Constraint Relaxations for Discovering Unknown
Sequential Patterns

Claudia Antunes and Arlindo L. Oliveira

Instituto Superior Técnico / INESC-ID,
Department of Information Systems and Computer Science,
Av. Rovisco Pais 1,
1049-001 Lisboa, Portugal
{claudia.antunes, arlindo.oliveira}@dei.ist.utl.pt

Abstract. The main drawbacks of sequential pattern mining have tektht

of focus on user expectations and the high number of discovereninpatt
However, the solution commonly accepted — the use of cantstra-
approximates the mining process to a verification of whatthe frequent
patterns among the specified ones, instead of the discofergknown and
unexpected patterns.

In this paper, we propose a new methodology to mine sequentiafnga
keeping the focus on user expectations, without compromisindjsbevery of
unknown patterns. Our methodology is based on the use of constraint
relaxations, and it consists on using them to filter acdepa¢terns during the
mining process. We propose a hierarchy of relaxations,eabfii constraints
expressed as context-free languages, classifying the existin@gtions legal,

valid and naive previously proposed), and proposing several new classes of
relaxations. The new classes range fromapprox and non-acceptedto the
composition of different types of relaxations, like #gprox-legalor thenon-
prefix-valid relaxations. Finally, we present a case study that stimveesults
achieved with the application of this methodology to the arsmlgéithe
curricular sequences of computer science students.

1 Introduction

Sequential Pattern Mining addresses the problem of didogvenaximal frequent

sequences in a given database. This type of problem appleensthe data to be
mined has some sequential nature, i.e., when each gfietza is an ordered set of
elements, like events in the case of temporal infiomaor nucleotides and amino-
acid sequences for problems in bioinformatics.

In general, we can see sequential pattern mining as aoaappto perform inter-
transactional analysis, being able to deal with sequesfcests of items. Sequential
pattern mining was motivated by the need to perform thid &franalysis, mostly in
the retailing industry, but with applications in otheeas, like the medical domain.
The problem was first introduced by Agrawal and Srikamig, in the last years,
several sequential pattern mining algorithms were proposed[{B]],[9]. Despite
the reasonable efficiency of those algorithms, thk tidocus and user control has

2 Claudia Antunes and Arlindo L. Oliveira

hampered the generalized use of sequential pattern mimingerieral, the large
number of discovered patterns makes the analysis of digtbvaformation a
difficult task.

In order to solve this problem, several authors hpmeenoted the use of constraints
to represent background knowledge and to filter the rpattef interest to the final
user. This approach has been widely accepted by the dategrnommunity, since it
allows the user to control the mining process and redtloe search space, which
contributes significantly to achieve better perforneamnd scalability levels. The
simplest constraint over the sequence content is to intpasenly some items are of
interest —item constraints An example of such constraint is the use of Boolean
expressions over the presence or absence of items [h#&n \&pplied to sequential
pattern mining, constraints over the content can beajusinstraint over the items to
consider, or a constraint over the sequence of iterose kcently, regular languages
have been proposed [3] and used to constrain the mining prbgeascepting only
patterns that are accepted by a regular language. In thiscoastained algorithms
use a deterministic finite automaton (DFA) to definerbgular language. Generally,
these automata consist of a set of states and &tsahsitions from state to state that
occur on symbols chosen from an alphabet. When appliesedaential pattern
mining, strings (sequences of symbols) are replaced bysesgief itemsets.

Although this approach has contributed to reduce the nurobetiscovered
patterns and to match them to the user expectationgsthef regular languages
transforms the pattern mining process into the vetifio of which of the sequences
of the language are frequent, completely blocking the disgmferovel patterns. It is
important to note that by specifying the language, weeapdicitly specifying which
are the sequences that can be considered, and the miniegpi®ageduced to the
identification of which of these are frequent. By noirdbrmation, we mean the
information that is not trivially inferred from themstraint.

1.1 Motivation

Consider, for instance, the problem of identifying typibehaviors of company
customers. Suppose that the company considers that dehkeled customer is a
customer who has made all its payments at the timieeonalysis. This knowledge
can be represented by a context-free language, but camrgt & regular language,
since it needs to count the number of invoices and patsn

(a, Sy»push X
(a, X)—push X

(b, X)=pop

Fig. 1 Pushdown automaton for representing well-behaved customer

The pushdown automaton presented in Fig. 1 (pushdown autoreatesaribed in
the next section) is able to represent that knowledgth, avcorresponding to an

Constraint Relaxations for Discovering Unknown SequentiabPett 3

invoice andb to a payment. In conjunction with sequential pattemimgi algorithms
allows for the discovery of each sequence of invoiced ayments are frequent
(sequences likabah aaabbbandaabbal).

However, if among the recorded data there are eventsddla second copies of
invoices, cancellations, information requests and arsuo requests, for example,
and there is no knowledge about their relations withother two kinds of events, it is
not possible to discover those relations with constihsequential pattern mining. On
the other hand, with an unconstrained process the rexibckground knowledge
will be ignored. In this manner, it is clear that altgb constraints (formal languages
in particular) can be used to represent existing domain kdge| they are not
enough to address the main data mining challenge: to discovarinformation.

In this work, we propose a new mining methodology to sthfeerade-off between
satisfying user expectations (by using background knowledge) amdgmmovel
information. Our methodology is based on the use oftns relaxations, and it
assumes that the user is responsible for choosingrémgth of the restriction used to
constrain the mining process. We propose a hierarchprddt@int relaxations (for
constraints expressed as formal languages — either reguantext-free), that range
from conservative to non-conservative relaxatiopsposing two new types of
constraints — theapprox and thenon-acceptedrelaxations, and new relaxations
resulting from the composition of the different classtrelaxations.

After a concise description of the use of context-freegliages to deal with
sequences of itemsets (section 2), the new methodobgyefined (section 3),
presenting each of the relaxations (including the exterditite ones proposed in [3]
— naive legal andvalid). In section 4, we present a case study with the sisaby
curriculum sequences, and, based on that data, we evdheatgse of constraint
relaxations, by comparing the number of discovered patternthamiocessing times
using each relaxation. Section 5 concludes the paper wiiscassion and ideas for
future work.

2 Context-free Languages for Sequences of Itemsets

Recent work [1] has shown that regular expressions canlisgituted by context-free
languages, without compromising the practical performasfcalgorithms, when
dealing with strings of items. This is useful becausdestiree languages are more
expressive than regular languages, being able to represestraints that are more
interesting. In particular, the structure of constedi sequential pattern mining
algorithms does not need any change to use context-frgedges as constraints. The
only adaptation is the substitution of the finite autton by a pushdown automaton
(PDA), to represent the context-free language.

A pushdown automatois a tuplear=(Q,%,I",8,00,Z0,F), where: Q is a finite set of
states;X is an alphabet called the input alphabfetis an alphabet called the stack
alphabet;d is a mapping from @{e}xI to finite subsets of @%; q,0Q is the
initial state; 200l is a particular stack symbol called the start symbuad, BCOQ is the
set of final states [6].

4 Claudia Antunes and Arlindo L. Oliveira

The language accepted by a pushdown automaton is the seinpligd for which
some sequence of moves causes the pushdown automatonyétemstaick and reach
a final state.

When applied to the process of mining sequential patterms §@quences of
itemsets instead of strings (sequences of symbols), pushalastemata have to be
redefined. The problem is related with the fact thattiegjsalgorithms manipulate
one item per iteration, instead of an entire itemsethis manner, we need to perform
partial transitions, corresponding to the item involvetha specific step iteration. To
illustrate this situation consider the pushdown automatdimedkt over itemsets
represented in Fig. 2 (left). This PDA generates segsenith the same number of
baskets4,b) on the left and right side of iteaywhich means that it generates

[(a,), Sl»push X [(ab) X]~pop [(ab), S}+push XY [(ab),XY] —+pop

[(c), XY]—no op

[(c), X]—*no op

O

[(ab), X]~push X [& Si>pop [(ab), XY]—push XY [& Sl=pop

Fig. 2 Pushdown (left) and Extended Pushdown (righButomata

sequences likea(b)c(a,b) or (@,b)(a,b)c(a,b)(a,b). Formally, it can be defined as the
tuple =(q, Z,T, 0, 1, S 7), with o={qy, oo} the set of statesy={ a, b, c} its
alphabet,'={S X} the stack alphabet,;¢he initial stateS the initial stack symbol
and 7={q,} the set of final or accepting states. Finalycorresponds to the five
transitions illustrated in Fig. 2-left (for example &}f),g->pushX" represents the
transition from state;qto state g when the stack has the symBah the top and we
are in the presence @.0)).

Consider for example that algorithPrefixGrowth[10] is applied and it findg, b
andc as frequent. Then it will have to proceed to discover lwitems are frequent
aftera. At this point, there is already one problem: givert thhas founda, which
operation should it perform over the stack? If it pushebenc will be accepted after
a, but if it only applies the push operation after findimgthen it will accept, as
"potentially accepted”, sequences lkag, aaaaaand so on, sincs remains on the
top of the stack.

In order to deal with itemsets, we extend the notioRDA.

An extended pushdown automai@PDA) is a tuple=(q, , I, 3, ¢y, Zo, 7),), Withq,
3, T, o Zo and 7 defined as for pushdown automata, butlefined as a mapping
function fromgxe (Z)0{e}x * to finite subsets o xA*, with A equal td™* and 2 (%)
representing the powersetf

The difference to standard pushdown automata is theittcanfunction, which
manipulates itemsets and strings of stack elements dnsitdtems and stack
elements, respectively. With this extension, it is fibssto explore sequences of
itemsets with existing algorithms. Fig. 2-right illustrates extension to the PDA
illustrated before. Clearly, on one hand, by using extendeddpush automata,
algorithms such a$PIRIT or PrefixGrowth do not need any alteration on their

Constraint Relaxations for Discovering Unknown SequentiabPett 5

structure. On the other hand, their performances retigily connected to the
number of discovered patterns and almost nothing retatéide complexity of the
constraint.

3 Constraint Relaxations

While the problems of representing background knowledge in sggu@attern
mining and the reduction of the number of discovered pattamse solved using
formal languages, the challenge of discovering unknown rirdtion, keeping the
process centered on user expectations, remains open.

At this point, it is important to clarify the meaning éme terms. Bynovel
information, we mean both the information that cannot be infemethe reference
frame of the information system or of the user, eswtering the process in the user
has essentially two aspects: the management of user axpestand the use of user
background knowledge in the mining process. By expectatioragesnent, we mean
that the results from the process have to be inrdance with user expectations, with
similarity measured by comparing them to the user's bagkgrinowledge.

In the case of sequential pattern mining using constraiptessed as context-free
languages, it is clear that:

- the existing background knowledge is represented and iteédgrathe mining

process as a context-free language;

- the process is completely centered on the user, dregrocess will only
discover patterns that are in accordance with his badkdrlkoowledge (this
means that only sequences that belong to the contextainguage will be of
interest);

- it is not possible to discover novel information, siredé the discovered
patterns need necessarily be contained in the comtsxtanguage specified by
the user.

Considering these limitation, we propose a new methggloto mine unknown
patterns, while keeping the process centered on theTtisrmethodology is based
on the use of constraint relaxations, instead of caim$sr themselves, to filter the
discovered patterns during the mining process. The notioorftraint relaxation has
been widely used when real-life problems are addresselljnasequential pattern
mining, they were first used to improve the performasfade algorithm [3]. The key
point is that, in many cases, the user is able to fypeasily a constraint that is too
restrictive, but is not capable to specify a constrtiat is adequate for the task at
hand. For instance, the user may be able to spedifyrmal behavior but will be
hard pressed to specify ammost normabr approximately normabehavior.

A constraint relaxatiorcan then be seen as an approximation to the contstreat
captures the essence of the user knowledge but that dbesstrict too much the
universe of possible patterns. In other words, whilestamts explicitly specify
which sequences can be discovered, constraint relaxafesnine the way that the
knowledge (expressed by the constraint) can be used to geideirting process. In
this manner, when used instead of the constraints esqatds/ the user, relaxations
can give rise to the discovery of novel information,thie sense that the patterns

6 Claudia Antunes and Arlindo L. Oliveira

discovered can no longer be directly inferred from thekdpaound knowledge, i.e.
from the reference frame of the user. If these eglaRs are used to mine new
patterns, instead of simply used to filter the pattetrest satisfy the imposed
constraint, the discovery of novel information is pdssilsiven that the user may
choose the level of relaxation allowed (the type ofxatian), it is possible to keep
the focus and the interactivity of the process, whiilk permitting the discovery of
novel and unknown information. In this manner, the gifatlata mining will be
achieved. Additionally, some of the unresolved challenges térpatining will be
addressed, namely: how to use constraints to specikgbmand knowledge and user
expectations; how to reduce the number of discovered pattgresnstraining the
search space, and how to reduce the amount of time iagging the discovery.

In order to achieve those results, we propose four magses of relaxations over
constraints expressed as formal languages, as illustratEdy.i 3. The differences
between them result from the redefinition of the ptaaility notion for the formal
language that defines the constraint.

Constraint
Relaxation

g
| | |

Naive Conservative Approximate Non-
Relaxation Relaxation Constraint Accepted

b b

[[[| [[[|
Approx | | Approx | | Approx | | Approx Non- Non- Non- Non-
-Naive -Legal -Prefix -Suffix Legal Suffix Prefix || Approx

Valid-
prefix

Valid-

Legal suffix

Fig. 3 Hierarchy of constraint relaxations

The first class of relaxations is the Naive relamtiwhich corresponds to a simple
item constraint. However, in the context of constra@xsressed as formal languages,
it can be seen as a relaxation that only accepts psittemtaining the items that
belong to the language alphabet.

Conservative relaxations group the other already knoslaxations, used by
SPIRIT [3], and a third one — Valid-Prefix, similar to \asuffix.

It is important to note that conservative relaxatiame not able to discover
unknown patterns, just sub-patterns of expected ones. Apmtximatching at a
lexical level has been considered an extremely importaoit to assist in the
discovery of new facts, but ignored in most of the appraatheattern mining. It
considers two sequences similar if they are at an editrdie below a given
threshold. An exception to this generalized frame isAh®xMAP[7], which uses
this distance to count the support for each potentitienpa However, to our
knowledge, edit distance has not been applied to condtepattern mining process.

To address the need to identify approximate matching we geapmew class of
relaxations — theApprox relaxation which accept the patterns that are at an
acceptable edit distance from some sequence accepteel tynistraint.

Another important relaxation is related with the discovefylow frequency
behaviors that are still very significant to the dam&raud detection is the paradigm
of such task. Note that the difficulties in fraud detectiomrelated with the explosion
of discovered information when the minimum support thresholceéses.

Constraint Relaxations for Discovering Unknown SequentiabPett 7

To address the problem of discovering low frequency behgvive propose an
additional class of relaxations — tiN®n-acceptedelaxation If < is the language
used to constrain the mining process, Non-accepted relagatill only accept
sequences that belong to the language that is the commlefiae

Additionally, each of these relaxations can be comdhircreating compositions of
relaxations, that can be used directly as filters. Exesnpf such compositions are
approx-legalor non-approx

Next, we will present each class of constraint relaxatiofo illustrate the
concepts, consider the extended pushdown automaton in Fignt2-rig

3.1 Naive Relaxation

As stated, th&laiverelaxation only prunes candidate sequences containingetem
that do not belong to the alphabet of the languageekample, if we consider the
specified automaton, only sequences veith b's andc's are accepted by the Naive
relaxation.

In this manner, a sequence is accepted by the naive amiteriexactly the same
conditions than for regular languages. However, this rétaxatunes a small number
of candidate sequences, which implies a limited focus @dédkired patterns.

Since Naive relaxation is anti-monotonic, no changeefuential pattern mining
algorithms is needed.

3.2 Conservative Relaxations

Conservative relaxations group thegalandValid relaxations, used in SPIRIT, and a
third one —Valid-Prefix complementary to thealid relaxation (called Valid-Suffix
in the rest of the paper). These relaxations imposeeaker condition than the
original constraint, accepting patterns that are subsequehegsepted sequences.
When used in conjunction with context-free languages, thmekeations remain
identical, but we have to redefine the related notions.

First of all consider the partial relatiap, which maps fromgxsxI'* to Qx N*
representing the achieved staféqgand top of the stack0A* (with A/ equal tor*),
when in the presence of a particular sequeneis a particular stateldp and a
string of stack symbols MI'*. Also, consider thah.top is the operation that returns
the first string on\.

Y(g;, $=<s...5>, W) is defined as follows:
i. (g A), if |S|=00 OADA*: A=w
i. (g, A), if |s|=100q0Q; AOA*: &(gi,s,w) O (g, A)
iii. W(g,<...5>A.top), if |s|>100g0Q; ALA*: &(as,s,w) O (o,A)
Additionally, consider that the elements on each i@msare ordered
lexicographically (as assumed by sequential pattern miniggrithms). In this
manner, it is possible to define two new predicates:

Given two itemsets=(a;...a,) andb=(b;...by), with n<m:a is aprefix of b if for all
1<i<n g is equal tdy anda is asuffixof b if for all 1<i<n & is equal tds(m-rn)

8 Claudia Antunes and Arlindo L. Oliveira

Legal. TheLegalrelaxation requires that every sequence is legalnethect to some
state of the automaton, which specifies the constiaigfuage. The extension of legal
relaxation to context-free languages is non-triviaicsithe presence of a stack (on
the automaton) makes the identification of legal sequemces difficult. However, it

is possible to extend the notion of legality of a sequevitte respect to any state of
an extended pushdown automaton.

A sequence s=S.S,> islegal with respect to statg with the top of the stack w, iff

i |s|=10 0s05" 00 OA*: 3(q;, S W) (g, A) O s10s,

ii. |s|=20 D&,&'DZEEA,A'DA*;qj,q'DQ: &(Ci, SoW)O(q',A) O's; suffixOf s
0&(q',s\A.top)d(q,A") O s, prefixOf s

iii. |s|>20 D&,&'DZEEA,A',A"D/*;qj,qj',qj"DQ: &(0i, SoW)O(q',A)0 sy suffixOf s,
Oy(g,S. .. Sh-pA top)=(g"AY) O 8(q", s \A".top)J(g;A") Os,, prefixOf s

This means that any sequence with one itemset isuétfatespect to an extended
pushdown automaton state, if there is a transition ftpaefined over a superset of
the itemset (i). When the sequence is composed of twasdis, it is legal with
respect to a state, if the first itemset is a suffiadégal transition from the current
state, and the second itemset is a prefix of a legasitren from the achieved state
(ii). Otherwise, the sequence is legal if the firstriset is a suffix of a legal transition
from the state,,s..s,.1 corresponds to a valid path from the state and stackedac
and the last itemset is a prefix of a legal transitramfthe state and stack reached
With S...Sy.1.

Examples of legal sequences with respect to the initia¢ sif the specified
automaton areg, b andc (by rule i),bc and @,b)c (by rule ii) andbcaand @,b)ca (by
rule iii). Examples of non-legal sequences ace(by ignoring rule ii) oracb (by
ignoring rule iii).

Note thaty is only defined for non-empty stacks. Indeed, in ordeverify the
legality of some sequenegit is necessary to find a sequence of itentsitat can be
concatenated tg creating a sequentgaccepted by the automata.

Valid-Suffix. The Valid-Suffix relaxation only accepts sequences that are valid
suffixes with respect to any state of the automaton. fdkdegal relaxation, some
adaptations are needed when dealing with context-free Igagua

A sequence s=s.s,> is avalid-suffix with respect to statgwith top of the stack w, iff

i, |s|=10 0802 A 0A%q;0Q: 8(gi,S.W)0(q,A) O s;suffixOf s, A.top=

i. |s|>10 _Ds",s‘"DZEE)\',)\"D/*;qj,q,-',qj"DQ: &(Ci, SoW)O(q',A)Os; suffixOf s
Oy(g,s...swAtop)=(g,A)OA.top=

This means that a sequence is a valid-suffix with regpexstate if it is legal with
respect to that state, achieves a final state andebdting stack is empty. In
particular, if the sequence only has one itemset, gt thabe a suffix of a legal
transition to an accepting state.

Considering the extended pushdown automaton as before, lesawipsuch
sequences ate (a,b), c(a,b) andbc(a,b). Negative examples are, for instanioea or
bch Note that, in order to generate valid-suffix sequencés spect to any state, it
is easier to begin from the final states. However,kim@g of generating process is one

Constraint Relaxations for Discovering Unknown SequentiabPett 9

of the more difficult when dealing with pushdown automafagce it requires a
reverse simulation of their stacks.

In order to avoid this difficulty, using prefix instead of fsufvalidity could
represent a more useful relaxation, when dealing withegbtifree languages. Note
that valid-suffixes are not prefix-monotone, and coultb@easily used by pattern-
growth methods [9].

Valid-Prefix. The valid-prefix relaxation is the counterpart of validfig, and
requires that every sequence is legal with respect toitfed state.

A sequence s=$S.S,> is said to berefix-validiff:

i |s|=10 Os0%*; AOA*: 8(0o,SwZo) O (g;,A) O s, prefixOf s

i [s[>10 0s0x* ANTA*0;,6'0Q: Y(do, St --Sh-1.Z0)=(G' A) I (g, A" top) U (q,A)
O s, prefixOf

This means that a sequence is prefix-valid if it is leg#h respect to the initial
state and the first itemset is a prefix of a traosiirom the initial state. Sequences
with valid prefixes are not difficult to generate, sirtbe simulation of the stack
begins with the initial stack: the stack containing dhlg stack start symbol. The
benefits from using the suffix-validity and prefix-validare similar. When using the
prefix-validity to generate the prefix-valid sequenceshwitelements, the frequent
(k-1)-sequences are extended with the frequent 1-sequencespidaamce with the
constraint. Examples of valid-prefixes aad)(and @b)ca; (a)c or bc are examples of
non-valid prefixes.

Note that thdegal relaxation accepts all the patterns acceptedatig-suffix and
valid-prefix relaxations. In this manner, it is a less restrictimaxation than the other
two. Although these relaxations have considerableicgge power, which improves
significantly the focus on user expectations, they doatiotv for the existence of
errors. This represents a strong limitation in reghsets, since little deviations may
exclude many instances from the discovered patterns.

3.3 Approx Constraints

In order to solve this problem we propose a class akagbns that accepts sequences
that have a limited number of errors. If it is possitlecorrect those errors with a
limited cost, then the sequence will be accepted.

A new class of relaxations, callegprox relaxationstries to accomplish this goal:
they only accept sequences that are at a given edinclistar an accepted sequence.
This edit distance is a similarity measure that r&fléoe cost of operations that have
to be applied to a given sequence, so it would be acceptegdasitive example of a
given formal language. This cost of operations wilchied thegeneration costand
is similar to the edit distance between two sequerasesthe operations to consider
can be thénsertion DeletionandReplacemer|8].

Given a constraint C, expressed as a context-free langardie, real numberwhich
represents the maximum error allowed, a sequeigsaid to bepproximate-accepted
by C, if its generation cog(s, C) is less than or equalgcThegeneration cost (s, C)
is defined as the sum of costs of the cheapest sequencé gbemitions transforming
the sequence s into a sequence r accepted by the language C.

10 Claudia Antunes and Arlindo L. Oliveira

For example, considering the extended pushdown automatonediefinove,
ac(a,b) and @,b)(a,b) are approx-accepted sequences with one error, which result
from inserting a on the first itemset, on the first example, and @n the second
position, on the second example, respectively,b) andb(a,b) are non-approximate
accepted with one error, since two edit operationaeeded to accept them.

The other four classes of approximate constraints areedefdy replacing the
acceptance by legality and validity notions. In thisnmex, an Approx-Legal
relaxation accepts sequences that are approximately letijatespect to some state.
Approx-Suffixand Approx-Prefixrelaxations are defined in a similar way. Finally,
Approx-Naiveaccepts sequences that havetems (with € the maximum error
allowed) that do not belong to the language's alphabet.

Recent work has proposed a new algoritiraccepts [2] to verify if a sequence
was approximately generated by a given deterministic finilédomata (DFA).
Fortunately, the extension to deal with context-fremyleges is simply achieved by
replacing the use of a DFA by the use of an ePDA. Thetseslhibwn in this paper
were achieved by using such an algorithm.

3.4 Non-accepted Relaxation

Another important issue is related with the discoverlpwffrequency behaviors that
are still very significant to the domain.

Suppose that there is a model (expressed as a contexafigeage) able to
describe the frequent patterns existing on a huge databgser(s&le that the
minimum support allowed is 10%). If there are 3% of cBewith a fraudulent
behavior, it is possible that they are not discoversther by using the unconstrained
mining process, nor by using any of the proposed relaxatidowever, the model of
non-fraudulent clients may be used to discover the frauduless: dhe fraudulent
clients are known to not satisfy the model of n@uftulent clients.

To address the problem of low frequency behaviors disgpwee propose an
additional class of relaxations — tNen-accepted relaxationvhich accept sequences
that are not accepted by the constraint.

A sequence ison-acceptedby the language if it is not generated by that language.

In fact, this is not really a relaxation, but anotlenstraint (in particular the
constraint that only accepts sequences that belong tdatitguage that is the
complement of the initial constraint). However, sinceytare defined based on the
initial constraint, we choose to designate them laza#ons.

The benefits from using the non-accepted relaxationnaostly related to the
possibility of not rediscovering already known informatievhich may contribute
significantly to improve the performance of sequentiatgoa mining algorithms.
Moreover, since context-free languages are not closedr wuheplementation [6]
(which means that the complement of a context-free layegis not necessarily a
context-free language), the use of the complement instéathie non-accepted
relaxation could be prohibitive.

Note that by using this new approach, it is possibledoce the search space, and
consequently to reduce the minimum support allowed. Theancepted relaxation
will find all the patterns discovered by the rest of th&oduced relaxations,

Constraint Relaxations for Discovering Unknown SequentiabPestt 11

representing a small improvement in the focus on espectations. In fact, it finds

all the patterns discovered by unconstrained patterns riieusnes that are accepted
by the constraint. Like for approx relaxations, an gg#ng improvement is to

associate a subset of the alphabet in conjunction twighnon-accepted relaxation.
This conjunction focus the mining process over a smphet of the data, reducing

the number of discovered sequences, and contributinghteve our goal.

As before, the sub-classes bn-Acceptedelaxations result by combining the
non-acceptance philosophy with each one of the otreexations. While non-
accepted relaxation filters only a few patterns, wienconstraint is very restrictive,
the non-legal relaxation filters all the patterns th non-legal with respect to the
constraint. With this relaxation is possible to discabver behaviors that completely
deviate from the accepted ones, helping to discoverdbdulent behaviors.

3.5 Discussion: novelty and expectedness

The discussion about the concept of novel informatianés of the most difficult in
pattern mining. While the concept is clear in the nefee frame of a knowledge
acquisition system, the same is not true in the neferdrame of the final user.
Indeed, several interestingness measures have beersguidpo the evaluation of the
discovered patterns [4]. Moreover, this issue is morecatitiith the introduction of
constraints in the mining process. In fact, in thegmes of constraints the concept of
novel patterns becomes unclear even in the refereame fof information systems,
since they are then able to use the knowledge, reyiegsas the constraint.

In order to bring some light into the discussion, consildat, given a model as
constraint, a patterA is more novel thara patterrB, if the generation cost & by
model C is larger than the generation cost of B by modglit@ the generation cost
defined as above). With this concept, it is now possiblenderstand the reason why
non-accepted patterns can be more novel than thergattiscovered by conservative
relaxations. It is now clear that, despite the diffeesnbetween relaxations, all of
them allow for the discovery of novel information. Indedtle conservative
relaxations are able to discover failure situationg ihasituations when for, some
reason, the given model is not completely satisfiealid-prefix and valid-suffix
identify failures in the beginning and ending of the modespectively, andegal
identifies problems in the middle of the model).

However, the great challenge of pattern mining is to descowvel information
that is interesting to the user. It is clear from deéinition of the novel relation, that
an unexpected pattern is more novel than an expected offiectjrthe challenge
resides in the balance between the discovery of noveldméhow expected patterns.
The proposed relaxations cover a wide range of thimbalagiving the user the
option of which is the most relevant issue for thebjgm in hands: to discover novel
information or to satisfy user expectations.

Consider the PDA and the data shown in Fig. 4: the PBgesents a more
restrictive notion of well-behaved costumer — a costuni® as at most two invoices
to pay. If we apply the proposed methodology to analyaedata, we will be able to
discover several different patterns with the differetaxations, as shown in Table 1.

12 Claudia Antunes and Arlindo L. Oliveira

(a Sypush X Dataset
@ X)push X eababraabb | aababbaerh
aabbaberab ababaabbab
aebraaaccd aebaraacbe
abaaaccder abaeraacbh
(b, X)—pop aebaraaach aaachabab

(a, X)—push X (b, X)—pop

@ (a, S)»push X

(b, X)—pop

Fig. 4 Example of a pushdown automaton and a small dataset

In order to permit an easy comparison, only maximakpagtare shown. In this
manner, some patterns appear only in some columnseloolomn relative to the
approxrelaxation, are shown the edit operations needed tsforam each pattern to a
pattern belonging to the context-free language.

Table 1 —Comparison of the results achieved with and withoustamts

. _.\ |Non-Acc (w}

Frequen|Accepte¢ Legal | Prefix | Approx.g=1) s=fa.c.d.en
be
baa
era
braa
baba abab aer
baer baba aabbab era
araa abab | ar

abab abab raac
abab abaa | aeb

aabbab| abaa araa
abaa aabba aabbal abaa raaac
raach aacb

aaaccd

raaac
aaach
aabbab
aaaccd
aebaraa

As expected, by using the constraint itself we only disctwerpatterns, which
satisfy the context-free language. Therefore, these semdtnot enough to invalidate
Hipp's arguments [5] about constraints. Neverthelegh, vegal and Valid-prefixes,
it is possible to discover some other intermediate pettevhich are potentially
accepted by the complete constraint.

Finally, with approx and non-acceptedrelaxations, it is possible to discover
unexpected patterns. Indeed, the approx relaxation shogvsmibst interesting
behavior, since it is possible to discover that it isalishat after sending the second
invoice, customers pay their old billaach. With non-accepted relaxation, it is also
possible to discover interesting patterns. In this cadss,ddommon that after three
invoices without any payment, and the emission of¢a@ond invoices, the customer
account is cancele@gaccd.

Constraint Relaxations for Discovering Unknown SequentiabPett 13

4 Discovering Frequent Curricula: a case study

In this paper, we claim that it is possible to discoveknemwn information, using
sequential pattern mining with constraint relaxationghaeuit loosing the focus on
user expectations. In order to validate these claim@resent the results achieved by
applying this methodology to the discovery of frequent culai instantiations from
the data collected from IST student's performance inuorergraduate program on
information technology and computer science. For thipgag, we will evaluate our
methodology by comparing: the performance of each miningegs; the number of
discovered patterns and the ability to answer the refepsgstions.

The curriculum has a duration of 10 semesters with 36 negfjgubjects, a final
thesis and 4 optional subjects in the last year. Fouwiafpeareas are offered: PSI —
Programming and Information Systems; SCO — Computer i8gstAR — Artificial
Intelligence and IIN — Information Systems for Factot@mation.

(SCILIATP2 PBD)@ cG C,RC,SCIZ)*@*(M,AD,IHM,PC)
(AMLAL IP,SDFEX)

(POO,SIBD,ASC,PE, TP1) (EP,SoD,AA,TP3)

(AC.TC,AED,F1,AM2) (SCILJIA,CSE,SCD) (CG.CSCIZE) (ADVLSIEIFTD) @(SOD,M,CDSP,ARGE)
@ (SCLIACSEM) (CG.CRCLE) (AD,VLSIRC2,RDBL) (SoD,AA,SBMMPSD)

(POO,SIBD,ASC,PE, TCIrC)

(PLF,SO,AN,F2,AM3)

(POO,SIBD, TAI,PE,FA)— : —— (1A AD,FL,P)—{ : b—(CG,Rc,TP,LP)+.— (Rac,Apr,LN,IHM) (EP,FAC,SFF,SDAI)

(POO SIBD,ASC AMA4,PE) (TFC2)

\.— IA,CC/PS, scn (CG,GCPACI, SAC».— (AD,MPAC,Rob)

Fig. 5 DFA for specifying the model curriculum forLEIC specialty areas

There are 20 common subjects in the curriculum modelori8he first three
semesters and the other 2 on the following two semsesi&e enrollment on a
specialty area was made on the fourth semester. Tdvere47 other subjects,
distributed by each specialty area. The deterministitefautomaton on Fig. 5 shows
the model curriculum for each specialty area. (The exit& of two different
transitions per semester for SCO students, are duertioa reorganization of the
SCO curriculum on 1995/1996.)

Data statistics. The dataset used to analyze those questions consigte cettof
sequences corresponding to the curriculum followed by stuttesitsnade at least 8
enrollments. In this manner, the dataset is composed of l4d@rsms, with an
average sequence length equal to 11.58 semesters. Mostsideats (72%) have
between 8 and 12 enrollments (they had attended classegehet®y and 12
semesters). Naturally, the number of students witbdahsequence length is reduced,
since this situation corresponds to students that haveergisn only one semester
on that year. In terms of the number of enrollmentssgenester, its mean is 4.82
enrollments on subjects per semester, with most stu(#s#s) enrolling on between
4 and 6 units.

14 Claudia Antunes and Arlindo L. Oliveira

Another interesting issue is the distribution of studgues specialty area: 56%
follow the PSI specialty area, 19% the SCO speciaétg and the remaining 26% are
equally distributed by IAR and IIN specialty areas. Thgribution conditions the
number of enrollments per subject. For example, subgcttusive to Atrtificial
Intelligence and IIN have at most 13% of support.

It is interesting to note that only 823 students (57%) lkeaneluded the final work
(TFC1 andTFC2). Since it is usual that students only take optional stgja parallel
or after finishing the final work, the support for optibisabjects is at most 57%.
Since the options are chosen from a large set ofcebo{130 subjects), their
individual support is considerably lower. Indeed ManagemeitigGhe optional
subject with more students, about 40%.

4.1 Evaluation of Discovered Information

The analysis of the data referring to students' performbhaseessentially two main
reasons: to explain the low levels of success and to fgémé most common profiles
of students. In this manner, we will try to answer threestijpres: 'what are the most
common patterns on each scientific area?', 'whtiasmpact of some subjects on
others?' and 'what are the common curricula instaorti for each specialty area,
including optional subjects?".

Finding frequent curricula on scientific areas. The discovery of the most common
patterns on each scientific area is easily achieVedei look for students, who
conclude the sequence of subjects in the same scienté ia at most four
semesters. This constraint can be specified by the dedepushdown automaton
represented on Fig. 6. In this figure, each transiémnesents four transitions, one per
scientific area. For example,[~X2, sa(X2)] >push sa(X2) represents
[~AED, MTP] >push MIP, [~AC, ASQ »>push ASO [~AW2, AM 2>push AM and

[~F1, F] >push F. Consider thatX,, X, and X; are the first, second and third
subjects on some of the following scientific area8P, ASO, Physics and
Mat hemat i cal Anal ysis. Also, consider thasa is a function from the set of
subjects to their scientific area, for examgdé | P) =MTP.

/@\

[(~><), sa(X,)|push(sa(x,) [, Xo). saX, Xl --pop

[(X sa(X,)]—push(sa(X,)) @—[(X), sa(X;)]-~pop °

[=X,), ST=push(sa(x,)) [0%,), sa(X,)]-pop
[(~X , sa(X,)]—push(sa(X,)) [(X,.Xy), sa(X,X;)]-pop

[(X,), S]—push(sa(X,)) [(X ,sa(X,)] Hnoop‘>C3>—[(X s

Fig. 6 ePDA for specifying the curricula on scientificareas, where students
conclude three subjects in a specific scientific aa at most on 4 semesters

Constraint Relaxations for Discovering Unknown SequentiabPett 15

The first thing that we are able to discover, using @staint defined over the
ePDA on Fig. 6 (with a gap equal to zero) is that theoritgjof students are able to
conclude the sequence of MTP (61%) and ASO (57%) subjéitteutvany failure.
Additionally, 6% of students are also able to concludéwatllone of those subjects in
four semesters (see shadowed patterns in Table 2-left).

Table 2 — Discovered Patterns per Scientific Areas

Discovered Patterns
With Constraints Sup With Approx Relaxation Sup
<(IP),(AED),(PLF)> 61% [<(AM1),(~AM2),(~AM3),(AM2)>| 6%
<(IP),(~AED),(PLF),(AED)> 6% [<(AM1),(~AM2),(AM2)> 6%
<(SD),(AC),(SO)> 57% |<(AM1),(AM2),(~AM3,AM3)> 6%
<(SD),(~AC),(S0O),(AC)> 6% [<(FEX),(F1),(~F2)> 22%
<(FEX),(F1),(F2)> 35% |<(FEX),(~F1),(~F2),(F1)> 8%
<(FEX),(~F1),(F2),(F1)> 5% [|<(FEX),(~F1),(F2),(F1)> 5%
<(AM1),(AM2),(AM3)> 31% [<(~F2),(F1),(F2)> 6%
<(IP),(AED),(~PLF)> 12%
<(IP),(~AED),(PLF),(PO0O)> 6%
<(~IP),(~AED),(IP),(AED)> 5%
<(SD),(AC),(~S0O)> 13%
<(~SD),(~AC),(SD),(AC)> 6%

It is important to note that there is no other triwiay to perform an identical
analysis. Usually, the results are stored in sepagateds, making more difficult the
sequential analysis with simple queries. Remember that thoeries require several
natural joins, one for each constraint on the requsegplience of results. In fact, the
gueries must define the entire automata with those opesativhich is not a simple
task. No other kind of queries will be able to addresspitoblem, because without
the sequence information, we are just able to discover hawy students have
approved or failed in each subject.

In this manner, constrained sequential pattern mining igwratavay to perform
this kind of analysis, only requiring that "experts" deshgnpossible curricula, which
is trivial, since they are publicly known.

When applying arApproxrelaxation, we are able to discover part of the patterns
followed by students that are not able to conclude all stshja four semesters, as
specified in the previous automaton. For example, onleeofduses of failure on the
sequence of ASO subjects is failing on the subject of&@ipg Systems (SO). Since
this subject is the third one in the sequence anditlisoffered in thd=all semester,
students in that situation are not able to concludehttee tsubjects in four semesters.
Similarly, students that fail on the subjects of Phygic&2), Mathematical
Analysis 3 (AM3) and Functional and Logic Programming (PBF§ not able to
conclude the corresponding sequences on 4 semesters, assfi@ble 2-right.

Another interesting pattern found is that 6% of studenténfaie first opportunity
to conclude Mathematical Analysis 3 (AM3), but seize #seond opportunity,
concluding that subject in the first enroliment (shadoweslih Table 2-right).

Additionally, the use of the approx relaxation also dbotes to analyze the
impact of some subjects on others. For examplepanox relaxation with one error
discovers that 49% of the students that conclude MTP sulaje8tsemesters fail on
AM3 and 40% on F2. Similarly, 45% of students that conclud® A8bjects in 3
semesters fail on AM3 and 39% on F2 (shadowed patterns ia 3abl

16 Claudia Antunes and Arlindo L. Oliveira

Table 3 — Patterns in scientific areas with one error

Patterns Sup Patterns Sup
<(IP,SD),(AED),(PLF)> 57%|<(IP,~SD),(AED),(PLF)> 8%
<(IP),(AED),(PLF,SO)> 53%<(IP),(AED),(PLF,~SO)> 10%
<(IP),(AED,AC),(PLF)> | 53%/<(IP),(AED,~AC),(PLF)> 8%
<(SD),(AC),(PLF,SO)> 51%<(SD),(AC),(~PLF,SO)> 8%
<(IP,AM1),(AED),(PLF)> | 50%/<(IP,~AM1),(AED),(PLF)> | 15%
<(SD,AM1),(AC),(SO)> 47%<(SD,~AM1),(AC),(SO)> 15%
<(IP),(AED,AM2),(PLF)> | 45%/<(IP),(AED,~AM2),(PLF)> | 16%
<(IP),(AED,F1),(PLF)> 45%<(IP),(AED,~F1),(PLF)> 16%
<(SD),(AC,F1),(SO)> 41%<(SD),(AC,~F1),(SO)> 16%
<(SD),(AC,AM2),(SO)> 41%<(SD),(AC,~AM2),(SO)> 16%
<(IP),(AED),(PLF,F2)> 36%<(IP),(AED),(PLF,~F2)> 24%

<(SD),(AC),(SO,F2)> 34%<(SD),(AC).(SO,~F2)> 23%
<(FEX,AM1),(F1),(F2)> | 31%}<(~AML,FEX),(F1),(F2)> 6%
<(FEX),(F1),(SO,F2)> 31%[<(FEX),(F1),(~SO,F2)> 5%

<(IP),(AED),(PLF,AM3)> | 29%<(IP),(AED),(PLF,~AM3)> | 30%
<(FEX).(FLAM2),(F2)> | 28%<(FEX),(F1,~AM2),(F2)> 74
<(SD),(AC),(SO,AM3)> | 27%<(SD),(AC),(SO,~AM3)> | 26%
<(AM1),(AM2),(F2,AM3)> | 23%/<(AM1),(AM2),(~F2,AM3)> | 8%
<(FEX),(F1).(F2,AM3)> | 21%<(FEX),(F1),(F2,~AM3)> | 14%

Finding Common Curricula Instantiations with Optional Subjects The
challenge on finding which students choose what optionakstsbjs a non-trivial
task, especially because all non-common subjects cahdsen as optional by some
student. A simple count of each subject support does nottlgivexpected answer,
since most of the subjects are required to some pageof students.

The other usual approach would be to query the databasenbtbe support of
each subject, knowing that students have followed some giveitulum. However,
this approach is also unable to answer the question, gicoasiderable number of
students (more than 50%) have failed one or more subjetizyihg a slightly
different curriculum.

In order to discover the optional subjects frequently anhdsestudents, we have
used the methodology previously proposed — the use of constedaxations,
defining a constraint based on the DFA shown in Fig. 7.

O

(M,AD,IHM,PC) (EP,S0D,AA,TP3)
_r
(AD,VLSI,EIFTD) (SoD,AA,CDSP ARGE)
(AD,VLSI,RC2,RDBL) (SoD,AA,SBM,MPSD)
(Rac,Apr,LN,IHM) (V,SP,SR,PA)
(AD,M,PAC Rob) (EP,FAC,SFF,SDAI)

Fig. 7 DFA for finding optional subjects

Constraint Relaxations for Discovering Unknown SequentiabPett 17

This automaton accepts sequences that represent theuleuron the fourth
curricular year for each specialty area (the firstF&l students, the second one for
SCO, the third for IAR and the fourth for IIN). In ptice, a constraint defined over
this DFA filters all patterns that do not respect thedel curriculum for the last two
curricular years.

The use of constrained sequential pattern mining (i¢h specified constraint)
would not contribute significantly to answer the ifitimestion, since it would only
achieve results similar to the ones obtained by theyqmve.

However, the use of th&pprox relaxation described enables the discovery of
several patterns. If the relaxation accepts at rwsterrors §€=2) chosen from a
restricted alphabet, composed by every non-common subjedre able to find the
frequent curricula instantiations with optional subjettsgeneral, students mostly
attend Computer Graphics (PAC-Computed Assisted Project;M—IH
Human Machine Interfaces) and Management subjects (EcononBednomical
Theory 1-TE1l; Financial Management—-GF;, Management—G; Managemen
Introduction—IG), as shown in Table 4.

It is interesting to note that whenever IIN studdrgse failed on some subject on
the 4" year, they choose a specific optional subject in Ecgn@ral or | G). The
same happens for PSI and IAR students (behavior iderbifistiadowed rules). Note
that in order to discover these rules, we have to betatdemit some errors on the
sequence of subjects per specialty area, which is ndf dase by specifying a query
to a database.

Table 4 — Patterns with optional subjects attended by LEIGtudents

SA Curricula Instantiations HElE) s
sup | sup

<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,PAC)(TFC2,GF)>:22 1.5% | 5%
<(M,AD,IHM,PC)(AA,SoD,EP, TP3)(TFC1,Econ)(TFC2,GF)>:33 2.5% | 8%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,Econ)(TFC2,1G)>:28 2% | 7%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1)(TFC2,GF,1G)>:33 2.5% | 8%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,G,PAC)(TFC2)>:22 1.5% | 5%
<(M,AD,IHM,PC)(AA,SoD,EP, TP3)(TFC1,G)(TFC2,GF)>:32 2% | 8%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,G)(TFC2,GCP)>:19 1% | 5%

PSI |<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,G)(TFC2,GEC)>:23 1.5% | 5%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,G)(TFC2,ARGE)>:18 1% | 4%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,G,TE1)(TFC2)>:29 2% | 7%
<(M,AD,IHM,PC)(AA,SoD,EP, TP3)(TFC1,TE1,Econ)(TFC2)>:21 1.5% | 5%
<(M,AD,IHM,PC)(AA,SoD,EP, TP3)(TFC1,TEL1)(TFC2,GF)>:44 3% |10%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TFC1,TE1)(TFC2,1G)>:27 1,5% | 6%
<(M,AD,IHM,PC)(AA,SoD,EP,TP3)(TE1)(GEC)>:15 1% | 4%
<(M,AD,IHM,PC)(AA,SoD,EP)(TFC1)(TFC2,TE2)>:15 1% | 4%
<(M,AD,PAC,Rob)(EP,SDAI,SFF)(TFC1)(TFC2,1G)>:15 1% | 8%
<(M,AD,PAC,R0ob)(EP,FAC,SDAI,SFF)(TFC1,IHM)(TFC2,GF)>:18 1% |10%

IIN [<(M,AD,PAC,Rob)(EP,FAC,SDAI,SFF)(TFC1,Econ)(TFC2,GF)>:18 1% |10%
<(M,PAC,Rob)(EP,FAC,SDAI,SFF)(TFC1,G)(TFC2)>:17 1% |10%
<(M,PAC,Rob)(EP,FAC,SDAI,SFF)(TFC1,TE1)(TFC2)>:18 1% |10%
IAR <(IHM,Rac,LN)(SP,V,PA,SR)(TFC1,TE1)(TFC2)>:15 1% | 10%
<(IHM,A,Rac,LN)(SP,V,PA,SR)(TFC1)(TFC2,GF)>:17 1% |10%
<(C)(VLSI,RC2,RDBL,AD)(AA,CDPSD,ARGE,SoD)(TFC1,G)(TFC2)>:23 1.5% | 8%
SCO [<(Elect)(VLSI,RC2,RDBL,AD)(AA,CDPSD,ARGE,SoD)(TFC1,G)(TFC2)>:27 | 1.5% |10%
<(RC1)(VLSI,RC2,RDBL,AD)(AA,CDPSD,ARGE,SoD)(TFC1,G)(TFC2)>:19 1% | 7%

18 Claudia Antunes and Arlindo L. Oliveira

Another interesting issue is the inexistence of frequetibmal subjects among
IAR and SCO students. Indeed, for the last ones theselysone frequent optional
subject (Management — G).

Finding Artificial Intelligence curricula. As can be seen in previous analysis, the
subjects exclusive to Al students have very low supports (dl38a). Naturally, the
sequences of consecutive subjects have supports thatearelosver. Indeed, the
discovery of Artificial Intelligence (IAR) frequent curriey like for IIN, is non-
trivial, since the number of students in these spedaétgs is reduced.

Given that the application of unconstrained sequentigénmamining algorithms
found 5866 patterns in this dataset (for 20% of support, sinagene not able to try
lower supports due the memory requirements), and we wdimdtéhe sequence of
subjects followed by IAR students, the use of constraineshconstrained sequential
pattern mining does not help in the search for an ansvike ttecond question.

However, if we use the proposed methodology, we haveattemnatives: using a
DFA specifying the IAR model curriculum and &pprox relaxation as above, or
using a DFA specifying PSI and SCO curricula models anbloa-Accepted
relaxation with a restricted alphabet.

The patterns discovered by the second alternative (usingnemum support
threshold equal to 2.5%) answer the question. (Table 5 shewdiscovered patterns,
excluding 8 patterns that are shared by PSI students).

Note that we were not able to find the entire modeticulum for Artificial
Intelligence, because of the reduced number of studentaivat concluded each
subject on the first enrolliment. This fact, explains ttumber of discovered patterns
(24). However, it is smaller than the number of pattediscovered with an
unconstrained approach, confirming our claim about cainstrelaxations.

The Non-Accepted relaxation was defined using a constraintlasi to the
previous one with the DFA represented in Fig. 5 withtbet model curriculum for
IAR and IIN. Additionally, the relaxation alphabet wasmposed of all the common
subjects and the advanced subjects specific to thecdhatifntelligence specialty area
(38 subjects).

Table 5 — Artificial Intelligence frequent curricula

Patterns on Artificial Intelligence
(AD,FL,P)(RC,TP)(IHM,A,R,LN)(SP,PA) (FA,TAI)(AD,P)(RC,LP)(IHM,A,R,LN)(SP,V,PA,SR)
(FA,TAI)(FL,P)(RC,LP,TP)(IHM,A,R,LN)(SP,V,PA,SR) |(FA)(AD,FL,P)(RC,TP)(IHM,A,R,LN)(SP)
(FA,TAI)(AD,FL,P)(RC,LP,TP)(IHM,R,LN)(SP,V,SR) (FA)(AD,FL,P)(RC)(IHM,A,R,LN)(SP,PA)
(FA,TAI)(AD,FL,P)(RC,LP,TP)(IHM,A,R,LN)(V,PA,SR) |(TAI)(AD,P)(RC,LP,TP)(IHM,A,R,LN)(SP,V,PA,SR)
(FA,TAI)(AD,FL,P)(RC,LP)(IHM,R,LN)(SP,V,PA,SR) (TAI(AD,FL,P)(RC,LP,TP)(IHM,R,LN)(SP,V,PA)
(FA,TAI)(AD,FL,P)(RC,LP)(IHM,A,R,LN)(SP,V,SR) (TAI(AD,FL,P)(RC,LP,TP)(IHM,A,R,LN)(SP,V,SR)
(FA,TAI)(AD,FL)(RC,LP,TP)(IHM,A,R,LN)(SP,V,PA,SR |(TAI)(AD,FL,P)(RC,LP)(IHM,A,R,LN)(SP,V,PA,SR)
(FA,TAI)(AD,P)(RC,LP,TP)(IHM,R,LN)(SP,V,PA,SR) (FA,TAI)(AD,P)(RC,LP,TP)(IHM,A,R,LN)(SP,V,SR)

4.2 Efficiency Evaluation

Next, the efficiency of constrained and unconstrairegliential pattern mining are
compared, we assessing the efficiency of the usage ofdiffezent constraint

Constraint Relaxations for Discovering Unknown SequentiabPett 19
relaxations.

Comparison between Constrained and Unconstrained Mining. To compare the
efficiency of constrained and unconstrained sequenéiieqm mining, we compare
the time spent by constrained and unconstrained minisigg deterministic finite
automata and deterministic and non-deterministic pushdovemate that discover a
similar number of patterns (they differ on one or predterns). (The DFA used in this
comparison accepts the curricula on MTP and ASO sciemtiftas, of students that
have failed at most once per subject. The ePDA uséatisrte shown in Fig. 6. The
nPDA used accepts sequences in each scientific areanthni¢ the sequence of
subjects attended by students, including the possibilityaibdiré in the first two
subjects of each scientific area).

PerformancevsSupport

Average Time Spent for Each Pattern

Time (s)

R O)

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5% 75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

—%— Unconstrained —4&—DFA__ ---0--- PDA__—0—nPDA Support — % Unconstrained —&—DFA _ -+0---FDA _ —°—nPDA suppor

Fig. 8 Performance (on the left) and average time spefdr each pattern (on
the right), using different types of content constrains

It is interesting to note that the use of context-freguages implies a considerable
increase on the time spent for each pattern. In faettime spent for each pattern
may be five times slower than for unconstrained minimgl, tavo times slower than
for constrained mining with regular languages (see Fig.t8)ridhe time spent for
each pattern decreases with the number of discoverestrmattvhich is due to the
decrease of the percentage of discarded sequences, the ssdbahare not frequent
and accepted by the constraint.

Evaluation of Constraint Relaxations. In general, mining with conservative
relaxations is as efficient as mining with the entioastraint. However, the average
time spent per discovered pattern is lower (Fig. 9). Thdtsesere obtained with the
constraint based on the ePDA in Fig. 6.

Naturally, Non-Accepted and Approx relaxations spent muohe time than the
other relaxations, but this difference is mostly dugh® number of patterns they
discover.

It is important to note that mining witNon-accepte@&ndApproxrelaxations can
be less efficient than unconstrained mining. This happeimen the number of
patterns discovered by these relaxations is similar tontimaber of discovered
unconstrained patterns, as is usual for Non-acceptedtielas with a very restrictive
constraint (as the ones used in this chapter).

As Fig. 9- right show#pproxrelaxations are the most expensive per discovered
pattern. In fact, even when the number of discoveredrpatte considerably lower
than the number of unconstrained patterns, it is pessibtApproxrelaxations spend
more time than unconstrained mining.

20 Claudia Antunes and Arlindo L. Oliveira

2 100 PerformancevsSupport 2 Average Time Spent for Each Pattern
£ 3
F & o
w00
00
w0
o
o
0
20
0 B e S ot e A O - =
75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5% 75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%
—¢— Accepted Prefix X Legal s —— Acc Prefix X--- Legal
——+— Approx ——°— Non-Acc —*—L upport —+— Approx —o— Non-Acc —%— Unconst. Support

Fig. 9 Performance (on the left) and average time spefdr each pattern (on
the right), using different constraint relaxations

Approx Variants. When applied with a restricted alphabet Approx relaratioay
present better performances.

Even when non-deterministic pushdown automata are wggEtoX relaxation
outperforms unconstrained mining in the generality of sdnat as shown in Fig. 10.
These results were achieved using the constraint defivesdhe ePDA in Fig. 6, and
restricting the items to failures

2 o
c Nr. of Patterns 200 PerformancevsSupport
£ 15
ESSO 1 £ 9
45300 80
= 250 70
= 60

200 50

150 40

100 30

20
50 o
04 Py EPEEWERWEPIE = ;
65% 60% 550 50% 45% 40% 35% 30% 25% 20% 15% 10% 5% 75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

mL @ Full Approx B w/ Reprovals support | |——L — Full Approx w/ Reproals Support

Fig. 10 Number of discovered patterns (on the left) anderformance (on the
right), using approx variants

Non-Accepted Variants. The results achieved with non-accepted relaxations are
similar. When combined with an item constraint,@heeduce the number of patterns
that it discovers. For example, due to the memory reqeinesrof the large number of
discovered patterns, it was not possible to discover umedmsti and non-accepted
patterns for supports below 25%.

7
£ 3000 Nr. of Patterns 5866 z PerformancevsSupport
3 2 1000 /
o £
5 2500 F
= 800
Z 2000
600
1500
400 -
1000
200
500
0 me 0L Il,
75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20% 15% 10% 5% 5% T0% 65% 60% 58% S0% 45% 40% 35% 30% 25% 20% 15% 10% 5%
® Unconstrained O Full Non-Acc G Non-Acc Support %= Uncanstrained —©— FulNon-Acc —o— Non-Ace Support

Fig. 11 Number of discovered patterns (on the left) anderformance (on the
right), using Non-accepted variants

Constraint Relaxations for Discovering Unknown SequentiabPett 21

However, with items restricted to the subjects exclusivartificial Intelligence
(as in section Finding Artificial Intelligence Currie)lit is possible to discover part
of the non-accepted patterns, in an acceptable time.lEighows the number of
discovered patterns (on the left) and the correspondingrpefice (on the right),
with the same constraint with an alphabet composéldeo$ubjects exclusive to IAR
specialty area.

5 Conclusions

In this paper, we show that the use of constraint retam@enables the discovery
of novel information, centered on user expectations, whiaing sequential patterns.
This is achieved since relaxations enable the mininggss to discover patterns that
are notdirectly inferred from the background knowledge represented inytters.

Experimental results show that the use of relaxations redtee number of
discovered patterns when compared to unconstrained precdssgte enables the
discovery of unexpected patterns, when compared to constpaimebses.

The experiments reported in the case study show that thef uskaxations is of
great help when a precise knowledge about the behamiarslysis is not available,
but can be of particular interest when there is an acckmateledge about the models
behind the data. In fact, the success of the us&laf-Acceptedrelaxation is
conditioned by the existence of this knowledge, sincepitesents the only way to
find some specific but interesting patterns.

Finally experiments have also shown that the abilitgdeal with errors is a real
advantage, which makes possible the discovery of unknotterpathat are similar
to accepted ones (as defined by a constraint), givinggeethe ability to choose the
level of similarity, by defining the number of errorsepted.

One important challenge created by this work, is to applyniethodology to the
extraction of intra-transactional patterns, wheredlage no constraints to specify the
structure of the transactions. Indeed, the definitibthe corresponding relaxations
would contribute to guide the traditional pattern mining psses, which may
contribute to reduce the number of discovered patterns,candequently, to focus
the process on user expectations.

References

1. Antunes, C. and Oliveira, A.L., "Inference of Sequential Asdion Rules Guided by
Context-Free Grammars", Int. Conf. Grammatical Inferenc&pringer (2002) 1-13

2. Antunes, C. and Oliveira, A.L., "Sequential Pattern Minimgth Approximated
Constraints"|nt. Conf Applied ComputindADIS (2004) 131-138

3. Garofalakis, M., Rastogi, R. and Shim, K., “SPIRIT:q8ential Pattern Mining with
Regular Expression Constraint”, int. Conf. Very Large Databaseborgan Kaufmann
(1999) 223-234,

4. Hilderman, R and Hamilton, H., "Knowledge discovery anttrestingness measures: a
survey", Technical Repor€S 99-04, Dep. Computer Science, University of Regina, 1999.

5. Hipp, J. and Guntzer, U., "Is pushing constraints deeply @artining algorithms really

22

10.

11.

12.

13.

Claudia Antunes and Arlindo L. Oliveira

what we want?"SIGKDD Explorationsvol. 4, no. 1, ACM (2002) 50-55

Hopcroft, J. and Ullman, J.Introduction to Automata Theory, Languages and
Computation Addison Wesley. 1979.

Kum, H.-C., Pei, J., Wang, W. and Duncan, D., "ApproxMAP: Agpnate Mining of
Consensus Sequential Patterns'Inin Conf on Data MininglEEE (2003).

Levenshtein, V., "Binary Codes capable of correcting sparinsertions and deletions of
ones", inProblems of Information Transmissiah Kluwer (1965) 8-17

Pei J, Han J et al: “PrefixSpan: Mining Sequential Pattefficehtly by Prefix-Projected
Pattern Growth”, innt. Conf Data EngineerindEEE (2001), 215-226

Pei, J., Han, J. and Wang, W., "Mining Sequential Rettevith Constraints in Large
Databases", i€onf Information and Knowledge ManagemeXxtM (2002) 18-25

Srikant R, Agrawal R.: “Mining Sequential Patterns: Galieations and Performance
Improvements”, irint. Conf Extending Database Technolp§pringer (1996) 3-17

Srikant R, Agrawal R, "Mining association rules witlenit constraints" innt. Conf.
Knowledge Discovery and Data MiningCM (1997) 67-73

Zaki, M.“Efficient Enumeration of Frequent Sequences”Irin Conf. Information and
Knowledge Managemem\CM (1998) 68-75

