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Abstract

For most mechanisms of chemical reactions and molecular photophysical processes the time evolution of the

concentration of the intervening species cannot be obtained analytically. The pre-equilibrium approximation is one of

several useful approximation methods that allow the derivation of explicit solutions and simplify numerical solutions.

In this work, a general view of the pre-equilibrium approximation is presented, along with the respective analytical

solution. It is also shown that the kinetic behavior of systems subject to pre-equilibration can be obtained by the

application of perturbation theory. Several photophysical systems are discussed, including excimer formation, ther-

mally activated delayed fluorescence, and external-heavy atom quenching of luminescence. � 2002 Elsevier Science

B.V. All rights reserved.

1. Introduction

It is well known that for most mechanisms of
chemical reactions and molecular photophysical
processes the time evolution of the concentration
of the intervening species cannot be obtained
explicitly. In order to derive approximate ana-
lytical expressions, several classical methods are
used, namely the steady-state approximation
(SSA), also called quasi-steady-state approxima-
tion, and the pre-equilibrium approximation
(PEA), also called equilibrium approximation

[1,2]. This last approximation is usually invoked
when fast reversible reactions precede slower
ones in a mechanism [1,2]. Both approximations
can also be used to simplify the numerical inte-
gration of complex reaction schemes, reducing
the dimensionality and decoupling time scales
[3].

In recent years, the understanding of these ap-
proximations was significantly increased [3–7]. In
addition, new numerical methods have been de-
veloped for the approximate description of the
approach to equilibrium, that is, of asymptotic
dynamics [3–5,7]. Of these, the most accurate are
typically restricted to systems with a small number
of degrees of freedom [3,7].

The kinetics of molecular photophysical pro-
cesses has a special characteristic: Apart from
the intrinsic mechanism of each process, all ex-
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cited species are unstable and decay by radiative
and non-radiative unimolecular paths. Usually a
small number of species is involved [8–11], but
the number of different excited species can also
be large. For instance, in the quenching of mo-
lecular fluorescence or phosphorescence in con-
centrated solutions by the external heavy-atom
effect, it is possible to have as much as 20 dif-
ferent and interconverting charge-transfer com-
plexes [12].

General quantitative conditions for the appli-
cability of the PEA to these cases, as well as the
corresponding general analytical solution under
this approximation appear not to be available in
the literature, although several particular cases
have been considered [1,2,4,5,8,13].

In this work, the goal is to obtain accurate
analytical approximations for a relatively general
and realistic kinetic scheme under the conditions
of applicability of the PEA. This is achieved by
means of a vectorial formulation of perturbation
theory. The first-order result is also derived by a
direct analysis of the rate equations. The obtained
results are of interest in ground state reactions and
also of direct application in photophysical pro-
cesses like external-heavy atom quenching in fluid
medium [12] and thermally activated delayed
fluorescence [14,15].

The outline of this article is as follows. Two
important particular cases, the Lindemann
scheme and the monomer-excimer scheme, are
discussed in Section 2 in connection with the
PEA. In Section 3 a more general scheme is
considered, and its PEA solution obtained, and
applied to external heavy-atom quenching of lu-
minescence. In Section 4 the problem is formu-
lated vectorially, and a perturbational treatment
valid for non-symmetric matrices developed. The
long-time behavior of quasi pre-equilibrated sys-
tems is explicitly obtained up to second order. A
general expression for the rate constant is de-
rived, and its applicability conditions discussed.
In Section 5 the obtained results are applied to
the monomer-excimer scheme, and also discussed
in geometrical terms. An interesting result con-
cerning a particular case under very strong per-
turbations is also obtained. Section 6 contains the
final conclusions.

2. Pre-equilibrium approximation: particular cases

2.1. Lindemann-type scheme

The PEA is often discussed in connection with
the mechanism [2,4,13] (Scheme 1) for which an
exact explicit solution exists. Since this mechanism
is only composed by unimolecular steps, the so-
lution can be obtained by the standard eigenvalue
method [2,16].

The time evolution of any of the participating
species is given by a sum of three exponentials,
whose arguments contain the eigenvalues of the
kinetic matrix. One of the eigenvalues, corre-
sponding to the long-time limit (true equilibrium)
is zero, while the other two are negative, and given
by algebraic expressions involving the rate con-
stants of the elementary steps [8,13].

This mechanism applies to several real cases,
namely acid-base equilibrium preceding a first-or-
der or pseudo first-order step [1], and is also the
simplest model for enzyme-catalyzed reactions
(Henri–Michaelis–Menten mechanism [1,2,4,5]),
unimolecular reactions in the gas phase (Linde-
mann mechanism [1,2]), and diffusion-influenced
reactions [1,2]. Conditions of applicability of the
PEA approximation to this mechanism have been
discussed in detail [4,13]. It was namely found that
the PEA applies if k12 þ k21 � C and this only after
an induction period (equilibration time) of
1=ðk12 þ k21Þ.

Application of the PEA yields a common rate
constant describing the long-time evolution of all
three species A1;A2, and C,

½A1� ¼
k21

k12 þ k21
½A1�0e�kt; ð2:1Þ

½A2� ¼
k12

k12 þ k21
½A1�0e�kt; ð2:2Þ

½C� ¼ ½A1�0ð1� e�ktÞ; ð2:3Þ

Scheme 1.
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where

k ¼ k12C
k12 þ k21

; ð2:4Þ

it being assumed that ½A2�0 ¼ ½C�0 ¼ 0. The overall
rate constant k can be rewritten as,

k ¼ x2C; ð2:5Þ
i.e., it is the product of the molar fraction of the
active reagent molecules ðA2Þ; x2, given by
k12=ðk12 þ k21Þ, by the intrinsic rate constant (C).

Under the conditions of applicability of the
PEA, the two eigenvalues of the system are
�ðk12 þ k21Þ and )k. One has ðk12 þ k21Þ >> k,
hence, as discussed, after a short period of time,
dominated by k12 þ k21, and corresponding to pre-
equilibration of A1 and A2, the system slowly
evolves according to the smaller (in modulus) ei-
genvalue, )k. It is under this regime that the PEA
is valid. We defer the discussion of the mechanism
in geometrical terms until Section 5.

2.2. Monomer-excimer type scheme

A slightly more complex mechanism is given in
Scheme 2.

This mechanism applies, for instance, to
monomer-excimer kinetics, where A1 is an excited
monomer and A2 is an excimer. The exact, explicit
solution is again known [8,10,13]. In the mono-
mer-excimer case, the situation where the PEA is
valid corresponds to the so-called high-tempera-
ture behavior [8], where a fast equilibrium in the
excited state exists, and for which a single expo-
nential decay (after a short induction period) with
a common decay time for both monomer and ex-
cimer is predicted, and experimentally observed
[8]. Application of the PEA approximation to
Scheme 2 yields

½A1� ¼
k21

k12 þ k21
½A1�0e�kt; ð2:6Þ

½A2� ¼
k12

k12 þ k21
½A1�0e�kt; ð2:7Þ

½C1� ¼
k21C1

k12C1 þ k21C2

½A1�0ð1� e�ktÞ; ð2:8Þ

½C2� ¼
k12C2

k12C2 þ k21C1

½A1�0ð1� e�ktÞ; ð2:9Þ

where

k ¼ k21C1 þ k12C2

k12 þ k21
; ð2:10Þ

it being assumed that ½A2�0 ¼ ½C1�0 ¼ ½C2�0 ¼ 0.
The rate constant k, given by Eq. (2.10), can be
rewritten as,

k ¼ x1C1 þ x2C2; ð2:11Þ
i.e., it is the weighted sum of the rate constants C1

and C2 of the two consumption paths, the weight-
ing factors being the molar fractions of the reacting
species (A1 and A2, respectively) in each of the
paths. The discussion of the mechanism in geo-
metrical terms is again postponed until Section 5.

2.3. Thermally activated delayed fluorescence

Consider now thermally activated delayed
fluorescence kinetics, depicted in Scheme 3.

Where the following three inequalities are usu-
ally obeyed: kST � kSG; kTS � kTG; and kST � kTS.
In this phenomenon, exhibited by some dyes [14]
and fullerenes [15], interconversion of the singlet
and triplet emissive states occurs many times, be-
fore photon emission or non-radiative decay can
take place. There is therefore a fast pre-equilib-
rium between S1 and T1. The kinetic scheme is seen
to be identical to the monomer-excimer one dis-
cussed above. In this way, a common rate constant

Scheme 2. Scheme 3.
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for the decay of both S1 and T1 is given by Eq.
(2.12),

k ¼ kST
kST þ kTS

kTG þ KTS

kST þ kTS
kSG: ð2:12Þ

Given the inequalities mentioned, Eq. (2.12) sim-
plifies to

k ¼ kTG þ ð1� UTÞkTS; ð2:13Þ
where UT is the quantum yield of triplet formation,
UT ¼ kST=ðkST þ kSGÞ. In this way, the slow decay
constant, common to fluorescence and phospho-
rescence, is close to the triplet intrinsic decay (kTG).

3. General case

3.1. General result

One might now consider schemes of increasing
complexity, like Scheme 4 or Scheme 5 and obtain
the respective PEA results.

Instead, let us consider immediately the general
case of a fast pre-equilibrium (by means of internal
steps) involving a number of species Ai ði ¼ 1; 2; ::;
nÞ, each of which may in turn react to yield other
species not participating in the fast pre-equilib-
rium, by means of outgoing steps, as shown in
Scheme 6.

It is assumed that the internal steps are uni-
molecular or pseudo-unimolecular of the type

Ai þ Bj¡Ak þ Bl;

where the Bi are (eventually) present but only in
these internal steps, and have essentially constant

concentration, while the Ai participate also in
outgoing steps of the type

Ai ! Ci þ 
 
 

This scheme corresponds for instance to the
quenching of molecular fluorescence or phospho-
rescence in concentrated fluid solutions by the
external heavy-atom effect, where a large number
of different and rapidly interconverting lumines-
cent complexes may exist [12]. The still more
general case where outgoing bimolecular steps are
allowed is discussed in Appendix A.

Based on the special results discussed in Section
2, it seems reasonable to suppose that the general
form of the long-time rate constant k obtained by
the PEA will be

k ¼
Xn
i¼1

xiCi; ð3:1Þ

where the xi are the equilibrium molar fractions of
the Ai

xi ¼
½Ai�Pn
i¼1 ½Ai�

; ð3:2Þ

and the Ci are the respective rate constants for the
outgoing, irreversible steps, as shown in Scheme 6.
The molar fractions xi can be related to the rate
constants of the internal steps, as previously
shown in Section 2.

Scheme 4.

Scheme 5.

Scheme 6.
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A simple proof that Eq. (3.1) is indeed correct is
now given.

For any of the Ai ði ¼ 1; 2; . . . ; nÞ of Scheme 6,
the following rate equation holds,

d½Ai�
dt

¼ ri � Ci½Ai� ði ¼ 1; 2; . . . ; nÞ; ð3:3Þ

where ri is the global rate for Ai resulting from all
internal steps (unimolecular or bimolecular).
Summing all rate Eq. (3.3), one gets

d
Pn

i¼1 ½Ai�
dt

¼
Xn
i¼1

ri �
Xn
i¼1

Ci½Ai�: ð3:4Þ

Now,
Pn

i¼1 ri ¼ 0 for all times, since the total
number of moles of the Ai is conserved for internal
reactions, and Eq. (3.4) becomes

d
Pn

i¼1 ½Ai�
dt

¼ �
Xn
i¼1

Ci½Ai�: ð3:5Þ

After the time lapse needed for equilibration,
Eq. (3.2) must hold, and Eq. (3.5) becomes

d
Pn

i¼1 ½Ai�
dt

¼ �
Xn
i¼1

xiCi

 ! Xn
i¼1

½Ai�
 !

: ð3:6Þ

Since the equilibrium molar fractions xi are time-
independent, a single exponential decay ofPn

i¼1 ½Ai� follows from Eq. (3.6)

Xn
i¼1

½Ai� ¼
Xn
i¼1

½Ai�eq

 !
expð�ktÞ; ð3:7Þ

where the rate constant k is given by Eq. (3.1), and
½Ai�eq stands for the concentration of Ai upon full
equilibration, in the absence of outgoing steps.
Since, from Eq. (3.2), ½Ai� is proportional toPn

i¼1 ½Ai�, one finally has

½Ai� ¼ xi
Xn
i¼1

½Ai�eq

 !
expð�ktÞ ði ¼ 1; 2; . . . ; nÞ;

ð3:8Þ
again with k given by Eq. (3.1).

Note that it cannot be assumed that after the
equilibration time one will have exactly
ri ¼ 0 ði ¼ 1; 2; . . . ; nÞ in Eq. (3.3), otherwise the
equilibrium mole fractions would not be time-in-
dependent, since the disappearance rates Ci are in

general different for each species. This observation
serves to stress that the fast equilibration not only
occurs at the early stages of the reaction, just be-
fore the PEA becomes valid, but keeps going on at
latter times, in order to maintain a state of (dy-
namic) equilibrium.

The validity of Eq. (3.8) rests on the assumption
of a fast pre-equilibration process, with respect to
the characteristic times of the outgoing processes.
These are given by the inverse of the rate constants
Ci. The internal pre-equilibrium must therefore be
attained in a time considerably shorter than the
smallest 1=Ci.

3.2. Application to external heavy-atom quenching
in fluid solution

Heavy-atom quenching of fluorescence is ex-
plained by an increase in the probability of the
S1 ! Tn radiationless transition of the fluoro-
phore. Heavy-atom quenching of fluorescence may
occur in two different ways. Firstly, the heavy-
atom can be part of the chromophore under study;
this is referred to as the internal heavy-atom effect.
If however the heavy-atom quencher is not part of
the chromophore, then the effect is said to be ex-
ternal. This process requires close contact between
perturber and fluorophore, usually in the form of a
statistical charge-transfer complex (exciplex with
essentially zero binding energy). In fluid media,
this complex is short-lived, as it is both brought
about and broken apart by the incessant diffusive
motion of quencher and fluorophore.

For the external heavy-atom quenching of the
fluorescence of an excited molecule M� by a rela-
tively dilute solution of quencher Q in a fluid me-
dium, the mechanism shown in Scheme 7 is
considered, where kd and k�d are the rate constants
for diffusion controlled association and dissocia-
tion, respectively, and C0 and C1 are the decay rates
of the free fluorophore and of the fluorophore in the
charge-transfer complex, i.e., when subject to the
external heavy-atom effect. It is assumed that no
stable complex between the ground or excited state
fluorophore and Q exists. (M�Q) is therefore a sta-
tistical complex. When, as is usually the case, [Q]�
[M], Scheme 7 becomes identical to the monomer-
excimer one, Scheme 2. In most cases, the dissoci-
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ation rate constant of the complex is much higher
than the decay rate of the perturbed fluorophore,
k�d � C1, i.e., the perturbed fluorophore lifetime
greatly exceeds that of themomentary complex. For
a solvent with a viscosity similar to that of a light
alkane or water, and at room temperature,
k�d � C1 imposes on the perturbed fluorophore
lifetime a lower limit of a few hundred picoseconds.
In such a case, the PEA can be invoked, and the
decay of fluorescence is single-exponential, with a
rate constant given by Eq. (2.10) or (2.11).

For concentrated quencher solutions, Scheme 7
is no longer satisfactory, because charge-transfer
complexes of the type (M�Qn), with n > 1 (up to
n ¼ 20 or so, depending on the concentration and
species involved), exist in significant amounts [12].
If these complexes are in fast equilibrium, then the
general result Eq. (3.1) applies, and the fluores-
cence decay rate constant is a simple average of
those of the (M�Qn). Using [12]

Cn ¼ C0 þ nDkISC; ð3:9Þ
where DkISC is the increment in the intersystem
crossing rate constant for the 1:1 complex, it fol-
lows that the fluorescence decay rate constant is

C ¼ C0 þ �nnDkISC ð3:10Þ
�nn being the average number of quenchers around
M�; �nn ¼ Vm½Q�, where Vm is a molar volume close to
that of the complex (M�Q) [12].

4. Higher-order approximations and systems not
fully pre-equilibrated

A more general approach to the problem con-
sists in writing the general rate equation in matrix
form [3,16,17],

d

dt
jAi ¼ AjAi; ð4:1Þ

where jAi is the concentration column vector
(concentration ket) of the Ai, and A is the time-
independent rate matrix,

A ¼ Kþ C; ð4:2Þ
where the real but usually non-symmetric matrix K

corresponds to the internal steps, and the matrix C
is diagonal and corresponds to the outgoing steps
(see Scheme 6).

In the absence of outgoing steps, one has

d

dt
jAi ¼ KjAi: ð4:3Þ

The solution to this equation corresponds to the
usual relaxation equation [1,2]

jAi ¼
X
i

aieki tjkii; ð4:4Þ

where the ai are scalar coefficients determined by
the initial concentrations, the jkii are eigenvectors
of K, and the ki are the corresponding eigenvalues,

Kjkii ¼ kijkii: ð4:5Þ
The relaxation times of the system are si ¼ �1=ki.
Non-degenerate eigenvalues are assumed through-
out. As physically required, all eigenvalues are non-
positive. Usually, only one eigenvalue (k0) is zero,
whose eigenvector defines the straight line, where
equilibrium solutions lie. When this eigenvector is
appropriately scaled according to the initial con-
ditions, it defines the point corresponding to the
particular equilibrium solution. This point is an
attractor of the system. The eigenvectors define the
characteristic directions of relaxation towards the
final equilibrium state. Any reaction path is defined
by a time-dependent vector that is the weighted
sum of these vectors, cf. Eq. (4.4).

The eigenvalue Eq. (4.5) can also be written,

hkijK ¼ kihkij; ð4:6Þ

where hkij is the row concentration vector (con-
centration bra). Since K is in general non-sym-
metric, the bra eigenvectors are not simply the
transpose of the corresponding kets. The eigen-
vectors may however be still chosen so as to obey
the orthonormality condition

hkijkji ¼ dij: ð4:7Þ
The matrix K can then be written

K ¼
X
i

kijkiihkij: ð4:8Þ

Scheme 7.

288 M. Rae, M.N. Berberan-Santos / Chemical Physics 280 (2002) 283–293



We now consider the effect of the introduction of
the outgoing steps, represented by the diagonal
matrix C. The solution of Eq. (4.1) is formally
identical to that of Eq. (4.3), i.e., of the form

jA0i ¼
X
i

a0ie
k0i tjk0

ii: ð4:9Þ

Under the PEA, the outgoing steps are regarded as
a small perturbation to the kinetics of the system.
In order to relate k0

i with ki a perturbational ap-
proach is therefore appropriate. The eigenvalue
equation is

ðKþ CÞjk0
ii ¼ k0

ijk
0
ii: ð4:10Þ

The perturbed solution can be written in terms of
the basis (complete set of eigenvectors) of the un-
perturbed system

jk0
ii ¼

X
j

cijjkji; ð4:11Þ

and using Eqs. (4.5), (4.10) becomesX
j

cijkjjkji þ
X
j

cijCjkji ¼ k0
i

X
j

cijjkji: ð4:12Þ

Multiplication of Eq. (4.12) by hkij yields

ciiki þ
X
j

cijhkijCjkji ¼ k0
icii; ð4:13Þ

which, upon rearrangement, gives

k0
i ¼ ki þ

1

cii

X
j

cijhkijCjkji: ð4:14Þ

One has, in all orders of approximation, cii ffi 1,
hence Eq. (4.14) becomes

k0
i ¼ ki þ

X
j

cijhkijCjkji: ð4:15Þ

In the first-order approximation, the zero-order
coefficients are used,

cij ¼ dij; ð4:16Þ
hence, the eigenvalues with corrections up to first
order are

k0
i ¼ ki þ hkijCjkii: ð4:17Þ

In thePEA, onewould expect to have hkijCjkii � ki,
except for the zero eigenvalue. Hence, k0

i ffi ki, ex-
cept for ki ¼ 0. The internal relaxation kinetics is
practically unaffected, but instead of an equilibrium

solution, the outgoing steps imply a slowdecayof all
concentrations to zero. The zero eigenvalue is thus
replaced by h0jCj0i.

In order to obtain the explicit form of this
eigenvalue, it is noted that j0i is the column ei-
genvector corresponding to the unperturbed
equilibrium solution. It may be chosen so that its
elements are the equilibrium concentrations of the
Ai. With this choice, the row eigenvector h0j is
(see Appendix B)

h0j ¼ 1P
i ½Ai�eq

1 1 1 . . . . . . 1½ �: ð4:18Þ

In this way, one finally has

h0jCj0i ¼ �
P

i ½Ai�eqCiP
i ½Ai�eq

¼ �
X
i

xiCi; ð4:19Þ

in agreement with Eq. (3.1).
Multiplication of Eq. (4.12) by hkkj yields, upon

rearrangement

c0ik ¼
P

j cijhkkjCjkji
k0
i � kk

ði 6¼ kÞ; ð4:20Þ

and using again Eq. (4.16) and k0
i ¼ ki (zero-order

values) on the r.h.s., the first-order coefficients
become

c0ik ¼
hkkjCjkii
ki � kk

ði 6¼ kÞ: ð4:21Þ

By the insertion of Eq. (4.21) into Eq. (4.15), the
eigenvalues with correction up to second order are
obtained,

k0
i ¼ ki þ hkijCjkii þ

X
j 6¼i

hkijCjkjihkjjCjkii
ki � kj

: ð4:22Þ

Note that hkijCjkji and hkjjCjkii ði 6¼ jÞ are in
general different.

The eigenvectors are, up to first order,

jk0
ii ¼ jkii þ

X
j 6¼i

hkjjCjkii
ki � kj

jkji: ð4:23Þ

For the smallest (in absolute value) eigenvalue,
Eq. (4.22) reduces to

k0
0 ¼ h0jCj0i �

X
j>0

h0jCjkjihkjjCj0i
kj

: ð4:24Þ
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The applicability of a perturbational treatment lies
on the smallness of the coefficients cij. From Eq.
(4.21), this implies that

jhkjjCjkiij � jki � kjj ði 6¼ jÞ; ð4:25Þ
and this is a supplementary condition for the ap-
plicability of the PEA.

It is interesting to consider the application of
these results to the simple monomer-excimer
scheme.

5. Monomer-excimer type scheme

For the monomer-excimer type Scheme 2 dis-
cussed in Section 2.2, the rate matrix is

K ¼ �k12 k21
k12 �k21

� �
; ð5:1Þ

and the eigenvalues are

k0 ¼ 0; ð5:2Þ

k1 ¼ �ðk12 þ k21Þ; ð5:3Þ
while the eigenkets can be chosen to be

j0i ¼ 1
K

� �
; ð5:4Þ

j1i ¼ 1
�1

� �
; ð5:5Þ

where K ¼ k12=k21. With the above choice of ei-
genkets, the eigenbras are

h0j ¼ 1

1þ K
1 1½ �; ð5:6Þ

h1j ¼ 1

1þ K
K½ � 1�: ð5:7Þ

The perturbing matrix is

C ¼ �C1 0
0 �C2

� �
: ð5:8Þ

The matrix elements are:

h0jCj0i ¼ �C1 þ KC2

1þ K
¼ � x1C1ð þ x2C2Þ; ð5:9Þ

h1jCj1i ¼ �C2 þ KC1

1þ K
¼ � x2C1ð þ x1C2Þ; ð5:10Þ

h0jCj1i ¼ C2 � C1

1þ K
¼ x1 C2ð � C1Þ; ð5:11Þ

h1jCj0i ¼ KðC2 � C1Þ
1þ K

¼ x2 C2ð � C1Þ; ð5:12Þ

hence, up to second order,

k0
0 ¼ �C1 þ KC2

1þ K
þ KðC2 � C1Þ2

1þ Kð Þ2k1

ð5:13Þ

or

k0
0 ¼ � x1C1ð þ x2C2Þ þ x1x2

ðC2 � C1Þ2

k1

; ð5:14Þ

and, up to first order,

j00i ¼ j0i þ x2ðC2 � C1Þ
k1

j1i; ð5:15Þ

j10i ¼ j1i þ x1ðC2 � C1Þ
�k1

j0i: ð5:16Þ

From Eq. (5.14), it is clear that under the PEA, the
second-order correction term is usually negligible.

An interesting aspect that is observed in Eqs.
(5.14)–(5.16) is the dependence of all higher-order
corrections on the difference C2 � C1. If these two
rate constants are exactly equal, which is physi-
cally unlikely, but mathematically possible, the
(long-time) equilibrium position and the initial
relaxation path are not affected by the perturba-
tion, even when these rate constants are compa-
rable to or larger than the internal ones.

We conclude this section with a geometrical
interpretation of the PEA, as applied to the
monomer-excimer scheme, having in mind a pre-
vious detailed analysis of the related Lindemann
scheme [4]. As discussed, in order for the PEA to
be valid, one must have k � jk1j. In this case, the
reaction path in the phase plane will be essentially
a broken line composed by two joined linear seg-
ments: one along the direction defined by j1i,
starting in the initial composition and ending at
the equilibrium line (defined by j0i), and a second
one along that line, connecting the intersection
point with the origin. The first straight path (in-
ternal relaxation) will occur on a comparatively
short time, dictated by k1, while the second
straight path (decay to zero under internal equi-
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librium conditions) will occur on a much longer
time, dictated by k, i.e., by the outgoing rates and
by the equilibrium composition. A magnification
of the small region where the two straight seg-
ments meet, will show a curved line smoothly
connecting them.

The equilibrium line (with slope K), defined by
j0i, is confined between two other straight lines,
sharing a common point (the origin). The upper
one (with slope K þ C1=k21) corresponds to the
SSA applied to A1, while the lower one
ðwith slope K=ð1þ ðC2=k21ÞÞÞ corresponds to the
SSA applied to A2. When k12 � C1, the upper SSA
coincides with the PEA line. When k21 � C2, the
lower SSA line coincides with the PEA. Since
k12 þ k21 � C1 þ C2 for the PEA to be valid, there
will always be at least one SSA simultaneously
obeyed, and only two distinct lines will exist. This
appears to be in contrast with Scheme 1, where the
two approximations (EA and SSA) not always
apply simultaneously. Nevertheless, this obviously
occurs because in that scheme (which is a partic-
ular case of Scheme 2 with C1 ¼ 0), the upper SSA
line, which coincides with the PEA line, is not
recognized as such. The SSA is usually not applied
to A1, since this is not a transient species, and the
only SSA line considered corresponds to the lower
line of Scheme 2.

It is also important to note that while for
Scheme 1 the PEA line is obtained by exactly the
same mathematical procedure as that of the (up-
per) SSA [4], in a more general scheme, like
Scheme 2, this is no longer the situation, and the
PEA cannot be generally equated with the SSA.
There is therefore in general a specific line for the
PEA. This conclusion should be stressed, since it is
not clear from previous analysis, mainly devoted
to the SSA.

6. Conclusions

In this work, the goal has been to obtain ac-
curate analytical approximations for a relatively
general and realistic kinetic scheme under the
conditions of applicability of the PEA. This was
achieved by means of a vectorial formulation of
perturbation theory. The first-order result was

confirmed by a direct analysis of the rate equa-
tions. Application of the results to a simple
scheme (monomer-excimer) produced some in-
teresting results, namely that: (i) under specific
conditions (decay rates identical for all species)
the perturbation, however strong, does not affect
the final path to equilibrium, and (ii) the PEA
line in phase space is in general different from the
SSA lines.

The main results obtained, namely Eqs. (3.1),
(4.24) and (A.4), are of interest in ground state
reactions but are also of direct application in
photophysical processes like external-heavy atom
quenching in fluid medium and thermally activated
delayed fluorescence.
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Appendix A. Inclusion of outgoing bimolecular steps

A more general situation can be envisaged
if outgoing bimolecular steps of the following
type

Ai þ Aj ! Ck þ 
 
 


are also allowed. Eq. (3.3) becomes

d½Ai�
dt

¼ ri �
Xn
j¼1

kij Aj

	 
 !
½Ai� � Ci½Ai�

ði ¼ 1; 2; ::; nÞ
ðA:1Þ

and Eq. (3.4) becomes

d
Pn

i¼1 ½Ai�
dt

¼
Xn
i¼1

ri �
Xn
i¼1

Xn
j¼1

kij Ai½ � Aj

	 


�
Xn
i¼1

Ci½Ai�: ðA:2Þ
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Instead of Eq. (3.6), one now has,

d
Pn

i¼1 ½Ai�
dt

¼ �
Xn
i¼1

Xn
j¼1

xixjkij

 ! Xn
i¼1

½Ai�
 !2

�
Xn
n¼1

xiCi

 ! Xn
i¼1

½Ai�
 !

ðA:3Þ

whose solution is

½A� ¼
½A�eq

1þ k2½A�eq
k1

� �
expðk1tÞ �

k2½A�eq
k1

; ðA:4Þ

where

½A� ¼
Xn
i¼1

½Ai�; ½A�eq ¼
Xn
i¼1

½Ai�eq;

and

k1 ¼
Xn
i¼1

xiCi;

k2 ¼
Xn
i¼1

Xn
j¼1

xixjkij:
ðA:5Þ

If k2 ¼ 0, Eq. (A.4) reduces to Eq. (3.8), which
has the form of the elementary first order reaction
A ! P . If, on the other hand, k1 ¼ 0, then
Eq. (A.4) becomes

½A� ¼
½A�eq

1þ k2½A�eqt
; ðA:6Þ

which has the form of the elementary second order
reaction 2A ! P . The more general Eq. (A.4)
corresponds to mixed first and second order
kinetics.

Appendix B. Derivation of Eq. (4.18)

The rate matrix K of the unperturbed scheme
is

K ¼

�k1 k21 
 
 
 kn1
k12 �k2 
 
 
 kn2

 
 
 
 
 
 
 
 
 
 
 

k1n k2n 
 
 
 �knn

0
BB@

1
CCA; ðB:1Þ

where the diagonal elements are

ki ¼
X
j 6¼i

kij ðB:2Þ

and the kij are the rate constants of the elementary
steps. For the zero eigenvalue, the left eigenvalue
equation Eq. (4.6) becomes

h0jK ¼ 0 ðB:3Þ

or

�x1k1 þ x2k12 þ 
 
 
 þ xnk1n ¼ 0

x1k21 � x2k2 þ 
 
 
 þ xnk2n ¼ 0


 
 

x1kn1 þ x2kn2 þ 
 
 
 � xnkn ¼ 0

ðB:4Þ

using Eq. (B.2), Eq. (B.4) becomes

ðx2 � x1Þk12 þ 
 
 
 þ ðxn � x1Þk1n ¼ 0

ðx1 � x2Þk21 þ 
 
 
 þ ðxn � x2Þk2n ¼ 0


 
 

ðx1 � xnÞkn1 þ ðx2 � xnÞkn2 þ 
 
 
 ¼ 0

ðB:5Þ

and therefore x1 ¼ x2 ¼ 
 
 
 ¼ xn. The overall co-
efficient of h0j comes from the normalization
condition, Eq. (4.7). The form of this eigenvector,
together with Eq. (4.7), also implies that all
eigenkets with non-zero eigenvalues obeyP

j xij ¼ 0 ¼ h0jii.
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