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Dynamics of electronic energy transfer in linear chain polymers
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Abstract

The influence of chain conformational motion and of inhomogeneous broadening on the kinetics of incoherent
energy transport in linear polymer chains is considered. The main results obtained are: (i) A simple expression for the
donor decay law in the static case. (ii) Also in the static case, it is concluded that inhomogeneous broadening affects the
dynamics of incoherent energy transport if the width of inhomogeneous broadening is larger than £7. (iii) Chain
conformational motion becomes important if the average time for conformational change is much shorter than the
intrinsic lifetime. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Electronic excitation transport and transfer
between chromophores attached to polymer chains
has been widely studied and used as a structural
probe [1,2]. The time dependence of the donor and
trap fluorescence intensities following pulse exci-
tation can be related to the interchromophore
separation through the Forster transfer rate [3].
Such experiments are generally performed under
very dilute conditions, allowing interchain transfer
to be neglected.

There are several different types of chromo-
phore attachment to a linear polymer chain [1,2,4—
18]. In the situation to be discussed, the following
is considered. The polymer chains contain donor
and acceptor chromophores, the distribution of
donor chromophores along the chain is regular,
while the trap (acceptor) distribution is random
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and its concentration is small. For polymer solu-
tions in good solvents, the chain adopts an ex-
tended conformation and the energy transport can
be considered as occurring in a one-dimensional
lattice [1,2,12-18]. The chromophore can be part
of the backbone, as in aromatic polymers (e.g.
polystyrene) or can be covalently attached to it.

The aim of this Letter is to study the direct,
incoherent energy transfer from an electronically
excited donor to other donor or acceptor mole-
cules in the above conditions. Both the influence of
inhomogeneous broadening of chromophore
spectra and of polymer conformational motion on
energy transfer kinetics is investigated.

2. Static regime

The polymer molecule is assumed to consist of
two types of sites: traps (acceptors, for example
excimer-forming sites), distributed randomly along
the linear chain, and nontraps (donors or mono-
mer sites), distributed regularly along the chain.
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The traps are in small concentration; the bulk of
the chain consists of nontrap sequences of donor
sites. The trap distribution over the polymer chain
is fixed in the time scale of interest (rotational
motion of monomers which leads to excimer for-
mation is frozen).

The exciton is modeled as a particle executing a
symmetric one-dimensional Markovian random
walk on a region which has the same number of
sites as the polymer molecule has donor units.
Only nearest-neighbour transfers are considered
(the polymer is supposed to be well above its 0-
temperature, a temperature at which the chain
end-to-end distribution is Gaussian). The exciton
is assumed to have an equal probability of begin-
ning at any site on the chain. All hop probabilities
are assumed to be identical, and equal to the av-
erage jump probability per unit time, W. For any
hop, the exciton has also a probability of decay
(radiatively or nonradiatively) instead of hopping
to a neighbouring site. This probability is assumed
to be site independent and equal to that of the
monomeric model compound. It is usually as-
sumed that the rate constant for energy transfer
from a donor to an acceptor, V, is equal to W.
This is a reasonable approximation if the trap is an
excimer-forming site.

The exact solution for the normalized donor
decay law is known [1,12,14]

I(t) = iczn(l —o)"'GP (1), (1)

n*

GY(1) = ﬁ > cot? (%)

=1
><exp[—4Wtsin2 (%)}, (2)

where c is the fraction of sites containing accep-
tors, ¢<1, and o4 = 2k — )n/(n+ 1), n* =n/2
if nis even and n* = (n+1)/2 if n is odd (n is the
number of sites in a segment containing only do-
nors, i.e., enclosed between two traps).

Eq. (1) does not include the loss of excitation
due to intrinsic decay because this channel is in-
dependent of the energy transfer and thus the
overall decay factorizes into the product of the
intrinsic decay exp(—¢/t) by the decay function

given above. Here 7 is the intrinsic lifetime of the
donor excited state.

From Egs. (1) and (2), one can obtain the short-
time asymptotic behaviour for I(t) (W < 1)

I(t) = 1 = 2eWt + c(1 + c) (W)
—(Wt)3<§c+%cz+%c3>. (3)

For the intermediate time domain (1 < Wt < ¢?)
and in the framework of the diffusion approxi-
mation and ¥ = oo, a distinct asymptotic function
was obtained by several authors [15,18,19]

I(t) = 1 — der/ Wi/ m. 4)
Note that a linear chain with N donors and con-
taining one acceptor at each end, and for which
V = o0, is equivalent to a chain with N — 2 donors
and containing one acceptor at each end, but for
which V' = W [12]. An approximate formula valid

for all times of interest was suggested by Palszegi
et al. [16]:

I(t) = exp (— ¢ %Wt) (5)

This relation was used in [16] to describe the in-
fluence of polymer motion on luminescence ki-
netics when the traps were excimer-forming sites.

On the other hand, by application of the ¢-
matrix approach, Fredrickson and Frank [14] ob-
tained an expression for /(¢) supposedly valid for
small trap concentration, ¢ < 1, and long times,
we>1

(1) = exp(4c* We)erfc {20(1/1/1)1/2}, (6)

where erfc(x) is the complementary error function.

We compared the exact decay law (Egs. (1) and
(2)) with the approximate ones (Egs. (5) and (6))
and noted that Egs. (5) and (6) have no correct
asymptotics at short times and are not accurate in
the most important time domain (see Fig. 1). We
also noted that at intermediate times /(¢) is very
close to (1/2)exp(—cy/8Wt/m). Based on these
observations, we constructed an approximate ex-
pression which is accurate at intermediate times
and has the correct asymptotic Eq. (3) at short
times:
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Fig. 1. Comparison of the exact expression for the donor decay
kinetics in the static regime, Eq. (1), with the approximate ones
(Egs. (5) and (6)), and with the ad hoc one, Eq. (7). It is seen
that Egs. (5) and (6) have no correct asymptotics at short times
and are not accurate within the most interesting time domain.

I(1) :% lexp <—c %Wt)
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I +4cm/(1+ mja) P (‘ Scm)] '

(7)
The first term of this expression is just one-half of
Eq. (5), a good approximation for relatively long
times, where the second term is negligible. The
second term corrects the short-time inaccuracy of
the first term. The exponential of the second term
and the respective pre-exponential factor are cho-
sen so that for the short-time domain (W < 1) the
correct asymptotic form, Eq. (3), is recovered (up
to the second power in time), the numerical value
of the parameter in the exponential being chosen
in order to give a good fit to the exact curve. As
one can see from Fig. 1 this relation is satisfactory
for all times of interest (for 7(¢) > 0.001). Eq. (7)
will be used in Section 4 in the study of the effect of
polymer chain motion when traps are excimer-
forming sites.

For donor-donor excited-state transport, the
fundamental quantity of theoretical and experi-
mental interest is G*(¢f), the ensemble-average
probability that an originally excited chromophore
is excited at time 7. G*(¢) contains contributions
from excitations that never leave the originally
excited chromophore and from excitations that
return to the initially excited chromophore after

one or more transfer events. As before, G°(¢) does
not contain the loss of excitation due to the in-
trinsic decay. G°(¢) is connected with time-resolved
fluorescence depolarization data (r(¢) = roG®(¢)
where #(¢) is the anisotropy of fluorescence and r,
is the anisotropy at the initial time [4,11,20]). In
the absence of traps, G*(¢) is well known,

G (1) = exp(~2I) 1o (211), (8)

where I, is the zero-order modified Bessel function.

3. Inhomogeneous broadening

In the last years a special attention was paid to
polymers containing donor and acceptor chro-
mophores having inhomogeneous spectral broad-
ening [2]. In such polymers one has to observe the
influence of the excitation wavelength on lumi-
nescence kinetics under selective excitation, the
role of temperature and of excitation pulse width.
In this Letter, we try to answer the question: at
which value of inhomogeneous spectral broaden-
ing width, ¢, one can start to notice its influence?

For simplicity, we will consider that the nor-
malized distribution of chromophores (donors)
over transition energies, gp(E), has Gaussian
shape and its maximum is situated at the transition
energies Ep,

1 (Ep —E)*
EF)= — _
go(E) 2no P l 202

The rate of energy transfer, W_;, between two
nearest-neighbour chromophores (from i to j) de-
pends now on their transition energy, £; and E;,
has to obey Boltzmann-type balance equation
(W—;j/Wi—; = exp|—(E; — E;)/kT]), and can be
written as

E;, —E;
Wie; = Woexp <_12kT>

E,—E o
me(EZE)

where W, is the rate of energy transfer between
chromophores having the same transition energies,
k 1s the Boltzmann constant, and 7 is the tem-
perature.

©)
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Under these conditions, the survival probability
G*(¢) connected with time-resolved fluorescence
depolarization data was calculated numerically
using the Monte-Carlo method. For this purpose,
a linear chain with 300 chromophores was used,
and periodical boundary conditions applied. The
results of calculations are shown in Fig. 2 for the
case of nonselective (broadband) excitation of
chromophores. One can see that when the impor-
tance of inhomogeneous broadening increases (i.e.,
when the ratio o/kT increases) the probability
G*(t) decreases faster at short times and slower at
long times (see Eq. (8)). These results were ex-
pected because one fraction of the molecules has
W._; > W, and thus decays faster, while another
fraction has W_,; < W, and decays slower. Inho-
mogeneous broadening is significant whenever
o/kT = 1.

4. Influence of chain conformational motion

If a configuration of acceptors (excimer-form-
ing sites) is stable during the lifetime of the chro-
mophore then the kinetics of luminescence is
described by Eq. (1) or Eq. (7). It is now supposed
that conformational transitions occur during the
lifetime of the chromophore, and that these tran-
sitions are sudden and random both in time and in
space along the chain. The overall structure of
traps (excimer-forming sites) is thus dynamically
changing, so that the initial configuration of the

I(t)

0.8 1

0.6 1

0.4 1 4

0.2

0 0.5 1 Wt 15

Fig. 2. Effect of inhomogeneous broadening on the donor
survival probability. The dimensionless parameter o/kT is
shown next to each curve.

system is forgotten after some time 7. Introducing
the mean time for conformational change, 7conr,
and assuming a Poissonian process, the following
integral equation for the donor decay, Iy, (), was

obtained [16,17]:
1 t
1
Tconf /0 (tl )

X exXp(—t /Teont ) nop(t — 11) dty, (11)

where /(¢) is the luminescence intensity in the ab-
sence of conformational change described by Eq.
(1) or (7). This equation was solved numerically
[16] using the approximate equation (5) for I(¢)
instead of the exact result, Egs. (1) and (2). Correct
solutions of Eq. (11) are shown in Fig. 3 (we used
Eq. (7) for I(¢) with Wt = 50, ¢ = 0.02). From our
results it is concluded that polymer conforma-
tional change is important for /7 < 10 (for a
given concentration of traps).

Note that when 7., decreases, the kinetics be-
comes exponential, o (#) ~ exp(—kt), where k is
the rate constant, which can be obtained from the
equation

k= <1 — TC(lmf /Ox I1(t)exp( — t/Tconr) dt>
/ /0 () exp( = treony) dt (12)

1hop(t) = I(t) exp(—1/Tconr) +

It)

0.8 1

0.6 1

0.4 1

0.2 1

0 ‘ ‘ ‘ :
0 1 2 3 4 g S
Fig. 3. Effect of chain conformational motion on the donor
survival probability, numerically computed using Eqs. (7) and
(11), with Wz = 50 and ¢ = 0.02. The dimensionless parameter
Teont/T 18 sShown next to each curve.



E.N. Bodunov et al. | Chemical Physics Letters 340 (2001) 137-141 141

Using this equation and Eq. (7), one can obtain
the rate constant £ in the limit of very small 7., as

k= 2cW. (13)

This result is expected since, owing to the presence
of traps, the polymer chain is sectioned in finite-
length segments. In the limit of very small 7., an
exciton has an equal probability to be found at any
monomer site on the chain and this probability is
independent of time. Each segment has two traps
at its ends, the rate constant for nearest-neighbour
energy transfer (from a donor to an acceptor) is
W, and therefore the rate constant is given by Eq.
(13) and the donor decay is exponential.

It should be possible to extract t.,,s from ex-
perimental decays, by applying the appropriate
model to fluorescence trapping.

5. Summary and conclusions

In this Letter, the kinetics of luminescence of
chromophores attached to each segment of a linear
polymer chain was studied. In the static case, when
the polymer chain does not change its conforma-
tion during the chromophore lifetime, the analyt-
ical expression Eq. (7) is obtained.

It was shown that inhomogeneous broadening
of chromophore spectra is important if the width
of inhomogeneous broadening, o, is larger than
kT.

The hopping model of polymer conformational
change was also considered. This kind of polymer
motion becomes important if the time for confor-
mational change is short enough, 7./t < 10. In
the limit of very fast conformational change
compared to the intrinsic donor lifetime, an ex-
ponential donor decay is predicted.
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