEX),(~F1),(F2),(F1)> 5%
<(AM1),(AM2),(AM3)> 31% <(~F2),(F1),(F2)> 6%
 <(IP),(AED),(~PLF)> 12%
 <(IP),(~AED),(PLF),(POO)> 6%
 <(~IP),(~AED),(IP),(AED)> 5%
 <(SD),(AC),(~SO)> 13%
 <(~SD),(~AC),(SD),(AC)> 6%

It is important to note that there is no other trivial way to perform an identical
analysis. Usually, the results are stored in separate records, making more difficult the
sequential analysis with simple queries. Remember that those queries require several
natural joins, one for each constraint on the required sequence of results. In fact, the
queries must define the entire automata with those operations, which is not a simple
task. No other kind of queries will be able to address this problem, because without
the sequence information, we are just able to discover how many students have
approved or failed in each subject.

In this manner, constrained sequential pattern mining is a natural way to perform
this kind of analysis, only requiring that "experts" design the possible curricula, which
is trivial, since they are publicly known.

When applying an Approx relaxation, we are able to discover part of the patterns
followed by students that are not able to conclude all subjects in four semesters, as
specified in the previous automaton. For example, one of the causes of failure on the
sequence of ASO subjects is failing on the subject of Operating Systems (SO). Since
this subject is the third one in the sequence and it is only offered in the Fall semester,
students in that situation are not able to conclude the three subjects in four semesters.
Similarly, students that fail on the subjects of Physics 2 (F2), Mathematical
Analysis 3 (AM3) and Functional and Logic Programming (PLF) are not able to
conclude the corresponding sequences on 4 semesters, as shown in Table 2-right.

Another interesting pattern found is that 6% of students fail in the first opportunity
to conclude Mathematical Analysis 3 (AM3), but seize the second opportunity,
concluding that subject in the first enrollment (shadowed line in Table 2-right).

Additionally, the use of the approx relaxation also contributes to analyze the
impact of some subjects on others. For example, an approx relaxation with one error
discovers that 49% of the students that conclude MTP subjects in 3 semesters fail on
AM3 and 40% on F2. Similarly, 45% of students that conclude ASO subjects in 3
semesters fail on AM3 and 39% on F2 (shadowed patterns in Table 3).

16 Cláudia Antunes and Arlindo L. Oliveira

Table 3 – Patterns in scientific areas with one error

Patterns Sup Patterns Sup
<(IP,SD),(AED),(PLF)> 57% <(IP,~SD),(AED),(PLF)> 8%
<(IP),(AED),(PLF,SO)> 53% <(IP),(AED),(PLF,~SO)> 10%
<(IP),(AED,AC),(PLF)> 53% <(IP),(AED,~AC),(PLF)> 8%
<(SD),(AC),(PLF,SO)> 51% <(SD),(AC),(~PLF,SO)> 8%
<(IP,AM1),(AED),(PLF)> 50% <(IP,~AM1),(AED),(PLF)> 15%
<(SD,AM1),(AC),(SO)> 47% <(SD,~AM1),(AC),(SO)> 15%
<(IP),(AED,AM2),(PLF)> 45% <(IP),(AED,~AM2),(PLF)> 16%
<(IP),(AED,F1),(PLF)> 45% <(IP),(AED,~F1),(PLF)> 16%
<(SD),(AC,F1),(SO)> 41% <(SD),(AC,~F1),(SO)> 16%
<(SD),(AC,AM2),(SO)> 41% <(SD),(AC,~AM2),(SO)> 16%
<(IP),(AED),(PLF,F2)> 36% <(IP),(AED),(PLF,~F2)> 24%
<(SD),(AC),(SO,F2)> 34% <(SD),(AC),(SO,~F2)> 23%
<(FEX,AM1),(F1),(F2)> 31% <(~AM1,FEX),(F1),(F2)> 6%
<(FEX),(F1),(SO,F2)> 31% <(FEX),(F1),(~SO,F2)> 5%
<(IP),(AED),(PLF,AM3)> 29% <(IP),(AED),(PLF,~AM3)> 30%
<(FEX),(F1,AM2),(F2)> 28% <(FEX),(F1,~AM2),(F2)> 7%
<(SD),(AC),(SO,AM3)> 27% <(SD),(AC),(SO,~AM3)> 26%
<(AM1),(AM2),(F2,AM3)> 23% <(AM1),(AM2),(~F2,AM3)> 8%
<(FEX),(F1),(F2,AM3)> 21% <(FEX),(F1),(F2,~AM3)> 14%

Finding Common Curricula Instantiations with Optional Subj ects. The
challenge on finding which students choose what optional subjects is a non-trivial
task, especially because all non-common subjects can be chosen as optional by some
student. A simple count of each subject support does not give the expected answer,
since most of the subjects are required to some percentage of students.

The other usual approach would be to query the database to count the support of
each subject, knowing that students have followed some given curriculum. However,
this approach is also unable to answer the question, since a considerable number of
students (more than 50%) have failed one or more subjects, following a slightly
different curriculum.

In order to discover the optional subjects frequently chosen by students, we have
used the methodology previously proposed – the use of constraint relaxations,
defining a constraint based on the DFA shown in Fig. 7.

2

3

5

4

(M,AD,IHM,PC)

(AD,VLSI,EI,FTD)
(AD,VLSI,RC2,RDBL)

(Rac,Apr,LN,IHM)

(AD,M,PAC,Rob)

6 7

(V,SP,SR,PA)

(SoD,AA,CDSP,ARGE)
(SoD,AA,SBM,MPSD)

(EP,SoD,AA,TP3)

(EP,FAC,SFF,SDAI)

(TFC1) (TFC2) 81

Fig. 7 DFA for finding optional subjects

Constraint Relaxations for Discovering Unknown Sequential Patterns 17

This automaton accepts sequences that represent the curricula on the fourth
curricular year for each specialty area (the first for PSI students, the second one for
SCO, the third for IAR and the fourth for IIN). In practice, a constraint defined over
this DFA filters all patterns that do not respect the model curriculum for the last two
curricular years.

The use of constrained sequential pattern mining (with the specified constraint)
would not contribute significantly to answer the initial question, since it would only
achieve results similar to the ones obtained by the query above.

However, the use of the Approx relaxation described enables the discovery of
several patterns. If the relaxation accepts at most two errors (ε=2) chosen from a
restricted alphabet, composed by every non-common subject, we are able to find the
frequent curricula instantiations with optional subjects. In general, students mostly
attend Computer Graphics (PAC–Computed Assisted Project; IHM–
Human Machine Interfaces) and Management subjects (Economy–E; Economical
Theory 1–TE1; Financial Management–GF; Management–G; Management
Introduction–IG), as shown in Table 4.

It is interesting to note that whenever IIN students have failed on some subject on
the 4th year, they choose a specific optional subject in Economy (TE1 or IG). The
same happens for PSI and IAR students (behavior identified by shadowed rules). Note
that in order to discover these rules, we have to be able to admit some errors on the
sequence of subjects per specialty area, which is not easily done by specifying a query
to a database.

Table 4 – Patterns with optional subjects attended by LEIC students

SA Curricula Instantiations LEIC
sup

SA
sup

<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,PAC)(TFC2,GF)>:22 1.5% 5%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,Econ)(TFC2,GF)>:33 2.5% 8%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,Econ)(TFC2,IG)>:28 2% 7%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1)(TFC2,GF,IG)>:33 2.5% 8%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,G,PAC)(TFC2)>:22 1.5% 5%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,G)(TFC2,GF)>:32 2% 8%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,G)(TFC2,GCP)>:19 1% 5%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,G)(TFC2,GEC)>:23 1.5% 5%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,G)(TFC2,ARGE)>:18 1% 4%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,G,TE1)(TFC2)>:29 2% 7%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,TE1,Econ)(TFC2)>:21 1.5% 5%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,TE1)(TFC2,GF)>:44 3% 10%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,TE1)(TFC2,IG)>:27 1,5% 6%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TE1)(GEC)>:15 1% 4%

PSI

<(M,AD,IHM,PC)(AA,SoD,EP)(TFC1)(TFC2,TE2)>:15 1% 4%
<(M,AD,PAC,Rob)(EP,SDAI,SFF)(TFC1)(TFC2,IG)>:15 1% 8%
<(M,AD,PAC,Rob)(EP,FAC,SDAI,SFF)(TFC1,IHM)(TFC2,GF)>:18 1% 10%
<(M,AD,PAC,Rob)(EP,FAC,SDAI,SFF)(TFC1,Econ)(TFC2,GF)>:18 1% 10%
<(M,PAC,Rob)(EP,FAC,SDAI,SFF)(TFC1,G)(TFC2)>:17 1% 10%

IIN

<(M,PAC,Rob)(EP,FAC,SDAI,SFF)(TFC1,TE1)(TFC2)>:18 1% 10%
<(IHM,Rac,LN)(SP,V,PA,SR)(TFC1,TE1)(TFC2)>:15 1% 10% IAR
<(IHM,A,Rac,LN)(SP,V,PA,SR)(TFC1)(TFC2,GF)>:17 1% 10%
<(C)(VLSI,RC2,RDBL,AD)(AA,CDPSD,ARGE,SoD)(TFC1,G)(TFC2)>:23 1.5% 8%
<(Elect)(VLSI,RC2,RDBL,AD)(AA,CDPSD,ARGE,SoD)(TFC1,G)(TFC2)>:27 1.5% 10% SCO
<(RC1)(VLSI,RC2,RDBL,AD)(AA,CDPSD,ARGE,SoD)(TFC1,G)(TFC2)>:19 1% 7%

18 Cláudia Antunes and Arlindo L. Oliveira

Another interesting issue is the inexistence of frequent optional subjects among
IAR and SCO students. Indeed, for the last ones there is only one frequent optional
subject (Management – G).

Finding Artificial Intelligence curricula. As can be seen in previous analysis, the
subjects exclusive to AI students have very low supports (about 13%). Naturally, the
sequences of consecutive subjects have supports that are even lower. Indeed, the
discovery of Artificial Intelligence (IAR) frequent curricula, like for IIN, is non-
trivial, since the number of students in these specialty areas is reduced.

Given that the application of unconstrained sequential pattern mining algorithms
found 5866 patterns in this dataset (for 20% of support, since we were not able to try
lower supports due the memory requirements), and we want to find the sequence of
subjects followed by IAR students, the use of constrained or unconstrained sequential
pattern mining does not help in the search for an answer to the second question.

However, if we use the proposed methodology, we have two alternatives: using a
DFA specifying the IAR model curriculum and an Approx relaxation as above, or
using a DFA specifying PSI and SCO curricula models and a Non-Accepted
relaxation with a restricted alphabet.

The patterns discovered by the second alternative (using a minimum support
threshold equal to 2.5%) answer the question. (Table 5 shows the discovered patterns,
excluding 8 patterns that are shared by PSI students).

Note that we were not able to find the entire model curriculum for Artificial
Intelligence, because of the reduced number of students that have concluded each
subject on the first enrollment. This fact, explains the number of discovered patterns
(24). However, it is smaller than the number of patterns discovered with an
unconstrained approach, confirming our claim about constraint relaxations.

The Non-Accepted relaxation was defined using a constraint similar to the
previous one with the DFA represented in Fig. 5 without the model curriculum for
IAR and IIN. Additionally, the relaxation alphabet was composed of all the common
subjects and the advanced subjects specific to the Artificial Intelligence specialty area
(38 subjects).

Table 5 – Artificial Intelligence frequent curricula

Patterns on Artificial Intelligence

(AD,FL,P)(RC,TP)(IHM,A,R,LN)(SP,PA) (FA,TAI)(AD,P)(RC,LP)(IHM,A,R,LN)(SP,V,PA,SR)

(FA,TAI)(FL,P)(RC,LP,TP)(IHM,A,R,LN)(SP,V,PA,SR) (FA)(AD,FL,P)(RC,TP)(IHM,A,R,LN)(SP)

(FA,TAI)(AD,FL,P)(RC,LP,TP)(IHM,R,LN)(SP,V,SR) (FA)(AD,FL,P)(RC)(IHM,A,R,LN)(SP,PA)

(FA,TAI)(AD,FL,P)(RC,LP,TP)(IHM,A,R,LN)(V,PA,SR) (TAI)(AD,P)(RC,LP,TP)(IHM,A,R,LN)(SP,V,PA,SR)

(FA,TAI)(AD,FL,P)(RC,LP)(IHM,R,LN)(SP,V,PA,SR) (TAI)(AD,FL,P)(RC,LP,TP)(IHM,R,LN)(SP,V,PA)

(FA,TAI)(AD,FL,P)(RC,LP)(IHM,A,R,LN)(SP,V,SR) (TAI)(AD,FL,P)(RC,LP,TP)(IHM,A,R,LN)(SP,V,SR)

(FA,TAI)(AD,FL)(RC,LP,TP)(IHM,A,R,LN)(SP,V,PA,SR (TAI)(AD,FL,P)(RC,LP)(IHM,A,R,LN)(SP,V,PA,SR)

(FA,TAI)(AD,P)(RC,LP,TP)(IHM,R,LN)(SP,V,PA,SR) (FA,TAI)(AD,P)(RC,LP,TP)(IHM,A,R,LN)(SP,V,SR)

4.2 Efficiency Evaluation

Next, the efficiency of constrained and unconstrained sequential pattern mining are
compared, we assessing the efficiency of the usage of the different constraint

Constraint Relaxations for Discovering Unknown Sequential Patterns 19

relaxations.

Comparison between Constrained and Unconstrained Mining. To compare the
efficiency of constrained and unconstrained sequential pattern mining, we compare
the time spent by constrained and unconstrained mining, using deterministic finite
automata and deterministic and non-deterministic pushdown automata that discover a
similar number of patterns (they differ on one or two patterns). (The DFA used in this
comparison accepts the curricula on MTP and ASO scientific areas, of students that
have failed at most once per subject. The ePDA used is the one shown in Fig. 6. The
nPDA used accepts sequences in each scientific area that mimic the sequence of
subjects attended by students, including the possibility of failure in the first two
subjects of each scientific area).

PerformancevsSupport

0

1

1

2

2

3

3

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%
Support

Ti
m

e
 (

s)

Unconstrained DFA PDA nPDA

Average Time Spent for Each Pattern

0

50

100

150

200

250

300

350

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

support

T
im

e
(m

s)

Unconstrained DFA PDA nPDA

Fig. 8 Performance (on the left) and average time spent for each pattern (on
the right), using different types of content constraints

It is interesting to note that the use of context-free languages implies a considerable
increase on the time spent for each pattern. In fact, the time spent for each pattern
may be five times slower than for unconstrained mining, and two times slower than
for constrained mining with regular languages (see Fig. 8-right). The time spent for
each pattern decreases with the number of discovered patterns, which is due to the
decrease of the percentage of discarded sequences, the sequences that are not frequent
and accepted by the constraint.

Evaluation of Constraint Relaxations. In general, mining with conservative
relaxations is as efficient as mining with the entire constraint. However, the average
time spent per discovered pattern is lower (Fig. 9). The results were obtained with the
constraint based on the ePDA in Fig. 6.

Naturally, Non-Accepted and Approx relaxations spent much more time than the
other relaxations, but this difference is mostly due to the number of patterns they
discover.

It is important to note that mining with Non-accepted and Approx relaxations can
be less efficient than unconstrained mining. This happens when the number of
patterns discovered by these relaxations is similar to the number of discovered
unconstrained patterns, as is usual for Non-accepted relaxations with a very restrictive
constraint (as the ones used in this chapter).

As Fig. 9– right shows Approx relaxations are the most expensive per discovered
pattern. In fact, even when the number of discovered patterns is considerably lower
than the number of unconstrained patterns, it is possible that Approx relaxations spend
more time than unconstrained mining.

20 Cláudia Antunes and Arlindo L. Oliveira

PerformancevsSupport

0

10
20

30

40

50

60

70

80
90

100

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

T
im

e
(s

)

Accepted Pref ix Legal
Approx Non-Acc Unconstrained

Average Time Spent for Each Pattern

0

200

400

600

800

1000

1200

1400

1600

1800

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

T
im

e
(s

)

Acc Prefix Legal
Approx Non-Acc Unconst.

Fig. 9 Performance (on the left) and average time spent for each pattern (on
the right), using different constraint relaxations

Approx Variants. When applied with a restricted alphabet Approx relaxations may
present better performances.

Even when non-deterministic pushdown automata are used, approx relaxation
outperforms unconstrained mining in the generality of situations, as shown in Fig. 10.
These results were achieved using the constraint defined over the ePDA in Fig. 6, and
restricting the items to failures.

Nr. of Patterns

0

50

100

150

200

250

300

350

65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

support

N
r.

 o
f P

at
te

rn
s

Unconstrained Full Approx w/ Reprovals

PerformancevsSupport

0

10

20

30

40

50

60

70

80

90

100

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%
Support

Ti
m

e
(s

)

Unconstrained Full Approx w/ Reprovals

Fig. 10 Number of discovered patterns (on the left) and performance (on the
right), using approx variants

Non-Accepted Variants. The results achieved with non-accepted relaxations are
similar. When combined with an item constraint, it can reduce the number of patterns
that it discovers. For example, due to the memory requirements of the large number of
discovered patterns, it was not possible to discover unconstrained and non-accepted
patterns for supports below 25%.

Nr. of Patterns 5866

0

500

1000

1500

2000

2500

3000

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

N
r.

 o
f

P
at

te
rn

s

Unconstrained Full Non-Acc Non-Acc

PerformancevsSupport

0

200

400

600

800

1000

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

T
im

e
(s

)

Unconstrained Full Non-Acc Non-Acc

Fig. 11 Number of discovered patterns (on the left) and performance (on the
right), using Non-accepted variants

Constraint Relaxations for Discovering Unknown Sequential Patterns 21

However, with items restricted to the subjects exclusive to Artificial Intelligence
(as in section Finding Artificial Intelligence Curricula) it is possible to discover part
of the non-accepted patterns, in an acceptable time. Fig. 11 shows the number of
discovered patterns (on the left) and the corresponding performance (on the right),
with the same constraint with an alphabet composed of the subjects exclusive to IAR
specialty area.

5 Conclusions

In this paper, we show that the use of constraint relaxations enables the discovery
of novel information, centered on user expectations, when mining sequential patterns.
This is achieved since relaxations enable the mining process to discover patterns that
are not directly inferred from the background knowledge represented in the system.

Experimental results show that the use of relaxations reduces the number of
discovered patterns when compared to unconstrained processes, but enables the
discovery of unexpected patterns, when compared to constrained processes.

The experiments reported in the case study show that the use of relaxations is of
great help when a precise knowledge about the behaviors in analysis is not available,
but can be of particular interest when there is an accurate knowledge about the models
behind the data. In fact, the success of the use of Non-Accepted relaxation is
conditioned by the existence of this knowledge, since it represents the only way to
find some specific but interesting patterns.

Finally experiments have also shown that the ability to deal with errors is a real
advantage, which makes possible the discovery of unknown patterns that are similar
to accepted ones (as defined by a constraint), giving the user the ability to choose the
level of similarity, by defining the number of errors accepted.

One important challenge created by this work, is to apply this methodology to the
extraction of intra-transactional patterns, where there are no constraints to specify the
structure of the transactions. Indeed, the definition of the corresponding relaxations
would contribute to guide the traditional pattern mining processes, which may
contribute to reduce the number of discovered patterns, and, consequently, to focus
the process on user expectations.

References

1. Antunes, C. and Oliveira, A.L., "Inference of Sequential Association Rules Guided by
Context-Free Grammars", in Int. Conf. Grammatical Inference, Springer (2002) 1-13

2. Antunes, C. and Oliveira, A.L., "Sequential Pattern Mining with Approximated
Constraints", Int. Conf Applied Computing, IADIS (2004) 131-138

3. Garofalakis, M., Rastogi, R. and Shim, K., “SPIRIT: Sequential Pattern Mining with
Regular Expression Constraint”, in Int. Conf. Very Large Databases, Morgan Kaufmann
(1999) 223-234,

4. Hilderman, R and Hamilton, H., "Knowledge discovery and interestingness measures: a
survey", Technical Report CS 99-04, Dep. Computer Science, University of Regina, 1999.

5. Hipp, J. and Güntzer, U., "Is pushing constraints deeply into the mining algorithms really

22 Cláudia Antunes and Arlindo L. Oliveira

what we want?". SIGKDD Explorations, vol. 4, no. 1, ACM (2002) 50-55
6. Hopcroft, J. and Ullman, J., Introduction to Automata Theory, Languages and

Computation. Addison Wesley. 1979.
7. Kum, H.-C., Pei, J., Wang, W. and Duncan, D., "ApproxMAP: Approximate Mining of

Consensus Sequential Patterns", in Int. Conf on Data Mining, IEEE (2003).
8. Levenshtein, V., "Binary Codes capable of correcting spurious insertions and deletions of

ones", in Problems of Information Transmission, 1, Kluwer (1965) 8-17
9. Pei J, Han J et al: “PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected

Pattern Growth”, in Int. Conf Data Engineering, IEEE (2001), 215-226
10. Pei, J., Han, J. and Wang, W., "Mining Sequential Patterns with Constraints in Large

Databases", in Conf Information and Knowledge Management, ACM (2002) 18-25
11. Srikant R, Agrawal R.: “Mining Sequential Patterns: Generalizations and Performance

Improvements”, in Int. Conf Extending Database Technology, Springer (1996) 3-17
12. Srikant R, Agrawal R, "Mining association rules with item constraints" in Int. Conf.

Knowledge Discovery and Data Mining, ACM (1997) 67-73
13. Zaki, M.“Efficient Enumeration of Frequent Sequences”, in Int. Conf. Information and

Knowledge Management, ACM (1998) 68-75

